
Project Management



Overview

• How to manage a project? 
• What is software configuration 

management?
• Version control systems
• Issue tracking systems
• Continuous integration
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What is Project Management?

• Effective project management focuses on 
the 4 P’s:
– People: the most important element
• recruiting, training, performance management

– Product: the software to build
• Project objectives, scope, alternative solutions

– Process: define activities and tasks involved
• Milestones, work products, QA points

– Project: progress control
• Planning, monitoring, controlling
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The “First Law”

• No matter where you are in the system 
life cycle, the system will change, and 
the desire to change it will persist 
throughout the life cycle.
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Bersoff, et al, 1980



What Are These Changes?
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Software Configuration Management 
(SCM)

• Definition 
– The task of tracking and controlling 

changes in software
• SCM repository
– tools that allow developers to effectively 

manage changes
• Version control system
• Issue tracking system

• CI servers
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Version Control System



What Is Version Control System?

• VCS, also known as Revision Control 
System

• To manage changes to documents, 
programs, large websites, and other 
collections of information
– CVS, SVN, Mercurial, GIT
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What Do We Mean by “Manage 
Changes” ?

• What changes have been made?
• Why are the changes made?
• Who makes the changes?
• Can we redo/undo some changes?
• Can we branch the project?
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Subversion Version Control 
System (SVN)



Subversion Repository Layout
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• One SVN server can hold 
many repositories

• One repository can hold
many projects

• One project contains
– Trunk: Main line of 

development
– Tags: Markers to highlight

notable revisions—major releases
– Branches: Side lines of development



Each project has multiple revisions
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• Each revision is 
assigned a name

• Revision number is 
incremented for every 
commit transaction

• Delta (diff) information 
is recorded



Basic Features of a Repository

• Keep the history of all changes to files 
and directories
– You can check in new versions
– You can recover any previous version

• Access control
– Read/write permission for users

• Logging 
– Author, date, and reason for a change
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Typical Workflow
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Additional Features

• Diff
• Branch
• Merge
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Diff

• To display the differences between two 
revisions
–What has been changed?
– Add or delete a line of text
– No update, or move 
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Version 1:                     Version 2:
x = 0;                      x = 1;
y = 1;                       y = 1;

Diff:
- x = 0;
+  x = 1;



Key Points about Diff 

• A key operation of version control 
systems

• A lot of features are based on diff
– Save new versions
– Recover a prior version
– Patch

• We use Diff(v1, v2) to represent 
changes on v1 for v2
– Diff(v1, v2) != Diff(v2, v1)
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Diff: a Real Example
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Start line in the old version Start line in the new version

• svn diff –r v1:v2 filename
• “+”: added lines, “-”: deleted lines
• Some unchanged lines are shown to indicate 

program context



Changes Detected by Diff

• Addition/Deletion of directories
• Addition/Deletion of files
• A renamed file is reported as a 

separate addition and a separate 
deletion

• Addition/Deletion of lines

N. Meng, L. Zhang 19



• Scenario
– You deliver a great product to your 

customers: REL-1.0.0
– Your development team continue adding new 

features on the trunk
– Customers report a major bug in the 

product and ask for a fix
–What do you do?
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Branch and patch separately!
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RELEASE 1.0.0
BUGFIX_BRANCH

• svn copy path/to/trunk path/to/branch 



Other reasons to branch

• Separate branches for 
– Tentative new features
– Different products
– Different teams
– Different releases
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Pros and Cons of Branch

• Pros
– Separation of concerns among teams and 

developers
– Parallel version history without 

interference between branches
• Cons
– Branches may diverge a lot
– Hard to propagate changes across branches
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• Scenario
– After fixing the major bug on a branch, you 

have to apply the same/similar changes to 
the trunk

–What do you do?
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Merge back the patch! 
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• svn merge –reintegrate path/to/branch



What can happen when merging?

• Conflict
– Two people edit the same file 

– Resolve the conflict manually and checked 
in again
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Distributed Version Control: GIT

• Everyone has their own local version 
control repository
– Like a local branch of the project
– Remote updates and commits are like 

branch merge
– Local commits used to backup projects
– Github allows developers to contribute by 

working on branches
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Centralized VC vs. Distributed VC[3]
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Git Initialization
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C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in 
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

C:\CoolProject > git remote add origin remote 
repository URL
# Sets the new remote
C:\CoolProject > git push origin master
# Pushes the changes in your local repository to 
the remote repository



Git Branch & Merge

master

A

> git commit –m ‘my first commit’



Branches Illustrated

master

> git commit (x2)

A B C



Branches Illustrated

bug123

master

> git checkout –b bug123

A B C



Branches Illustrated

master

> git commit (x2)

A B C

D E

bug123



Branches Illustrated

master

> git checkout master

A B C

D E

bug123



Branches Illustrated

bug123

master

> git merge bug123

A B C D E



Branches Illustrated

master

A B C D E



Tips for Version Control

• Small commits
– Check in logically relevant changes as a 

commit
• Write meaningful commit messages
– Facilitate change understanding, applying, 

and reverting
• Avoid commit noise
– Commit compliable or even deliverable code
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Issue Tracking System



What Is Issue Tracking System?

• ITS, also known as trouble ticket 
system, support ticket, request 
management, or incident ticket system

• Manages and maintains lists of issues, as 
needed by an organization
– To create, update, and resolve reported 

issues by customers or developers
– Bugzilla, JIRA
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What Do We Mean by “Issues”?

• A unit of work to accomplish an 
improvement in a system

• It could be 
– a bug
– a requested feature
– a patch
– missing documentation, …
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Why Do We Need Issue Tracking?

• Developers need communication while 
making changes
–Mailing List
• Hard to manage, come with all other mails
• Not well organized

– Forum
• Categorized by topic
• Notify people when a reply is posted
• No track to code and issue status
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What Is Included in An Issue?
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Basic Features

• Structurally describe issues
– Solving status, severity levels

• Track status of the issue 
• Assign a unique ID to each issue
– Some system automates connection 

between commit and issue via issue ID
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Typical Workflow 
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Requester: Opens an issue

Triager: Assigns a developer

Developer: investigates 
the issue and tries to solve it

Developer: closes the issue

Somebody: reopens the 
issue again because it 
was not solved 
successfullyI100

Issue
Tracking
System

I100

I100



Resolution of An Issue

• Fixed
– A bug is fixed, a feature is added, a patch 

is applied
• Invalid
– Bug cannot be reproduced, features do not 

make sense, patch is not correct
• Duplicate
– It is a duplicate of an existing issue
– Get merged with the other issue
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Resolution of An Issue

• Won’t fix
– The developers decide not to fix the bug or 

accommodate the new feature
– Limited human resource, lack of essential 

information to reproduce a bug, lack of 
expertise
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Issue Tracking & Version Control

• Many project hosting websites include 
issue tracking systems
– Google Code
– Github
– BitBucket
– Sourceforge
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Continuous Integration

Martin Kropp[1]
Modified by Na Meng



Overview

• Why integration? 
• What is Continuous Integration (CI)?
• Continuous Integration process
• CI infrastructure
• CI tools
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Integration

• Integration occurs when changes are 
merged with the source code repository
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Broken Integration

• You have a broken integration when:
– Source code server does not build 

successfully
– Shared component works in one system, but 

breaks others
– Unit tests fail
– Code quality fails (coding conventions, 

quality metrics)
– Deployment fails
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Manual Integration

• Integration becomes expensive
– if made manual (build, test, deployment, …)
– if too few checkin’s (months or years…)
– if integration problems and bugs are 

detected too late
• Reduces desire to refactor
– long time between integration increases 

risk of merge
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What is Continuous Integration?

• “ Continuous Integration is a software 
development practice where members of a 
team integrate their work frequently, usually 
each person integrates at least daily - leading 
to multiple integrations per day. Each 
integration is verified by an automated build 
(including test) to detect integration errors as 
quickly as possible.“

http://martinfowler.com/articles/continuousIntegration.html
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Why continuous integration ?

• Maintain a code repository
• Automate the build
• Make the build self-testing
• Everyone commits to the baseline every 

day
• Every commit (to baseline) should be 

built
• Keep the build fast
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Why continuous integration ? (cont’d)

• Test in a clone of the production 
environment

• Make it easy to get the latest 
deliverables

• Everyone can see the results of the 
latest build

• Automate deployment
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CI Workflow
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Realizing Continuous Integration

• Monitor a VCS repository for changes
– If changes are found, then start the build

• Build your application
– through your existing Ant or Maven scripts

• Run your xUnit Test suite
• Run code audit tools
– Checkstyle, code coverage, …
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Realizing Continuous Integration (cont’d)

• Report on the build results
– Send formatted email notifications
– Publish results to a website

• (Optionally) Publish the application
• Configuration is through a central XML file
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The Agile Process

• Continuous Integration is only one 
aspect of an overall process. For it to 
work best, you need to
– Plan iteratively
• Schedule regular releases with evolving levels of 

functionality
– Implement incrementally
• Identify and implement small work tasks
• refactor if necessary
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The Agile Process (cont’d)

• Report proactively
– Identify exactly the contents (CIs) of any 

build, in both file and content
– Automate reports!
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CI Benefits

• Reduced Risks
– Always aware of current status of the 

project
– Less time spent investigating integration 

bugs
• Integrating testing performed early
• Integration bugs caught early

– Less time wasted because of broken code in 
VCS
• Broken builds caught early
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CI Benefits (cont’d)

• Prove your system can build!
• Increase code quality with additional 

tasks
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Continuous Delivery

• Continuous Delivery is the ability to get 
changes of all types—including new 
features, configuration changes, bug 
fixes and experiments—into production, 
or into the hands of users, safely and 
quickly in a sustainable way.
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Continuous Deployment

• The next step of continuous delivery: 
Every change that passes the 
automated tests is deployed to 
production automatically. Continuous 
deployment should be the goal of most 
companies that are not constrained by 
regulatory or other requirements.
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CI Obstacles [2]

• 1. Individuals may see CI counterproductive
– Product managers want to launch new features
– Project managers want the team to meet the 

deadline
– Programmers want to fix the bug they are 

working on
– It seems that keeping the build is an extra 

burden on people
– Solution: team leaders help employees 

understand the costs and benefits of CI
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• 2. Tough to integrate CI into an existing 
development flow
– Solution
• Give enough time for people to develop their 

new workflow 
• Ensure them that the company has their backs 

even if things might not go very smoothly at the 
beginning
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• 3. Requiring developers of writing more 
test cases
– Solution
• Emphasize that writing test cases from early on 

could save a lot of time for your team and 
ensure high test coverage of your product 
• Embed the idea in the company culture that 

test cases are as valuable assets as the 
codebase itself.
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• 4. Developers ignoring error messages
– Developers ignore or mute the 

overwhelming amount of CI notifications, 
and may miss the updates that are relevant 
to them

– Solution
• Only send critical updates
• Only send the notification to developers who 

are in charge of fixing it
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• 5. Creating Fear-Driven Development
– Being afraid of breaking the build or not 

passing tests could build up pressure and 
fear in individuals.

– Solution
• Make team members consider failed test as 

positive results, the earlier their tests fail the 
earlier they can resolve problems.
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