
Project Management

Overview

• How to manage a project?
• What is software configuration

management?
• Version control systems
• Issue tracking systems
• Continuous integration

N. Meng, L. Zhang 2

What is Project Management?

• Effective project management focuses on
the 4 P’s:
– People: the most important element
• recruiting, training, performance management

– Product: the software to build
• Project objectives, scope, alternative solutions

– Process: define activities and tasks involved
• Milestones, work products, QA points

– Project: progress control
• Planning, monitoring, controlling

N. Meng, L. Zhang 3

The “First Law”

• No matter where you are in the system
life cycle, the system will change, and
the desire to change it will persist
throughout the life cycle.

N. Meng, L. Zhang 4

Bersoff, et al, 1980

What Are These Changes?

N. Meng, L. Zhang 5

data

other
documents

code
Test

Project
Plan

changes in
technical requirements

changes in
business requirements

changes in
user requirements

software models

Software Configuration Management
(SCM)

• Definition
– The task of tracking and controlling

changes in software
• SCM repository
– tools that allow developers to effectively

manage changes
• Version control system
• Issue tracking system

• CI servers
N. Meng, L. Zhang 6

Version Control System

What Is Version Control System?

• VCS, also known as Revision Control
System

• To manage changes to documents,
programs, large websites, and other
collections of information
– CVS, SVN, Mercurial, GIT

N. Meng, L. Zhang 8

What Do We Mean by “Manage
Changes” ?

• What changes have been made?
• Why are the changes made?
• Who makes the changes?
• Can we redo/undo some changes?
• Can we branch the project?

N. Meng, L. Zhang 9

Subversion Version Control
System (SVN)

Subversion Repository Layout

N. Meng, L. Zhang 11

tags

branches

trunk

Project 1

Root

Project 2

tags

branches

trunk

• One SVN server can hold
many repositories

• One repository can hold
many projects

• One project contains
– Trunk: Main line of

development
– Tags: Markers to highlight

notable revisions—major releases
– Branches: Side lines of development

Each project has multiple revisions

N. Meng, L. Zhang 12

0 1 2 3

• Each revision is
assigned a name

• Revision number is
incremented for every
commit transaction

• Delta (diff) information
is recorded

Basic Features of a Repository

• Keep the history of all changes to files
and directories
– You can check in new versions
– You can recover any previous version

• Access control
– Read/write permission for users

• Logging
– Author, date, and reason for a change

N. Meng, L. Zhang 13

Typical Workflow

N. Meng, L. Zhang 14

(do some work,

add files under control)

Send latest versions on record

serverclient
Create repository (only once)

Initial checkout

(empty directory)

Initial check in

(do some work)

…

Follow-up check in

UpdateCheck status

Additional Features

• Diff
• Branch
• Merge

N. Meng, L. Zhang 15

Diff

• To display the differences between two
revisions
–What has been changed?
– Add or delete a line of text
– No update, or move

N. Meng, L. Zhang 16

Version 1: Version 2:
x = 0; x = 1;
y = 1; y = 1;

Diff:
- x = 0;
+ x = 1;

Key Points about Diff

• A key operation of version control
systems

• A lot of features are based on diff
– Save new versions
– Recover a prior version
– Patch

• We use Diff(v1, v2) to represent
changes on v1 for v2
– Diff(v1, v2) != Diff(v2, v1)

N. Meng, L. Zhang 17

Diff: a Real Example

N. Meng, L. Zhang 18

Start line in the old version Start line in the new version

• svn diff –r v1:v2 filename
• “+”: added lines, “-”: deleted lines
• Some unchanged lines are shown to indicate

program context

Changes Detected by Diff

• Addition/Deletion of directories
• Addition/Deletion of files
• A renamed file is reported as a

separate addition and a separate
deletion

• Addition/Deletion of lines

N. Meng, L. Zhang 19

• Scenario
– You deliver a great product to your

customers: REL-1.0.0
– Your development team continue adding new

features on the trunk
– Customers report a major bug in the

product and ask for a fix
–What do you do?

N. Meng, L. Zhang 20

Branch and patch separately!

N. Meng, L. Zhang 21

RELEASE 1.0.0
BUGFIX_BRANCH

• svn copy path/to/trunk path/to/branch

Other reasons to branch

• Separate branches for
– Tentative new features
– Different products
– Different teams
– Different releases

N. Meng, L. Zhang 22

Pros and Cons of Branch

• Pros
– Separation of concerns among teams and

developers
– Parallel version history without

interference between branches
• Cons
– Branches may diverge a lot
– Hard to propagate changes across branches

N. Meng, L. Zhang 23

• Scenario
– After fixing the major bug on a branch, you

have to apply the same/similar changes to
the trunk

–What do you do?

N. Meng, L. Zhang 24

Merge back the patch!

N. Meng, L. Zhang 25

RELEASE 1.0.0

BUGFIX_BRANCH

Merge back

267

RELEASE
1.0.1

• svn merge –reintegrate path/to/branch

What can happen when merging?

• Conflict
– Two people edit the same file

– Resolve the conflict manually and checked
in again

N. Meng, L. Zhang 26

Distributed Version Control: GIT

• Everyone has their own local version
control repository
– Like a local branch of the project
– Remote updates and commits are like

branch merge
– Local commits used to backup projects
– Github allows developers to contribute by

working on branches

N. Meng, L. Zhang 27

Centralized VC vs. Distributed VC[3]

N. Meng, L. Zhang 28

Central
Server

Remote
Server

Git Initialization

N. Meng, L. Zhang 29

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

C:\CoolProject > git remote add origin remote
repository URL
Sets the new remote
C:\CoolProject > git push origin master
Pushes the changes in your local repository to
the remote repository

Git Branch & Merge

master

A

> git commit –m ‘my first commit’

Branches Illustrated

master

> git commit (x2)

A B C

Branches Illustrated

bug123

master

> git checkout –b bug123

A B C

Branches Illustrated

master

> git commit (x2)

A B C

D E

bug123

Branches Illustrated

master

> git checkout master

A B C

D E

bug123

Branches Illustrated

bug123

master

> git merge bug123

A B C D E

Branches Illustrated

master

A B C D E

Tips for Version Control

• Small commits
– Check in logically relevant changes as a

commit
• Write meaningful commit messages
– Facilitate change understanding, applying,

and reverting
• Avoid commit noise
– Commit compliable or even deliverable code

N. Meng, L. Zhang 37

Issue Tracking System

What Is Issue Tracking System?

• ITS, also known as trouble ticket
system, support ticket, request
management, or incident ticket system

• Manages and maintains lists of issues, as
needed by an organization
– To create, update, and resolve reported

issues by customers or developers
– Bugzilla, JIRA

N. Meng, L. Zhang 39

What Do We Mean by “Issues”?

• A unit of work to accomplish an
improvement in a system

• It could be
– a bug
– a requested feature
– a patch
– missing documentation, …

N. Meng, L. Zhang 40

Why Do We Need Issue Tracking?

• Developers need communication while
making changes
–Mailing List
• Hard to manage, come with all other mails
• Not well organized

– Forum
• Categorized by topic
• Notify people when a reply is posted
• No track to code and issue status

N. Meng, L. Zhang 41

What Is Included in An Issue?

N. Meng, L. Zhang 42

Basic Features

• Structurally describe issues
– Solving status, severity levels

• Track status of the issue
• Assign a unique ID to each issue
– Some system automates connection

between commit and issue via issue ID

N. Meng, L. Zhang 43

Typical Workflow

N. Meng, L. Zhang 44

Requester: Opens an issue

Triager: Assigns a developer

Developer: investigates
the issue and tries to solve it

Developer: closes the issue

Somebody: reopens the
issue again because it
was not solved
successfullyI100

Issue
Tracking
System

I100

I100

Resolution of An Issue

• Fixed
– A bug is fixed, a feature is added, a patch

is applied
• Invalid
– Bug cannot be reproduced, features do not

make sense, patch is not correct
• Duplicate
– It is a duplicate of an existing issue
– Get merged with the other issue

N. Meng, L. Zhang 45

Resolution of An Issue

• Won’t fix
– The developers decide not to fix the bug or

accommodate the new feature
– Limited human resource, lack of essential

information to reproduce a bug, lack of
expertise

N. Meng, L. Zhang 46

Issue Tracking & Version Control

• Many project hosting websites include
issue tracking systems
– Google Code
– Github
– BitBucket
– Sourceforge

N. Meng, L. Zhang 47

Continuous Integration

Martin Kropp[1]
Modified by Na Meng

Overview

• Why integration?
• What is Continuous Integration (CI)?
• Continuous Integration process
• CI infrastructure
• CI tools

49

Integration

• Integration occurs when changes are
merged with the source code repository

50

Broken Integration

• You have a broken integration when:
– Source code server does not build

successfully
– Shared component works in one system, but

breaks others
– Unit tests fail
– Code quality fails (coding conventions,

quality metrics)
– Deployment fails

51

Manual Integration

• Integration becomes expensive
– if made manual (build, test, deployment, …)
– if too few checkin’s (months or years…)
– if integration problems and bugs are

detected too late
• Reduces desire to refactor
– long time between integration increases

risk of merge

52

What is Continuous Integration?

• “ Continuous Integration is a software
development practice where members of a
team integrate their work frequently, usually
each person integrates at least daily - leading
to multiple integrations per day. Each
integration is verified by an automated build
(including test) to detect integration errors as
quickly as possible.“

http://martinfowler.com/articles/continuousIntegration.html

53

http://martinfowler.com/articles/continuousIntegration.html

Why continuous integration ?

• Maintain a code repository
• Automate the build
• Make the build self-testing
• Everyone commits to the baseline every

day
• Every commit (to baseline) should be

built
• Keep the build fast

54

Why continuous integration ? (cont’d)

• Test in a clone of the production
environment

• Make it easy to get the latest
deliverables

• Everyone can see the results of the
latest build

• Automate deployment

55

CI Workflow

56

Realizing Continuous Integration

• Monitor a VCS repository for changes
– If changes are found, then start the build

• Build your application
– through your existing Ant or Maven scripts

• Run your xUnit Test suite
• Run code audit tools
– Checkstyle, code coverage, …

57

Realizing Continuous Integration (cont’d)

• Report on the build results
– Send formatted email notifications
– Publish results to a website

• (Optionally) Publish the application
• Configuration is through a central XML file

58

The Agile Process

• Continuous Integration is only one
aspect of an overall process. For it to
work best, you need to
– Plan iteratively
• Schedule regular releases with evolving levels of

functionality
– Implement incrementally
• Identify and implement small work tasks
• refactor if necessary

59

The Agile Process (cont’d)

• Report proactively
– Identify exactly the contents (CIs) of any

build, in both file and content
– Automate reports!

60

CI Benefits

• Reduced Risks
– Always aware of current status of the

project
– Less time spent investigating integration

bugs
• Integrating testing performed early
• Integration bugs caught early

– Less time wasted because of broken code in
VCS
• Broken builds caught early

61

CI Benefits (cont’d)

• Prove your system can build!
• Increase code quality with additional

tasks

62

Continuous Delivery

• Continuous Delivery is the ability to get
changes of all types—including new
features, configuration changes, bug
fixes and experiments—into production,
or into the hands of users, safely and
quickly in a sustainable way.

63

Continuous Deployment

• The next step of continuous delivery:
Every change that passes the
automated tests is deployed to
production automatically. Continuous
deployment should be the goal of most
companies that are not constrained by
regulatory or other requirements.

64

CI Obstacles [2]

• 1. Individuals may see CI counterproductive
– Product managers want to launch new features
– Project managers want the team to meet the

deadline
– Programmers want to fix the bug they are

working on
– It seems that keeping the build is an extra

burden on people
– Solution: team leaders help employees

understand the costs and benefits of CI
65

• 2. Tough to integrate CI into an existing
development flow
– Solution
• Give enough time for people to develop their

new workflow
• Ensure them that the company has their backs

even if things might not go very smoothly at the
beginning

66

• 3. Requiring developers of writing more
test cases
– Solution
• Emphasize that writing test cases from early on

could save a lot of time for your team and
ensure high test coverage of your product
• Embed the idea in the company culture that

test cases are as valuable assets as the
codebase itself.

67

• 4. Developers ignoring error messages
– Developers ignore or mute the

overwhelming amount of CI notifications,
and may miss the updates that are relevant
to them

– Solution
• Only send critical updates
• Only send the notification to developers who

are in charge of fixing it

68

• 5. Creating Fear-Driven Development
– Being afraid of breaking the build or not

passing tests could build up pressure and
fear in individuals.

– Solution
• Make team members consider failed test as

positive results, the earlier their tests fail the
earlier they can resolve problems.

69

Reference

[1] Martin Kropp, Continuous Integration,
https://web.fhnw.ch/plattformen/swc/Literatur
e/10-continuousintegration.pdf. Last visited:
1/18
[2] 5 Challenges That Can Break Your Continuous
Integration Efforts, https://medium.com/flow-
ci/5-challenges-that-can-break-your-continuous-
integration-efforts-94aded600b3d. Last visited:
1/18
[3] Mark Groves, Introducing Git version control
into your system, PPT

70

https://web.fhnw.ch/plattformen/swc/Literature/10-continuousintegration.pdf
https://medium.com/flow-ci/5-challenges-that-can-break-your-continuous-integration-efforts-94aded600b3d

