
Design Engineering



Overview

• What is software design?
• How to do it?
• Principles, concepts, and practices
• High-level design
• Low-level design
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Design Engineering

• The process of making decisions about 
HOW to implement software solutions 
to meet requirements

• Encompasses the set of concepts, 
principles, and practices that lead to 
the development of high-quality systems

N. Meng, B. Ryder 3



Concepts in Software Design

• Modularity
• Cohesion & Coupling
• Information Hiding
• Abstraction & Refinement
• Refactoring
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Modularity

• Software is divided into separately 
named and addressable components, 
sometimes called modules, that are 
integrated to satisfy problem 
requirements

• Divide-and-conquer 
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Modularity and Software Cost
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Cohesion & Coupling

• Cohesion
– The degree to which the elements of a module 

belong together
– A cohesive module performs a single task 

requiring little interaction with other modules
• Coupling
– The degree of interdependence between 

modules
• High cohesion and low coupling
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Information Hiding

• Do not expose internal information of a 
module unless necessary
– E.g., private fields, getter & setter 

methods
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Abstraction & Refinement

• Abstraction
– To manage the complexity of software,
– To anticipate detail variations and future 

changes
• Refinement 
– A top-down design strategy to reveal low-level 

details from high-level abstraction as design 
progresses
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Abstraction to Reduce Complexity

• We abstract complexity at different 
levels
– At the highest level, a solution is stated in 

broad terms, such as “process sale”
– At any lower level, a more detailed 

description of the solution is provided, such 
as the internal algorithm of the function 
and data structure
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Abstraction to Anticipate Changes

• Define interfaces to leave 
implementation details undecided

• Polymorphism

<<interface>>
ITaxCalculator

getTaxes(…)

TaxMaster TurboTaxTaxBonanza
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Software Design Practices Include:

• Two stages
– High-level: Architecture design
• Define major components and their relationship

– Low-level: Detailed design
• Decide classes, interfaces, and implementation 

algorithms for each component
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How to Do Software Design?

• Reuse or modify existing design models
– High-level: Architectural styles
– Low-level: Design patterns, Refactorings

• Iterative and evolutionary design
– Package diagram
– Detailed class diagram
– Detailed sequence diagram
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Software Architecture

• “The architecture of a system is a 
comprehensive framework that 
describes its form and structure -- its 
components and how they fit together” 

--Jerrold Grochow

N. Meng, B. Ryder 14



What is Architectural Design?

• Design overall shape & structure of 
system
– the components 
– their externally visible properties
– their relationships 

• Goal: choose architecture to reduce 
risks in SW construction & meet 
requirements 
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SW Architectural Styles

• Architecture composed of
– Set of components
– Set of connectors between them
• Communication, co-ordination, co-operation

– Constraints 
• How can components be integrated?

– Semantic models 
• What are the overall properties based on 

understanding of individual component properties?
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Architecture Patterns

• Common program structures
– Pipe & Filter Architecture
– Event-based Architecture
– Layered Architecture

N. Meng, B. Ryder 17



Pipe & Filter Architecture

• A pipeline contains a chain of data 
processing elements
– The output of each element is the input of the 

next element
– Usually some amount of buffering is provided 

between consecutive elements
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Example: Optimizing Compiler 
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Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]
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Pros and Cons

• Other examples
– UNIX pipes, signal processors 

• Pros
– Easy to add or remove filters
– Filter pipelines perform multiple operations 

concurrently
• Cons
– Hard to handle errors 
–May need encoding/decoding of input/output 
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Event-based Architecture
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EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

• Promotes the production, detection, 
consumption of, and reaction to events

• More like event-driven programming



Example: GUI
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Pros and Cons

• Other examples:
– Breakpoint debuggers, phone apps, robotics

• Pros
– Anonymous handlers of events
– Support reuse and evolution, new consumers 

easy to add
• Cons
– Components have no control over order of 

execution
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Layered/Tiered Architecture

• Multiple layers are defined to allocate 
responsibilities of a software product

• The communication between layers is 
hierarchical

• Examples: OS, network protocols 
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3-layer Architecture
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Data

Presentation

Logic

• Presentation: UI to interact with users
• Logic: coordinate applications and perform 

calculations
• Data: store and retrieve information as 

needed



Example: Online Ordering System
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http://www.cardisoft.gr/frontend/article.php?aid=87&cid=96



Model-View-Controller
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https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
Design of Finite State Machine Drawing Tool



Key Points about MVC

• View layer should not handle system 
events

• Controller layer has the application logic 
to handle events

• Model layer only respond to data 
operation
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Layered Architecture: Pros and Cons

• Pros
– Support increasing levels of abstraction 

during design
– Support reuse and enhancement

• Cons
– The performance may degrade 
– Hard to maintain
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