
Program Comparison

Overview

• Program Representation
• Clone Detection
• AST Differencing

2

Program Representation

• String
• Token sequence
• Abstract Syntax Tree
• Control Flow Graph
• Program Dependence Graph
• Points-to Graph
• Call Graph

3

Abstract Syntax Tree (AST)

• Created by the compiler at the end of
semantic analysis phase

• A tree representation for the abstract
syntactic structure of source code
– Node: construct, such as statement and loop
– Edge: containment relationship

• Different compilers can define different
AST representations

4

Eclipse JDT

• The Eclipse Java Development Tools
project (JDT) provides
– tools to develop Java application
– APIs to access, create, and manipulate Java

projects’ source code
• It provides access to Java source code

via two ways: Java Model and Abstract
Syntax Tree

5

Eclipse
AST[3]

6

How do we generate Eclipse AST
from source code?

7

How do we use Eclipse AST?

• Use ASTVisitor to parse any source
code information from the AST

• Conduct program analysis based on the
AST information

• Manipulate AST to insert/delete code

8

Control Flow Graph (CFG)

• A representation, using graph notation,
of all paths that might be traversed
through a program during its execution

9

Formal Definition[5]

• CFG = <V, E, Entry, Exit>, where
– V = vertices or nodes, representing an

instruction or basic block (a group of
instructions)

– E = edges, potential flow of control,

– , unique program entry

– , unique program exit

E ⊆V ×V
Entry ∈V
(∀v ∈V)[Entry *#→# v]
Exit ∈V
(∀v ∈V)[v *#→# Exit] 10

Basic Block

• A maximal sequence of consecutive
instructions such that inside the basic
block, an execution can only proceed
from one instruction to the next

• Single entry, single exit

11

CFG Example
1 A = 4
2 t1 = A * B

3 L1: t2 = t1/C
4 if t2 < W goto L2

5 M = t1 * k
6 t3 = M + I

7 L2: H = I
8 M = t3 – H
9 if t3 >= 0 goto L3

10 goto L1

11 L3: halt

• What are the basic
blocks?

• What are the edges
between them?

• What is the CFG?

12

CFG Example

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit
13

Why is CFG important?

• A lot of program analysis and abstract
representations are built based on it

• In testing scenario, CFG is leveraged to
design test cases in order to have
enough path/statement coverage

14

CFG Used for Selective Testing

• Basic Path Testing
– Cyclomatic complexity V(G)
• number of simple decisions + 1
• number of enclosed areas + 1

–What are the paths to test?

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit

15

Program Dependence Graph (PDG)

• A directed graph representing
dependencies among code
– Control dependence
• A control depends on B if B’s execution decides

whether or not A is executed
– Data dependence
• A data depends on B if A uses variable defined

in B

16

Control Dependence Example

• BB3 control depends on BB2
because whether or not BB3 is
executed depends on the
branch taken at BB2
– Every block control depends on

entry block

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit
17

– In most cases, statements
control depend on their AST
container constructs, such as
loop, switch, if. Can you think
about cases violating this
observation?

18

entry

BB1: 1-2

BB2: 3-4

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit

Data Dependence Example
entry

1. …
2. t1 = …

3. t2 = t1/C
4. if t2 < W …

BB3: 5-6

BB4: 7-9

BB5: 10 BB6: 11

exit

• BB2 data depends on BB1
because BB2 uses the variable
t1, whose value is defined by
instruction(s) in BB1
–Which statement does

“sum = sum + i” data depend on?
sum = 0;
i = 1;
while (i < N) {

i = i + 1;
sum = sum + i;

}
19

PDG

• A PDG contains both control
dependence edges and data
dependence edges

entry

1. …
2. t1 = …

3. L1: t2 = t1/C
4. if t2 < W goto L2

5. M = t1 * k
6. t3 = M + I

7. L2: H = I
8. M = t3 – H
9. if t3 >=0 goto L3

10. goto L1 11. L3: halt

exit
Direct control dependence edge
Direct data dependence edge

20

Why is PDG important?

• It demonstrates some program
semantics and facilitates program
comprehension
– find bugs, program slicing

• Guide safe program
transformations/optimizations which
modify code without compromising
dependency relations
– Automatic parallelism, common sub-

expression elimination, code motion
21

Program Slicing

• Set of statements that may affect the
values at some point of interest
– data/control dependence relationship

• Backward slicing
– The statements the current value is

dependent on
• Forward slicing
– The statements which depend on the

current value

22

Example

• t3 at instruction 6:
– Backward slicing?
– Forward slicing?

entry

1. A = 4
2. t1 = A * …

3. L1: t2 = t1/C
4. if t2 < W goto L2

5. M = t1 * k
6. t3 = M + I

7. L2: H = I
8. M = t3 – H
9. if t3 >=0 goto L3

exit

10. goto L1 11. L3: halt

23

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r

24

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r
p f

25

Points-to Graph[4]

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r
p f

t

26

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r.f = t;

r
p f

t
q

27

Points-to Graph

• For a program location, for any object
reference/pointer, calculate all the
possible objects/variables it may/must
refer/point to
r = new C();
p.f = r;
t = new C();
if (…)

q=p;
r->f = t;

r
p f

t
q

f

p.f.f and t are aliases
28

Why is Points-to Graph important?

• Connect together analyzed program
semantics for individual methods
– Essential to expand from intra-procedural

analysis to inter-procedural analysis
• Detect consistent usage of resources
– File open/close, lock/unlock, malloc/free

• Garbage collection

29

Call Graph

• A directed graph representing caller-
callee relationship between
methods/functions
– Node: methods/functions
– Edges: calls

30

Why is Call Graph important?

• Facilitate program comprehension and
optimization
–When a program crashes, what is the

possible calling context?
– Detect anomalies of program execution

31

Code Clones

Spiros Mancoridis[1]
Modified by Na Meng

Code Clones

• Code clone is a code fragment in source
files that is identical or similar to
another

• Code clones are either within a program
or across different programs

• Clone pair: two clones
• Clone class: a set of fragments which

are clones to each other

33

Code Clone Categorization

• Type-1 clones
– Identical code fragments but may have

some variations in whitespace, layout, and
comments

• Type-2 clones
– Syntactically equivalent fragments with

some variations in identifiers, literals,
types, whitespace, layout and comments

34

Code Clone Categorization

• Type-3 clones
– Syntactically similar code with inserted,

deleted, or updated statements
• Type-4 clones
– Semantically equivalent, but syntactically

different code

35

Key Points of Code Clones

• Pros
– Increase performance
• Code inlining vs. function call

– Increase program readability
• Cons
– Increase maintenance cost
• If one code fragment contains a bug and gets

fixed, all its clone peers should be always fixed
in similar ways.

– Increase code size

36

Clone Detection Strategies

• Text matching
• Token sequence matching
• Graph matching

37

Text Matching

• Older, studied extensively
• Less complex, and most widely used
• No program structure is taken into

consideration
• Type-1 clones & some Type-2 clones
• Two types of text matching
– Exact string match
• Diff (cvs, svn, git) is based on exact text matching

– Ambiguous match
38

Ambiguous Match

• Longest Common Subsequence match
• N-grams match

39

Token Sequence Matching

• A little more complex, less widely used
• No program structure is taken into

account, either
• Type-1 and Type-2 clones
• CCFinder[2]
• CP-Miner[3]

40

CCFinder

• Step 1: Convert a program with multiple
files to a single long token sequence

• Step 2: Find longest common
subsequence of tokens

41

Step 1: Tokenization

42

int main(){
int i = 0;
static int j=5;
while(i<20){

i=i+j;
}
std::cout<<"Hello World"<<i<<std::endl;
return 0;

}

Remove white spaces

Step 1: Tokenization

43

int main(){
int i = 0;
static int j=5;
while(i<20){
i=i+j;
}
std::cout<<"Hello World"<<i<<std::endl;
return 0;
}

Shorten Names

Step 1: Tokenization

44

int main (){
int i = 0;
int j = 5;
while (i < 20){
i = i + j;
}
cout << "Hello World” << i << endl;
return 0;
}

Tokenize literals, and
identifiers of types,
methods, and variables.

Step 1: Tokenization

45

$p $p(){
$p $p = $p;
$p $p = $p;
while($p < $p){
$p = $p + $p;
}
$p << $p << $p << $p;
return $p;
}

Step 2: Find Clones

46

Code clone
detector

CCFinder

Code clone
database

a b c a b c a d e
ca b c a b c a d e c

a, b, c, ... : tokens
: matched position

Detected Clone Pair Example[2]

47

1. static void foo() throws RESyntaxException {
2. String a[] = new String [] { "123,400", "abc", "orange 100" };
3. org.apache.regexp.RE pat = new org.apache.regexp.RE("[0-9,]+");
4. int sum = 0;
5. for (int i = 0; i < a.length; ++i)
6. if (pat.match(a[i]))
7. sum += Sample.parseNumber(pat.getParen(0));
8. System.out.println("sum = " + sum);
9. }

10. static void goo(String [] a) throws RESyntaxException {
11. RE exp = new RE("[0-9,]+");
12. int sum = 0;
13. for (int i = 0; i < a.length; ++i)
14. if (exp.match(a[i]))
15. sum += parseNumber(exp.getParen(0));
16. System.out.println("sum = " + sum);
17. }

Limitations of CCFinder

• All files are converted into a long token
sequence
–When the program contains millions of lines

of code, the tool cannot perform
efficiently

• Do not take into account the natural
boundary between functions and classes

48

CP-Miner[3]

• Cut the token sequences by considering
basic blocks as cutting units

• Calculate a hashcode for each
subsequence

• Compare hashcode sequences instead of
the original token sequences

49

Graph Matching

• Newer, bleeding edge
• More complex
• Type-1, Type-2, and Type-3 clones
• Syntactic and semantic understanding
– AST matching (ChangeDistiller)
– CFG matching (Jdiff[4])
– PDG matching ([5])

50

CFG-based Clone Detection[4]

• A Differencing Algorithm for Object-
Oriented Programs
–Match declarations of classes, fields, and

methods by name
–Match content in methods by hammock

graphs
• A hammock is a single entry, single exit

subgraph of a CFG

51

Example: Enhanced CFG comparison
for P and P’

52

Hammock Graph Creation

53

Algorithm
• Input: hammock node n, n’, look-ahead threshold LH
• Output: set of matched pairs N
• Algorithm

54

1. expand n and n’ one level to graph G and G’
2. Push start node pair <s, s’> to stack ST
3. while ST is not empty
4. pop <c, c’> from ST
5. if c or c’ is already matched then
6. continue;
7. if <c, c’> does not match then
8. compare c with LH successors of c’ or

compare c’ with LH successors of c until finding a match
9. if a match is found then
10. N = N U {c, c’, “unchanged”}
11. else
12. N = N U {c, c’, “modified”}
13. push the pair’s sink node pair on stack

Observations

• The look-ahead process is like bounded LCS
algorithm
– It can tolerate statement insertions at the same

level
• The algorithm starts from the outmost

Hammock, so it is similar to top-down tree-
differencing algorithm

• When statements are inserted at the higher
level, the algorithm does not work well
– <c, c’, “modified”>

55

PDG-based Clone Detection [5]

• Using Slicing to Identify Duplication in
Source Code
– Step 1: Partition PDG nodes into

equivalence classes based on the syntactic
structure, such as while-loops

– Step 2: For each pair of matching nodes
(r1, r2), find two isomorphic subgraphs
containing r1 and r2

56

Algorithm to Find Isomorphic
Subgraphs

1. Start from r1 and r2, use backward
slicing in lock step to add predecessors
iff predecessors also match

2. If two matching nodes are loops or if-
statements, forward slicing is also used
to find control dependence successors
(statements contained in the
structure)

57

Example

58

59

Observations

• Pros
– Tolerate statement reordering and some

program structure changes
• Cons
– Expensive
• Points-to analysis

– Do not allow ambiguous match

60

Summary

• Clone detection flexibility
– PDG > CFG|AST > Token > Text

• Cost
– Text < Token < CFG|AST < PDG

61

Fine-grained and Accurate
Source Code Differencing [6]

Problem Statement

• Existing approaches usually represent
code changes or edit operations as line
addition or deletion

• Such representations are not precise
– E.g., code move or update is not properly

represented

63

Contributions

• GumTree—a novel efficient AST
differencing algorithm that includes
move actions

• An automated evaluation of GumTree
• A manual evaluation to compare

GumTree vs. textual diff
• An automated evaluation to compare

GumTree vs. ?

64

The GumTree Algorithm

65

1. A greedy top-down algorithm to find
isomorphic sub-trees of decreasing
height. Mappings are established between
the nodes of these isomorphic subtrees.
They are called anchor mappings.

The GumTree Algorithm (cont’d)

2. A bottom-up algorithm where two
nodes match (called a container mapping)
if their descendants (children of the
nodes, and their children, and so on)
include a large number of common
anchors. When two nodes match, we
finally apply an optimal algorithm to
search for additional mappings (called
recovery mappings) among their
descendants.

66

The GumTree Algorithm (cont’d)

3. Recovery Mappings: to find additional
mappings between leaf nodes and similar
nodes
4. Generate edit operations for the
unmatched nodes:
– Insert
– Delete
– Update
–Move

67

68

Top-Down Phase

• Start with the roots and check if they
are isomorphic or identical. If not, the
children nodes are then tested

• To identify the unchanged part
• Implementation
– By hardcoding subtrees, the isomorphism

test’s complexity is O(1)
– The worst-case complexity is O(n^2)

69

Bottom-Up Phase

• Search for container mappings, that are
established when two nodes have a
significant number of matching
descendants

70

Recovery Mappings

• Given two trees, find their additional
mappings between the descendants,
– remove the matched descendants, and
– apply an optimized algorithm to find a

shortest edit script without move actions

71

Architecture

72

– Parser: Java, JavaScript, R, and C
–Mappings: GumTree, ChangeDistiller, XYDiff, RTED
– Output: XML representation of AST, web-based view

of an edit script, XML representation of an edit
script

Evaluation
• Comparison between

GumTree, textual
diff, and RTED
– The median of

parsing time is 10
– Computing an edit

script is only slightly
slower than just
parsing the files
(median at 18 for
Jenkins and 30 for
JQuery

73

Manual Evaluation

74

• GumTree’s output is sometimes better than
textual diff

Automatic Evaluation

75

• More
matches =
better

Automatic Evaluation (cont’d)

• GumTree generates smaller edit scripts
in most cases than RTED and
ChangeDistiller
– 130 elements include move-only actions

76

References
[1] Spiros Mancoridis, Code Cloning:
Detection, Classification, and Refactoring,
https://www.cs.drexel.edu/~spiros/teaching/CS

675/slides/code_cloning.ppt .
[2] Toshihiro Kamiya, Shinji Kusumoto, and
Katsuro Inoue, CCFinder, A Multilinguistic Token-
Based Code Clone Detection System for Large
Scale Source Code, TSE ‘02
[3] Zhenmin Li, Shan Lu, Suvda Myagmar, and
Yuanyuan Zhou, CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System
Code, OSDI ‘04

77

References
[4] Taweesup Apiwattanapong, Alessandro Orso,
and Mary Jean Harrold, A Differencing Algorithm
for Object-Oriented Programs, ASE ’04
[5] Raghavan Komondoor, Susan Horwitz, Using
Slicing to Identify Duplication in Source Code,
SAS ’01
[6] Jean-Rémy Falleri, Floréal Morandat, Xavier
Blanc, Matias Martinez, and Martin Monperrus.
2014. Fine-grained and accurate source code
differencing. In Proceedings of the 29th
ACM/IEEE international conference on
Automated software engineering (ASE '14).

78

