
Proactive Detection of Collaboration
Conflicts
Yuriy Brun , Reid Holmes , Michael D. Ernst , David Notkin

Computer Science & Engineering
University of Washington

School of Computer Science
University of Waterloo

Presentation by:
Hemayet Ahmed Chowdhury

Introduction
● Collaborative development can be hampered when conflicts arise because

developers have inconsistent copies of a shared project

● While Version Control Systems permit rapid development progress, loose
synchronization can result in textual conflicts, build conflicts and test case
failures.

● This paper presents a tool, Crystal, that can help developers identify and
resolve conflicts early by reporting conflict errors before commits are
pushed into the master repository.

Paper Structure
● The paper first starts with a study of open-source systems and establishes

that conflicts are frequent, persistent, and appear not only as overlapping
textual edits but also as subsequent build and test failures

● The paper then diagnoses important classes of conflicts using the novel
technique of speculative analysis over version control operations.

● The paper finally describes the design of Crystal, a tool that uses PROACTIVE
speculative analysis to make concrete advice available to developers,
helping them identify, manage, and prevent conflicts.

Sample Scenario
● George and Ringo are adding features to a project.
● They both publish their changes to the master repo.
● No Textual conflicts occur but the program does not build / the

regression tests fail
● George and Ringo go through a lot of trouble to recollect the

changes and rework their code.

Potential Solutions
Awareness Tools Vs Speculative Analysis Tools

● An awareness tool can alert developers about where other
developers are working on. Problematic because it can result in a
lot of false positives in situations where no conflict takes place.

● Speculative Analysis Tools can however proactively inform
developers of version control conflicts.

Speculative Analysis Tool
● Does not guess conflicts.
● Executes VCS operations (merging, building, running tests) on the

background on the clones of the project.
● Reports the conflicts generated after execution of the merging,

building and test cases.
● Crystal, presented by this paper, is a speculative analysis tool.

VCS Terminology
● SAME: 2 local repos of the developers have the same change sets
● AHEAD: One repository has a superset of the other repository’s

changesets.
● BEHIND: The inverse of AHEAD
● Textual Conflict : Overlapping lines of code between 2 repos
● Build Conflict : Failure to build after merging of 2 repos
● Test Conflict : Failure to pass test cases after building
● Textual Pass, Build Pass, Test Pass : The repos can be merged,

built and pass the test cases

VCS Overview

Crystal has access to and analyses each local clone of the developers.

RQ 1 : How frequently do conflicts arise across
developers’ copies of a project?

RQ 2: How long do these conflicts persist
● On average, the TEXTUAL conflict relationships between repos

persisted for 9.8 days and involved 23.2 changesets — 11.6 per
developer.

● On average, the build conflicts/test failure relationships
between repos persisted for 11 days and spanned 23 changesets.

RQ3: Do clean merges devolve into conflicting
changes?
● Of all conflict relationships , 93% developed from a TEST pass

relationship; the other 7% of conflict relationships developed
from a BEHIND relationship

● 20% of TEST pass relationships later devolved into a conflict

RQ4: What information could developers use to
reduce the frequency and duration of conflicts?
What information could help developers make better decisions such
as whether
● to perform a particular operation such as a push/pull
● to wait for a coworker to perform one
● to communicate directly with a coworker

Guidance by Crystal
Crystal can provide information of 5 different categories to guide
developers into better conflict resolving.
● Committer: Who made the relevant changes?
● When: Can an action that affects the conflict relationship be

performed now, or must it wait until later?
● Consequences: Will an action — perhaps one on a different

repository — affect a relationship?
● Capable: Who can perform an action that changes the

relationship?
● Ease: Has anyone already made changes that ease resolving an

existing conflict?

Committer : Who made the relevant changes?

Consider three developers George, Ringo and Paul

● George realises he is in a textual conflict with Ringo
● However, Ringo may not have made the conflicting changes
● instead, Paul may have made and pushed the changes to the

master, and Ringo then pulled them from the master
● In this case, George should likely discuss the conflict with Paul

rather than with Ringo
● Crystal can provide this guidance with the information it

collected from the repos and commits of all three developers.

When : Can an action that affects the conflict relationship be
performed now or later?

● Ringo is behind George in terms of commits in their local repos
● But Ringo can’t incorporate his changes because George hasn’t

pushed his commit to master yet
● Even though Ringo has to pull the master repo to incorporate his

changes, he will have to do it after George pushes his commit
● Crystal can help developers know when to perform such an

action like a pull from the repo or when to wait

Consequences: Will an action — perhaps one on a different
repository — affect a relationship?

● Ringo is behind George in terms of commits in their local repos
● Crystal can help him know if he is behind

○ Because George has pushed his changes but Ringo hasn’t
pulled from the master Repo yet. In which case, Ringo should
perform a pull.

○ Or because George hasn’t pushed his commits yet. In which
case, even if Ringo does pull from master, it’s not going to
help him much.

Capable: Who can perform an action that changes the
relationship?

● George and Ringo are in a textual conflict.
● If Ringo has already pushed his changes to the master, George

must be the one to resolve this commit.
● If George has already pushed his, Ringo must be the one to

resolve the commit instead
● If neither has pushed, any one of them can resolve it.
● Crystal can help both of them have a clear picture of scenarios

such as these.

Ease: Has anyone already fixed the issue but hasn’t pushed to
master yet?

● George and Ringo are in a textual conflict.
● Ringo pushed to the master
● If George pulls, he will have to resolve the conflict.
● However, if Ringo has already worked on resolving the conflict,

George can wait till Ringo pushes them.
● Crystal can help George know if Ringo has already made follow

up changes to his commit, so George doesn’t have to put in the
unnecessary effort to fix things.

Crystal’s UI
● UI that George can see.

● Hollow icons mean George has to
wait. Solid icons mean George can
perform action with the VCS

● John has made more commits that
George hasn’t.

● George is behind John but he
must wait till John pushes to
Master in order to pull from the
Master. This is represented by a
hollow icon.

Related Work
Most current research similar to this paper focus on awareness tools.
● Palantír shows which developers are changing which artifacts by how much
● Syde is another awareness tool that reports on textual changes but reduces

its false positives via a fine-grained analysis of the abstract syntax trees
(ASTs) modifications

● CollabVS detects a potential conflict when a user starts editing a program
element that has a dependency on another program element that has been
edited but not checked-in by another developer.

Crystal differs in the sense that
● It provides guidance along with precise conflict information
● Reports much fewer false positives
● Most importantly, can handle higher level conflicts apart

from textual changes such as build conflicts and test failures.

Threats To Validity
● The empirical study does not take into account when and how the developers

found out the conflicting relationships.
● The experiments are performed in the context of Distributed VCs, which differ

from CVCs. So the same assumptions and analyses may not hold for all version
control systems.

● The study is focused on nine open-source systems which may not be
characteristic of all other systems.

● Usability and developer style may effect how Crystal helps users. For instance,
in projects where conflicts don’t occur much at all, Crystal may end up being a
distraction for the developers.

Thank you

