Conflict Resolution for Structured Merge via
Version Space Algebra

Presented By
Sheikh Shadab Towgqir

CS 6704

Problem Statement

Resolving conflicts is the main challenge when merging branches of software.

Existing merge tools usually rely on the developer to manually resolve these conflicts

One main reason existing merge tools do not attempt to resolve conflicts because of safety.

In the presence of conflicts, the resolution might be ambiguous, so guessing and applying a resolution
is dangerous.

Proposed Tool

AutoMerge

Generate a large set of candidate programs to resolve the conflicting scenario.

Use a simple mechanism to rank the resolutions.

Present the top-ranked resolutions to the developer.

Software Merge

Software Merge

Master tip

N2

New merge
commit

N2

Common base 2 2 ;

/I\

Software Merge

Table 1. Basic rules of three-way merge.

Type Base B LeftL RightR Target T

1 Node ¢ ¢ e’ e’

2 Node ¢ er €r conflict

3 List ecB ecl e¢R e¢T

4 List e¢#¢B ec€L e¢R ec€T orconflict

Abstract Syntax Tree

ASTN ==V (leaf)
F(N,,N,,...,N;) (constructed)

|
| List(Ny,N,,...,Ny) (list)

Abstract Syntax Tree

statement

sequence
while return
condition
compare| variable
op: = body name: a
variable constant|
branch
name: b value: 0
condition if-body else-body
compare A .
assign assign
op: >

SN SN N

variable variable
name: a name: b

variable
name: a

bin op
op: —

variable
name: b

bin op
op: —

/N /N

variable
name: a

variable variable|
name: b name: b

variable
name: a

Version Space Learning

* Initially defined by [Mitchell, 1982] for concept learning.

* Insimple terms, a set of hypotheses that are consistent with the training data refers to the version
space.

* Contains a most specific and a most general hypothesis.

Version Space Learning

Size Large, Small

Shape Triangle, Square, Circle

(2,?)

(2, Triangle) (7, Square) (2, Circle) (Large, ?) (Small, ?)

(Large, Triangle) (Large, Square) (Large, Circle) (Small Triangle) (Small, Square) (Small, Circle)

f Generalization 0//

Arcs correspond to the
* Specialization subset/superset relation

Version Space Learning

1st training example: (Large, Triangle) > +

/ (/ ?)\\

(2, Triangle) (?, Square) (?, Circle) (Large, ?) (Small, ?)

(Large, Triangle) (Large, Square) (Large, Circle) (Small Triangle) (Small, Square) (Small, Circle)

[

Remove all concepts that do not mclude (Large, Triangle)
I.e., remove all concept descriptions that (Large, Triangle) does not match

Version Space Learning

(?, Triangle) (Large, ?)

—

(Large, Triangle)

Updated version space after
(Large, Triangle) - +

Version Space Learning

1st training example: (Small, Circle) > -

IS

(2, Triangle) (2, Square) (?, Circle) (Large, ?) (Small, ?)

(Large, Triangle) (Large, Square) (Large, Circle) (Small Triangle) (Small, Square) (Small, Circle)

Ve

Remove all concept descriptions that (Small, Circle) matches

Version Space Learning

(?, Triangle) (?, Square) (Large, ?)

(Large, Triangle) (Large, Square) (Large, Circle) (Small Triangle) (Small, Square)

Ve

Updated version space

Version Space Learning

o
o
O GB
O O

o

SB

Version Space Algebra

[Lau, 2000] extends the notion of version spaces beyond concept learning.

It is proposed that carefully-tailored version spaces can be built for complex applications.

* Version space algebra (VSA) is defined: It uses a set of defined operations to compose together
many simple version spaces to represent a complex composition.

Allows arbitrary partial ordering of the hypotheses (not necessarily generality).

Demonstrate effectiveness using SMARTedit, which is a repetitive text-editing tool.

Version Space Algebra

* From an intuitive aspect, a VSA can be viewed as a directed graph where each node represents a

set of programs.

ASTN ==V (leaf) VSAN := T I Py}
) PO N Ni) (constructed) | N;UN;U---UNg
| List(N;,N,,...,Ni) (list) | Fm(m-lv:.----ﬁ)
| Listw(N)

(explicit)
(union)
(join)
(list join)

Motivating Example

for Baes) d O €..:) £ Jor: C...) for: €.....) %

try { s3; try { B3
s1; {2 G s1; B A AT
} catch { try { } catch { try {
// empty s4; s2; s4;
} } catch { } } catch {
} // empty } s2:
} D ulh }
} }
} }
(a) Base (b) Left (c) Right (d) Merged

Fig. 1. The base, left, right and merged versions of the motivating example. Changes are highlighted.

Merged code is a combination of the left and right branches

General Algorithm

(Line 4) Conflict detection. A structured merger
Is applied on the merge scenario (B, L, R) to
generate a target program Tu with a set of holes
H.

(Line 7) Program space representation. For each
hole h € H, we construct a VSA Sh, which
represents all possible resolutions that can
instantiate the hole h.

(Line 8) Resolution ranking. We rank the
candidate resolutions in Sh with a ranking
function.

(Line 9) Instantiate the hole h with the accepted
resolution P.

Algorithm 1 Merge

1
2
3
4
5:
6
7
8

9:

10:

: procedure MERGE(B, L, R)

Input: Base version B, left version L and right version R
Output: Merged result T
perform a structured merge on (B, L, R) and generate Ty;
T & Tn;
for all hole h € H do

Sy ¢ CoNsTRUCTVSA(h);

rank Sp;

T « T[h + P] where P € S, is the accepted resolution;

return T;

AST to VSA Conversion

ASTN == V (leaf) TO= V] T
| F(Ny,N,,..., Ni) (constructed) ek s e
| N; = a(N;), N, = a(N,),...,Ni = a(N_,i) A-JOIN

List(Nl,Nz,‘ . .,Nk) (list)
a(F(Ny, Na, . . ., N&)) = Fui(Ne. NG, NR)

ﬁ — N U s ce e
a(Ny) U a(Np) U --- U a(Ny) A-LISTJOIN

g

a(List(Ny, N, ..., Ni)) = List,(N)

Fig. 2. Conversion rules for AST to VSA, where « is the conversion operation.

VSA Construction

Algorithm 2 VSA Construction

1: procedure CoNsTRUCTVSA(Hole(b, [, r))
2 Visir(l, 1,5);

3 Visit(r,1,5);

4 return §

5: procedure VisiT(t,d, N)
6 ifd>DthenN « N U {t};
7

8

9

else
match ¢ B N
case Vthen N — NU {V}; > t is a leaf

10; case F(N;,Na,...,Ni) then > t is a constructed node
11: fori=1tokdo
12: Vi « f(F,i,N) > mapper f returns an identifier
13: VisiT(N;,d + 1, V;);
14: ﬁ¢—]\7UF,.(\71.‘72....,l7k);
15: case List(N;, Ny, ..., N;) then » t is an (ordered or unordered) list
16: fori=1tok do Visit(N;,d, Vn);

17: N « N uUList.(Vy);

AST to VSA- Left Branch

Tor. €)%
s3;
I Cas)
try {
s4;
} catch {
// empty
}
}
}

(b) Left

SL = Listwu(AL)
AL = {s3} UIfw(_,B)

B= Try,,,(az.azi)
Cs = {sd}
Cy = {e}

AST to VSA- Right Branch

for: Civa) £
try {
sl;
} catch {
s2;
}
}

(c) Right

List Listy [SR
Try Try., X"z
sl s2 Cf Cf
(c) AST r (d) VSA a(r)

SR = Listwu(AR)

AR = Try,(C}.CD)

C! = {s1)

CX = {s2)

AST to VSA- Merged

Try. | AR

~R ~R
ct ct

(d) VSA a(r)

(b) VSA a(l)
Fig. 4. Merged VSA of SL and S in Figure 3.

%l

= Listw(AR)

—_—

SL = List.(AL)

o - §=SLUSK = Listu(A) AR = Try,(CR.CR)
A ~ — o~ ~ ~ ~ 22 o L
A" = {s3} UIfuLE) A=ALUAR = {s3} UIfu(_, B)UTryn(C1, C2)

B =Try, (CL.CY) B =Try.(C1,C) —~
_ s SRR R _
Cy = {s4} G =CEUCR = {s4} U {s1} i = {s1}
CL = (¢} G =CEUCR = (¢} U {s2} Cy = {s2}

AST to VSA- Merged

{s3}

If.

\

Try.

L)

Try,.

Gi=cfuct

Fig. 4. Merged VSA of S and SR in Figure 3.

Gl 16

G

G,

G=Ciuct

,List

s3

”./If\

i

7N

s4 s2

Fig.5. AST of the program in Figure 1d.
Node color represents from which ver-
sion it is derived: red for left, blue for
right, and green for both.

Mappers

Direct Mapper
Block Mapper
Expression Mapper

Takes three arguments:
* the type of the constructor (F)
* the index of the argument (i)
* the context (N) in which the mapper is invoked

Direct Mapper

E F
N N, Ni N, N, N;
(a) (b)
Fig. 6. Direct mapper. (a) For two constructed nodes F(Ny, N2, ..., Nj), F(Nl’, Né, e ‘NA’-) with a common
constructor F, the direct mapper maps N; and N/ to the same identifier V;, fori = 1,2,..., k, as shown by

the dashed arrows. (b) The join node composed of VSAs ‘7| 172 ceey, VZ

Block Mapper

F, F,
Block Block
L

©

¢

(a) Block mapper

Expression Mapper

(b) Expression mapper

Resolution Ranking

e “Prior to” relation is defined on VSA identifiers (Example: V1 < V2).

* Given two identifiers V1, V2, we define the partial relation motivated by the basic rules of three-way
merge.

* Given two identifiers V1, V2, we define V1 < V2 if:

(S\'l = {L}/'\BES\'_/\RES"_,)\/(S"l Z{R}/\BES\'_ /‘\LES"_,)V(S"1 Z{L,R}/\BES1'_,).

Resolution Ranking

for (...) { for (...) {

for aa) q Tor G...2) €
try { s3; try { s3;
s1; F 8 T G W sl 1 R G
} catch { try { } catch { try {
// empty s4; §2; s4;
} } catch { } } catch {
} // empty } $2;
} }
} }
} }
(a) Base (b) Left (c) Right (d) Merged

Fig. 1. The base, left, right and merged versions of the motivating example. Changes are highlighted.

Fig. 4. Merged VSA of ST and SR in Figure 3.

Fig.5. AST of the program in Figure 1d.
Node color represents from which ver-
sion it is derived: red for left, blue for
right, and green for both.

Evaluation: Research Questions

* RQ1:: How effective and efficient is AutoMerge at resolving conflicts?

* RQ2: How do various mappers affect the effectiveness and efficiency of our approach?

Evaluation: Data Set

* 10 open-source projects with high stars from GitHub are selected and their commit histories are
analyzed for merge commits.

* The merged versions committed by the developers are considered the ground truth.
* Focuses on merge commits that cannot be fully merged by JDime (improved version).
* 95 conflicting merge commits are retrieved.

* By default, the direct and block mappers are used.

Evaluation: Data Set

Table 2. Summary of extracted merge scenarios. Conf. commits: number of conflicting merge commits.

Project Conf. commits Description
auto 1 A collection of source code generators for Java.
drjava 2 A lightweight programming environment for Java.
error-prone 6 Catch common Java mistakes as compile-time errors.
fastjson 6 A fast JSON parser/generator for Java.
freecol 4 A turn-based strategy game.
itextpdf 47 Core Java Library + PDF/A, xtra and XML Worker.
jsoup 2 Java HTML Parser, with best of DOM, CSS, and jquery.
junit4 21 A programmer-oriented testing framework for Java.
RxJava 1 Reactive Extensions for the JVM.

vert.x 5 A tool-kit for building reactive applications on the JVM.

Evaluation: Result

Project Conf. files Holes Resolved holes Max.k Avg.k PS. Time (ms)
auto 4 11 10 (90.9%) 2 1.18 191.1 94.72
drjava 2 2 2 (100%) 2 1.50 25 297.50
error-prone 8 13 8 (61.5%) 13 4.62 6.31 146.46
fastjson 8 19 19 (100%) 18 2.37 8.37 119.16
freecol 22 57 57 (100%) 2 1.81 239 87.91
itextpdf 47 47 47 (100%) 1 1.00 6 231.94
jsoup 2 2 2 (100%) 1 1.00 6 116
junit4 33 51 45 (88.2%) 13 1.78 133 126.73
RxJava 1 1 1(100%) 2 200 6 1
vert.x 11 41 41 (100%) 4 1.78 7.24 63.22
Overall 138 244 232 (95.1%) 18 1.79 48.88 127.10

Evaluation: Depth Analysis

218 |2
216 3
214 W5
212 @ s
210 [l 6

Depth range

26— 27
24 I
22 [o5

0 50 100 150 200 250
Number of rescltions within the depth range

Fig. 8. Complexity of resolutions measured by the depths of the merged AST. The stripe annotated with > d
shows the number of resolutions with a depth greater or equal to d.

Evaluation: Failed Cases

Failed to find expected resolution in the top 50 candidates for 12 holes.

Assumption Violation (8 cases)
* Assumption that expected resolution is a combination of the left and right branches.

Insufficient Expressiveness (2 cases)

* Assumption that the constructed VSA requires the root of the AST must have the identical kind with either the left or
the right version.

Huge Program Space (2 cases)
* The ranking function is unable to rank the expected program within top 60 for these 2 cases.

Evaluation: Renaming Resolution

/* base */
i€ (G

deserizer = parser.getConfig().getDeserializer (userType);
} else {

/* left */
deserizer = parser.getConfig().getDeserializer (userType);

/% right =*/
o & K (PRPTR, O |

deserializer = parser.getConfig().getDeserializer (userType);
} else {

/* expected */

deserializer = parser.getConfig().getDeserializer (userType);

Evaluation: Mapper Effectiveness

M1 on off off on
M2 off on off 0
Cy C2 Cs Ca
Worse 1
54 53

Fig.9. Evaluation results on different configurations. A configuration is determined by enabling (on) / disabling
(off) M1 and M2. Red stripe indicates the number of holes that perform worse than the baseline configuration
c1. No cases perform better, and the others keep unchanged.

Related Work

» Software Merge
e VSA-based Program Synthesis

* Program Transformation

Related Work

* Software Merge:

e Unstructured Merge

Semistructured Merge

Structured Merge

Conflict Detection

Refactoring Aware Merge

Related Work

e VSA-based Program Synthesis:
* Program synthesis aims to find executable programs that accomplish a wide range of categories

of user intents.

* Programming by Example (PBE) is a leading inductive synthesis technique which generates

programs from input-output examples.

Related Work

* Program Transformation:
* In general, program transformation is the process of formally changing a program to a different
program with the same semantics as the original program.
* Frameworks have been developed using PBE methodology to learn program transformation
from input-output examples.

* Graph-based technique has been developed that guides developers in adapting APl usages

[Nguyen, 2010].

Conclusion

This paper proposes a VSA-based conflict resolution approach.

Experiments are conducted on 95 merge commits from 10 open source projects on GitHub.

AutoMerge detects 244 conflicts spread over 138 files, and successfully resolves as high as 95.1% of
the conflicts.

The ranking technique needs to try 1.79 candidates in average until the expected resolution is
found.

Discussion

Are the use of mappers justified?

Is the complexity of the algorithm reasonable?

Can it successfully resolve rename conflicts? What about higher order conflicts?

Thoughts on the ranking mechanism?

Any weaknesses in the experiment design?

References

1. Zhu, F., & He, F. (2018). Conflict resolution for structured merge via version space algebra. Proceedings of
the ACM on Programming Languages, 2(O0PSLA), 1-25.

2. Mitchell, T. M. (1982). Generalization as search. Artificial intelligence, 18(2), 203-226.

3. Llauy, T. A, Domingos, P. M., & Weld, D. S. (2000, June). Version Space Algebra and its Application to
Programming by Demonstration. In ICML (pp. 527-534).

4. Nguyen, H. A., Nguyen, T. T., Wilson Jr, G., Nguyen, A. T., Kim, M., & Nguyen, T. N. (2010). A graph-based
approach to APl usage adaptation. ACM Sigplan Notices, 45(10), 302-321.

Thank you

