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Problem

● Current test generation tools one 

distinct coverage goal (eg. a program 

branch) and derive test case. 

● But, this approach assumes that all 

coverage goals are equally important, 

equally difficult to reach and 

independent of each other. 

● The order in which goals are chosen is 

difficult to predict.

● Thus, the order can impact the 

coverage quality. 



Solution 

● The paper presents a novel tool - EVOSUITE

● Rather than building distinct test cases for distinct coverage goals, EVOSUITE optimizes the entire 
test suite at once towards satisfying a coverage criterion.

● Satisfy the chosen coverage criterion with the smallest possible test suite. 

● Search based testing
● Handling dependencies
● Dynamic test case length
● Reach private functions



Approach – Test suite optimization

1. Genetic Algorithm (GA)

2. Problem Representation

3. Fitness Function

4. Bloat Control

5. Search Operators



Genetic Algorithm

1. GAs qualify as meta-heuristic search 

technique

2. A population of chromosomes is evolved

until a solution is found that fulfills the 
coverage criterion

3. In each iteration, a new generation is created 

using rank selection, crossover, and 

mutation. 



Problem Representation

1. Test Suite is represented as T which consists of set of test cases 𝑡!
2. A test case is a sequence of statements of length l 𝑡 = 𝑠" , 𝑠# , . . . , 𝑠$
3. The length of a test suite is defined as the sum of length of it’s test cases length(T) = ∑%∈' 𝑙%
4. Each statement in a test case represents one value which belongs one of the below type: 

1. Primitive statements: numeric variables (e.g., int var0 = 54 )
2. Constructor statements: instance of a new class (e.g., Stack var1 = new Stack() )

3. Field statements: access public members of an object (e.g., int var2 = var1.size )
4. Method statements: invoke methods on statements (int var3 = var1.pop() )

5. Constraint -> 𝑛 ∈ 0,𝑁 𝑎𝑛𝑑 𝑙 ∈ 0, 𝐿



Fitness Function

● In order to guide the selection of parents for offspring generation, fitness function is used that 

rewards better coverage. 

● If two test suites have the same coverage, the test suite with less statements is selected. 

● In this paper, branch coverage is used as test criterion. 

Branch distance



Bloat Control

● A very common problem in GA because of 

the variable size representation. 

● After each generation, the test cases can
become longer, until all memory is

consumed.
● Bloat control methods employed: 

1. Limit N on max number of test cases and limit

L for maximum length of each test case.
2. Offspring with non-better coverage are never 

accepted in new generations



Search Operators - Crossover

● Generates two offsprings𝑂" and 𝑂# from parent test 

suites 𝑃" and 𝑃# .

● 𝑂" will contain the first 𝛼 𝑃" test cases followed by 

last 1 − 𝛼 𝑃# . Similarly, for 𝑂# . 

● Since the test cases are independent, the crossover 

yields valid offsprings. 

● It also decreases the difference in the number of test 

cases between test suites, i.e., 𝑎𝑏𝑠 |𝑂" − 𝑂#
≤ 𝑎𝑏𝑠 |𝑃" − 𝑃#



Search Operators – Mutation

● When a test suite T is mutated, each of it’s test case is 

mutated with probability ⁄1 𝑇 . 

● Test cases are added with a probability 𝜎! till the limit N. 

● When a test case is mutated, then three types of 

operation are applied in order with probability of 1/3: 
1. Remove: each statement 𝑠! is deleted with probability 1/n. 

If the test case needs to be repaired, then another 
statement is replaced of same type. If not, then 𝑠! is 
deleted recursively. 



Search Operator – mutation contd.

● Change: each statement 𝑠! is changed with probability 1/n. If 𝑠! is a primitive statement, then. 

Numeric value is changed by a random value in ±[0, Δ]. If 𝑠! is not a primitive statement, then a 

method, field or constructor of same type is chosen out of the test cluster. 

● Insert: A new statement is added at a random position in the test case with a probability 𝜎′. 





Experiments – Implementation detail

● EVOSUITE is implemented in Java and generates Junit test suites. 

● To execute the tests during the search, EVOSUITE uses Java Reflection. 

● Test suites are minimized using simple minimization algorithm [2]
○ Remove each statement one at a time till remaining statements contribute to coverage
○ Reduces both the number of test cases as well as their length. 

● Test case execution can be slow, and in particular when generating test cases randomly, infinite 

recursion can occur. Thus, a timeout of 5 seconds is chosen for test case execution. 



Experiment setup

● 5 open-source libraries and a subset of an industrial case study project.

● 727 public classes.

● Crossover probability = 3/4

● Probability of test case insertion  𝜎 = 0.1
● Probability of statement insertion 𝜎’ = 0.5 

● L = 80 |    N = 100

● Search is performed until 100% branch coverage or till k = 1,000,000 statements executed

● Each experiment was repeated 100 times with different seeds.



Results

● Vergha-Delaney >𝐴"# effect size is used to estimate the probability of EVOSUITE performing better 

than traditional single branch method. 

● >𝐴"# = 0.5 means the performance of the two randomized algorithms is the same

● >𝐴"# = 1 means that in all 100 runs of EVOSUITE performed better than single branch strategy



Results - 1

● The coverage improvement of 

EVOSUITE is up to 18 times better 

than single branch strategy. 

● “Whole test suite generation achieves 

higher coverage than single branch 

test case generation. “



Results - 2

● For cases where >𝐴"# = 0.5, the obtained 

test suite size was 44% smaller for 

EVOSUITE than the single branch 

strategy. 

● “Whole test suite generation produces 

smaller test suites than single branch test 

case generation. “



Conclusion

● optimizing whole test suites towards a coverage criterion is superior to the traditional approach of 

targeting one coverage goal at a time.

● Even though branch coverage is used, other test criteria can also be  utilized similarly. 

● EVOSUITE can also be applied to procedural software. 



Related work

1. A similar genetic algorithm is used to automatically generate unit test cases for classes. 
○ This paper is being used for comparing the performance of EVOSUITE 

○ They built a tool called eToc [1] for the Java language.

2. PathCrawler [2]
1. Instead of heuristic function minimization, it used constraint logic programming 



Discussion Questions

● Can EVOSUITE be applied to procedural software as well? 
○ Procedural programming uses recursion

○ Flow control is performed using function calls instead of conditional statements.

● Does Automated White-Box Test Generation Really Help Software Testers? [3]
○ Once we have generated the test data, how should developers use it? 

● Are the test cases generated by EVOSUITE easy to understand by the developers? 
○ What if they want to repair certain test cases? 
○ Or understand the test suite and manually add more test cases to further improve the coverage? 
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