Evolutionary Generation of
Whole Test Suites

Authors: Gordon Fraser and Andrea Arcuri

Paper presentation by Rahul Agarwal

1public class Stack {
» int[] values = new int[3];
3 int size = 0;

void push(int x) {

.
PrOblem s if(size >= values.length) <| Requires a full stack
6 resize();
7 if(size < values.length) < Else branch is infeasible
e Current test generation tools one 8 values[size++] = Xx;
distinct coverage goal (eg. a program o}
branch) and derive test case. o int pop() {
e But, this approach assumes that all 1 if(size > 0)< May imply coverage in push and resize
coverage goals are equally important,) el::tum values[size——J;
equally difficult to reach and 14 throw new EmptyStackException();
independent of each other. 5}
e Theorderinwhich goals are chosen is 1« private void resize(){

difficult to predict. 7 int[] tmp = new int[values.length * 2];
. 18 for(int i = 0; i < values.length; i++)
e Thus, the order canimpact the . tmpli] = valuesfi];

coverage quality. » values = tmp;

21 }
22}

Solution

e The paper presents a novel tool - EVOSUITE

e Rather than building distinct test cases for distinct coverage goals, EVOSUITE optimizes the entire
test suite at once towards satisfying a coverage criterion.

e Satisfy the chosen coverage criterion with the smallest possible test suite.

e Search based testing

° Handlin.g dependencies Random initial test suites Test suite evolution Minimized test suite
® Dynamic test case length with maximized coverage

® Reach private functions 1
(20 [b0 [c0 [d0 |
|>)

[a0 To0 Te0 140 |
[x0 [v0 [20]

[f0 Te0 Th0 Ti0 |

Approach - Test suite optimization

Genetic Algorithm (GA)
Problem Representation
Fitness Function

Bloat Control

Search Operators

ok wbdpeE

Genetic Algorithm

1. GAs qualify as meta-heuristic search
technique

2. A population of chromosomes is evolved
until a solution is found that fulfills the
coverage criterion

3. Ineachiteration, a new generation is created
using rank selection, crossover, and
mutation.

Algorithm 1 The genetic algorithm applied in EVOSUITE

1 current_population < generate random population
> repeat

3

4

© o N o [

Z < elite of current_population
while |Z| # |current_population| do

P, P, < select two parents with rank selection
if crossover probability then
01,042 < crossover P;,Ps
else
01,02 < P,P,
mutate O; and O,
fp = min(fitness(Py),fitness(Ps))
fo = min(fitness(01),fitness(03))
lp = length(P;) + length(P)
lo = length(O1) + length(O2)
T = best individual of current_population
if fo < fpV (fo= fpAlo <lIp)then
for O in {O1,05} do
if length(O) < 2 x length(Ts) then
Z «+ ZU{0}
else
Z(—ZU{Pl OI‘PQ}
else
Z +— ZU {Pl,PQ}

current_population < Z

»s until solution found or maximum resources spent

Problem Representation

HoLwbdhpe

Test Suite is represented as T which consists of set of test cases t;
A test case is a sequence of statements of length | t = (s, s,,...,5s;)
The length of a test suite is defined as the sum of length of it’s test cases length(T) = Y,¢1 I;

Each statement in a test case represents one value which belongs one of the below type:
1. Primitive statements: numeric variables (e.g., int varO = 54)
2. Constructor statements: instance of a new class (e.g., Stack var1 = new Stack())
3. Field statements: access public members of an object (e.g., int var2 = varl.size)
4. Method statements: invoke methods on statements (int var3 = vari.pop())

Constraint->n € [0,N] and l € [0,L]

Fithess Function

e Inorderto guide the selection of parents for offspring generation, fitness function is used that
rewards better coverage.

e Iftwo test suites have the same coverage, the test suite with less statements is selected.

e Inthis paper, branch coverage is used as test criterion.

0 if the branch has been covered,

d(b.T) = V(dmin(b,T)) if the predicate has been ﬁtness(T) = |M| — |MT| -+ Z d(bk,T)

executed at least twice,
bL€B
T 1 otherwise.

Branch distance

Bloat Control

e Avery common problem in GA because of
the variable size representation.

e After each generation, the test cases can
become longer, until all memory is
consumed.

e Bloat control methods employed:
1. Limit N on max number of test cases and limit
L for maximum length of each test case.
2. Offspring with non-better coverage are never
accepted in new generations

if{ fo < fp V (fo = fp Alo < lp) then
for O in {O1,0,} do
if length(O) < 2 X length(T's)|then
7« ZU{0]
else
Z <+ ZU{P; or P}

else
Z +— ZU {Pl,P2}

Search Operators - Crossover

e Generates two offsprings 0, and 0, from parent test
suites P, and P,.

e 0, will contain the first a|P, | test cases followed by
last (1 — a) |P,|. Similarly, for 0,.

e Sincethetest cases are independent, the crossover
yields valid offsprings.

e Italsodecreases the difference in the number of test
cases between test suites, i.e., abs(]0,|—|0,|)
< abs(|Py|—|P,])

[0 Joo Jeo|e] -
EXENEN CoTwT=T=]
o1 el
I ENER

N EX EN R
_ o Lo Jno | o)

(a) Crossover

Search Operators — Mutation

a() | b() | c()
e When atestsuite T is mutated, each of it’s test case is
mutated with probability 1/|T]. al) { bO) | <0
e Test cases are added with a probability ¢! till the limit N.
e When atest case is mutated, then three types of b()
operation are applied in order with probability of 1/3:
1. Remove: each statement s; is deleted with probability 1/n.
If the test case needs to be repaired, then another
statement is replaced of same type. If not, then s; is b() X() -

deleted recursively.

(b) Mutation

Search Operator — mutation contd.

e Change: each statement s; is changed with probability 1/n. If s; is a primitive statement, then.
Numeric value is changed by a random value in £[0, A]. If s; is not a primitive statement, then a
method, field or constructor of same type is chosen out of the test cluster.

e Insert: A new statement is added at a random position in the test case with a probability ¢’.

Algorithm 1 The genetic algorithm applied in EVOSUITE

1 current_population < generate random population
> repeat
3 Z < elite of current_population
while |Z| # |current_population| do
P, P, < select two parents with rank selection
if crossover probability then
01,04 <+ crossover P;,Ps
else
01,02 < P,P,
10 mutate O; and O,
" fp = min(fitness(P,),fitness(P,))
2 fo = min(fitness(0,),fitness(02))
13 lp =length(P;) + length(Ps)
14 lo = length(O1) + length(O2)

© oo < = w ~

15 T = best individual of current_population
16 if fo < fpV (fo= fpAlo <lIp) then

17 for O in {01,0,} do

18 if length(O) < 2 x length(Ts) then

19 Z <+~ ZU {O}

2 else

21 Z(—ZU{PlorPg}

2 else

23 4 +— ZU {Pl,PQ}

u current_population < Z
»s until solution found or maximum resources spent

Experiments - Implementation detail

e EVOSUITE isimplemented in Java and generates Junit test suites.
e Toexecutethe tests during the search, EVOSUITE uses Java Reflection.

e Test suites are minimized using simple minimization algorithm [2]
o Remove each statement one at a time till remaining statements contribute to coverage
o Reduces both the number of test cases as well as their length.

e Test case execution can be slow, and in particular when generating test cases randomly, infinite
recursion can occur. Thus, a timeout of 5 seconds is chosen for test case execution.

Experiment setup

5 open-source libraries and a subset of an industrial case study project.

727 public classes.

Crossover probability = 3/4

Probability of test case insertion ¢ = 0.1

Probability of statement insertion ¢’ = 0.5

L=80 | N=100

Search is performed until 100% branch coverage or till k = 1,000,000 statements executed
Each experiment was repeated 100 times with different seeds.

Results

e Vergha-Delaney 4,, effect size is used to estimate the probability of EVOSUITE performing better
than traditional single branch method.

e A,, =0.5means the performance of the two randomized algorithms is the same

e A, =1meansthatinall 100 runs of EVOSUITE performed better than single branch strategy

ReSUI.tS = 1 o 2 - T T T ' B - -
(o) .
: | n
ML
Q X ' :) ! '
e Thecoverage improvement of O o i Lo i o
EVOSUITE is up to 18 times better g ° S R A
than single branch strategy. % S o © é_ § ;
e “Whole test suite generation achieves o Lo g °
. . o] N -+ - o N
higher coverage ’Fhanﬂsmgle branch § o g 9 ° o °[a Single
test case generation. < o] 8 o O EvoSuite
[

I 1 1 1 T 1
JCJC JT JT CPCP CCCC GCGC Ind Ind

Fig. 5. Average branch coverage: Even with an evolution limit of 1,000,000
statements, EVOSUITE achieves higher coverage.

ReSUI-ts - 2 o _|| @ Single ’
© O EvoSuite 8
< 8 9 o
*g) ? g 8 o 8
e Forcaseswhere 4,, = 0.5, the obtained P o & T g T °
2] ! [¢] ' s . '
test suite size was 44% smaller for S 8 i o :
EVOSUITE than the single branch A T -~
strategy. < | ' o q B :
e “Whole test suite generation produces ! 5 oL
smaller test suites than single branch test o1 - 0 - o O o o+
case generation. “ JCJUC JT JT CPCP CCCC GCGC Ind Ind

Fig. 7. Average length values: Even after minimization, EVOSUITE test suites
tend to be smaller than those created with a single branch strategy (shown
for cases with identical coverage).

Conclusion

e optimizing whole test suites towards a coverage criterion is superior to the traditional approach of
targeting one coverage goal at a time.

e Eventhough branch coverage is used, other test criteria can also be utilized similarly.

e EVOSUITE can also be applied to procedural software.

Related work

1. Asimilar genetic algorithm is used to automatically generate unit test cases for classes.
O This paper is being used for comparing the performance of EVOSUITE
O They built atool called eToc [1] for the Java language.

2. PathCrawler[2]

1. Instead of heuristic function minimization, it used constraint logic programming

Discussion Questions

e Can EVOSUITE be applied to procedural software as well?
o Procedural programming uses recursion
o Flow control is performed using function calls instead of conditional statements.
e Does Automated White-Box Test Generation Really Help Software Testers? [3]
o Once we have generated the test data, how should developers use it?
e Arethetest cases generated by EVOSUITE easy to understand by the developers?

o Whatif they want to repair certain test cases?
o Orunderstand the test suite and manually add more test cases to further improve the coverage?

Citations

1. P.Tonella, “Evolutionary testing of classes,” in ISSTA'O4: Proceedings of the ACM International Symposium on

Software Testing and Analysis. ACM, 2004, pp. 119-128.

2. N.Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: automatic generation of path tests by
combining static and dynamic analysis,” in EDCC’0O5: Proceedings ot the 5th European Dependable Computing
Conference, ser. LNCS, vol. 3463. Springer, 2005, pp. 281-292.

3. Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2013. Does automated
white-box test generation really help software testers? In <i>Proceedings of the 2013 International
Symposium on Software Testing and Analysis</i> (<i>ISSTA 2013</i>). Association for Computing
Machinery, New York, NY, USA, 291-301. DOl:https://doi.org/10.1145/2483760.2483774

Thank You

