
Conflict Resolution for Structured Merge via 
Version Space Algebra

Presented By
Sheikh Shadab Towqir

CS 6704



Problem Statement

• Resolving conflicts is the main challenge when merging branches of software.

• Existing merge tools usually rely on the developer to manually resolve these conflicts

• One main reason existing merge tools do not attempt to resolve conflicts because of safety.

• In the presence of conflicts, the resolution might be ambiguous, so guessing and applying a resolution 
is dangerous.



Proposed Tool

• AutoMerge

• Generate a large set of candidate programs to resolve the conflicting scenario.

• Use a simple mechanism to rank the resolutions.

• Present the top-ranked resolutions to the developer.



Software Merge



Software Merge



Software Merge



Abstract Syntax Tree



Abstract Syntax Tree



Version Space Learning
• Initially defined by [Mitchell, 1982] for concept learning.

• In simple terms, a set of hypotheses that are consistent with the training data refers to the version 
space.

• Contains a most specific and a most general hypothesis.



Version Space Learning



Version Space Learning



Version Space Learning



Version Space Learning



Version Space Learning



Version Space Learning



Version Space Algebra

• [Lau, 2000] extends the notion of version spaces beyond concept learning.

• It is proposed that carefully-tailored version spaces can be built for complex applications.

• Version space algebra (VSA) is defined: It uses a set of defined operations to compose together 
many simple version spaces to represent a complex composition.

• Allows arbitrary partial ordering of the hypotheses (not necessarily generality).

• Demonstrate effectiveness using SMARTedit, which is a repetitive text-editing tool.



Version Space Algebra

• From an intuitive aspect, a VSA can be viewed as a directed graph where each node represents a 
set of programs.



Motivating Example

Merged code is a combination of the left and right branches



General Algorithm
• (Line 4) Conflict detection. A structured merger 

is applied on the merge scenario (B, L, R) to 
generate a target program TH with a set of holes 
H.

• (Line 7) Program space representation. For each 
hole h ∈ H, we construct a VSA Sh, which 
represents all possible resolutions that can 
instantiate the hole h.

• (Line 8) Resolution ranking. We rank the 
candidate resolutions in Sh with a ranking 
function.

• (Line 9) Instantiate the hole h with the accepted 
resolution P.



AST to VSA Conversion



VSA Construction



AST to VSA- Left Branch



AST to VSA- Right Branch



AST to VSA- Merged



AST to VSA- Merged



Mappers
• Direct Mapper

• Block Mapper

• Expression Mapper

• Takes three arguments:
• the type of the constructor (F )
• the index of the argument (i)
• the context (N) in which the mapper is invoked



Direct Mapper



Block Mapper



Expression Mapper



Resolution Ranking
• “Prior to” relation is defined on VSA identifiers (Example: V1 < V2).

• Given two identifiers V1, V2, we define the partial relation motivated by the basic rules of three-way 
merge.

• Given two identifiers V1, V2, we define V1 < V2 if:



Resolution Ranking



Evaluation: Research Questions

• RQ1: : How effective and efficient is AutoMerge at resolving conflicts?

• RQ2: How do various mappers affect the effectiveness and efficiency of our approach?



Evaluation: Data Set

• 10 open-source projects with high stars from GitHub are selected and their commit histories are 
analyzed for merge commits.

• The merged versions committed by the developers are considered the ground truth.

• Focuses on merge commits that cannot be fully merged by JDime (improved version).

• 95 conflicting merge commits are retrieved.

• By default, the direct and block mappers are used.



Evaluation: Data Set



Evaluation: Result



Evaluation: Depth Analysis



Evaluation: Failed Cases

• Failed to find expected resolution in the top 50 candidates for 12 holes.

• Assumption Violation (8 cases)
• Assumption that expected resolution is a combination of the left and right branches.

• Insufficient Expressiveness (2 cases)
• Assumption that the constructed VSA requires the root of the AST must have the identical kind with either the left or 

the right version.

• Huge Program Space (2 cases)
• The ranking function is unable to rank the expected program within top 60 for these 2 cases.



Evaluation: Renaming Resolution



Evaluation: Mapper Effectiveness



Related Work

• Software Merge

• VSA-based Program Synthesis

• Program Transformation



Related Work

• Software Merge:

• Unstructured Merge

• Semistructured Merge

• Structured Merge

• Conflict Detection

• Refactoring Aware Merge



Related Work

• VSA-based Program Synthesis:

• Program synthesis aims to find executable programs that accomplish a wide range of categories 

of user intents.

• Programming by Example (PBE) is a leading inductive synthesis technique which generates 

programs from input-output examples.



Related Work

• Program Transformation:

• In general, program transformation is the process of formally changing a program to a different 

program with the same semantics as the original program.

• Frameworks have been developed using PBE methodology to learn program transformation 

from input-output examples.

• Graph-based technique has been developed that guides developers in adapting API usages 

[Nguyen, 2010].



Conclusion
• This paper proposes a VSA-based conflict resolution approach.

• Experiments are conducted on 95 merge commits from 10 open source projects on GitHub.

• AutoMerge detects 244 conflicts spread over 138 files, and successfully resolves as high as 95.1% of 
the conflicts.

• The ranking technique needs to try 1.79 candidates in average until the expected resolution is 
found.



Discussion
• Are the use of mappers justified?

• Is the complexity of the algorithm reasonable?

• Can it successfully resolve rename conflicts? What about higher order conflicts?

• Thoughts on the ranking mechanism?

• Any weaknesses in the experiment design?



References

1. Zhu, F., & He, F. (2018). Conflict resolution for structured merge via version space algebra. Proceedings of 
the ACM on Programming Languages, 2(OOPSLA), 1-25.

2. Mitchell, T. M. (1982). Generalization as search. Artificial intelligence, 18(2), 203-226.

3. Lau, T. A., Domingos, P. M., & Weld, D. S. (2000, June). Version Space Algebra and its Application to 
Programming by Demonstration. In ICML (pp. 527-534).

4. Nguyen, H. A., Nguyen, T. T., Wilson Jr, G., Nguyen, A. T., Kim, M., & Nguyen, T. N. (2010). A graph-based 
approach to API usage adaptation. ACM Sigplan Notices, 45(10), 302-321.



Thank you


