
Evolutionary Generation of
Whole Test Suites
Authors: Gordon Fraser and Andrea Arcuri

Paper presentation by Rahul Agarwal

Problem

● Current test generation tools one

distinct coverage goal (eg. a program

branch) and derive test case.

● But, this approach assumes that all

coverage goals are equally important,

equally difficult to reach and

independent of each other.

● The order in which goals are chosen is

difficult to predict.

● Thus, the order can impact the

coverage quality.

Solution

● The paper presents a novel tool - EVOSUITE

● Rather than building distinct test cases for distinct coverage goals, EVOSUITE optimizes the entire
test suite at once towards satisfying a coverage criterion.

● Satisfy the chosen coverage criterion with the smallest possible test suite.

● Search based testing
● Handling dependencies
● Dynamic test case length
● Reach private functions

Approach – Test suite optimization

1. Genetic Algorithm (GA)

2. Problem Representation

3. Fitness Function

4. Bloat Control

5. Search Operators

Genetic Algorithm

1. GAs qualify as meta-heuristic search

technique

2. A population of chromosomes is evolved

until a solution is found that fulfills the
coverage criterion

3. In each iteration, a new generation is created

using rank selection, crossover, and

mutation.

Problem Representation

1. Test Suite is represented as T which consists of set of test cases 𝑡!
2. A test case is a sequence of statements of length l 𝑡 = 𝑠" , 𝑠# , . . . , 𝑠$
3. The length of a test suite is defined as the sum of length of it’s test cases length(T) = ∑%∈' 𝑙%
4. Each statement in a test case represents one value which belongs one of the below type:

1. Primitive statements: numeric variables (e.g., int var0 = 54)
2. Constructor statements: instance of a new class (e.g., Stack var1 = new Stack())

3. Field statements: access public members of an object (e.g., int var2 = var1.size)
4. Method statements: invoke methods on statements (int var3 = var1.pop())

5. Constraint -> 𝑛 ∈ 0,𝑁 𝑎𝑛𝑑 𝑙 ∈ 0, 𝐿

Fitness Function

● In order to guide the selection of parents for offspring generation, fitness function is used that

rewards better coverage.

● If two test suites have the same coverage, the test suite with less statements is selected.

● In this paper, branch coverage is used as test criterion.

Branch distance

Bloat Control

● A very common problem in GA because of

the variable size representation.

● After each generation, the test cases can
become longer, until all memory is

consumed.
● Bloat control methods employed:

1. Limit N on max number of test cases and limit

L for maximum length of each test case.
2. Offspring with non-better coverage are never

accepted in new generations

Search Operators - Crossover

● Generates two offsprings𝑂" and 𝑂# from parent test

suites 𝑃" and 𝑃# .

● 𝑂" will contain the first 𝛼 𝑃" test cases followed by

last 1 − 𝛼 𝑃# . Similarly, for 𝑂# .

● Since the test cases are independent, the crossover

yields valid offsprings.

● It also decreases the difference in the number of test

cases between test suites, i.e., 𝑎𝑏𝑠 |𝑂" − 𝑂#
≤ 𝑎𝑏𝑠 |𝑃" − 𝑃#

Search Operators – Mutation

● When a test suite T is mutated, each of it’s test case is

mutated with probability ⁄1 𝑇 .

● Test cases are added with a probability 𝜎! till the limit N.

● When a test case is mutated, then three types of

operation are applied in order with probability of 1/3:
1. Remove: each statement 𝑠! is deleted with probability 1/n.

If the test case needs to be repaired, then another
statement is replaced of same type. If not, then 𝑠! is
deleted recursively.

Search Operator – mutation contd.

● Change: each statement 𝑠! is changed with probability 1/n. If 𝑠! is a primitive statement, then.

Numeric value is changed by a random value in ±[0, Δ]. If 𝑠! is not a primitive statement, then a

method, field or constructor of same type is chosen out of the test cluster.

● Insert: A new statement is added at a random position in the test case with a probability 𝜎′.

Experiments – Implementation detail

● EVOSUITE is implemented in Java and generates Junit test suites.

● To execute the tests during the search, EVOSUITE uses Java Reflection.

● Test suites are minimized using simple minimization algorithm [2]
○ Remove each statement one at a time till remaining statements contribute to coverage
○ Reduces both the number of test cases as well as their length.

● Test case execution can be slow, and in particular when generating test cases randomly, infinite

recursion can occur. Thus, a timeout of 5 seconds is chosen for test case execution.

Experiment setup

● 5 open-source libraries and a subset of an industrial case study project.

● 727 public classes.

● Crossover probability = 3/4

● Probability of test case insertion 𝜎 = 0.1
● Probability of statement insertion 𝜎’ = 0.5

● L = 80 | N = 100

● Search is performed until 100% branch coverage or till k = 1,000,000 statements executed

● Each experiment was repeated 100 times with different seeds.

Results

● Vergha-Delaney >𝐴"# effect size is used to estimate the probability of EVOSUITE performing better

than traditional single branch method.

● >𝐴"# = 0.5 means the performance of the two randomized algorithms is the same

● >𝐴"# = 1 means that in all 100 runs of EVOSUITE performed better than single branch strategy

Results - 1

● The coverage improvement of

EVOSUITE is up to 18 times better

than single branch strategy.

● “Whole test suite generation achieves

higher coverage than single branch

test case generation. “

Results - 2

● For cases where >𝐴"# = 0.5, the obtained

test suite size was 44% smaller for

EVOSUITE than the single branch

strategy.

● “Whole test suite generation produces

smaller test suites than single branch test

case generation. “

Conclusion

● optimizing whole test suites towards a coverage criterion is superior to the traditional approach of

targeting one coverage goal at a time.

● Even though branch coverage is used, other test criteria can also be utilized similarly.

● EVOSUITE can also be applied to procedural software.

Related work

1. A similar genetic algorithm is used to automatically generate unit test cases for classes.
○ This paper is being used for comparing the performance of EVOSUITE

○ They built a tool called eToc [1] for the Java language.

2. PathCrawler [2]
1. Instead of heuristic function minimization, it used constraint logic programming

Discussion Questions

● Can EVOSUITE be applied to procedural software as well?
○ Procedural programming uses recursion

○ Flow control is performed using function calls instead of conditional statements.

● Does Automated White-Box Test Generation Really Help Software Testers? [3]
○ Once we have generated the test data, how should developers use it?

● Are the test cases generated by EVOSUITE easy to understand by the developers?
○ What if they want to repair certain test cases?
○ Or understand the test suite and manually add more test cases to further improve the coverage?

Citations

1. P. Tonella, “Evolutionary testing of classes,” in ISSTA’04: Proceedings of the ACM International Symposium on
Software Testing and Analysis. ACM, 2004, pp. 119–128.

2. N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: automatic generation of path tests by
combining static and dynamic analysis,” in EDCC’05: Proceedings ot the 5th European Dependable Computing
Conference, ser. LNCS, vol. 3463. Springer, 2005, pp. 281–292.

3. Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2013. Does automated

white-box test generation really help software testers? In <i>Proceedings of the 2013 International
Symposium on Software Testing and Analysis</i> (<i>ISSTA 2013</i>). Association for Computing

Machinery, New York, NY, USA, 291–301. DOI:https://doi.org/10.1145/2483760.2483774

Thank You

