
Design Engineering



Overview

• What is software design?
• How to do it?
• Principles, concepts, and practices
• High-level design
• Low-level design

N. Meng, B. Ryder 2



Design Engineering

• The process of making decisions about 
HOW to implement software solutions 
to meet requirements

• Encompasses the set of concepts, 
principles, and practices that lead to 
the development of high-quality systems

N. Meng, B. Ryder 3



Concepts in Software Design

• Modularity
• Cohesion & Coupling
• Information Hiding
• Abstraction & Refinement
• Refactoring

N. Meng, B. Ryder 4



Modularity

• Software is divided into separately 
named and addressable components, 
sometimes called modules, that are 
integrated to satisfy problem 
requirements

• Divide-and-conquer 

N. Meng, B. Ryder 5



Modularity and Software Cost

N. Meng, B. Ryder 6



Cohesion & Coupling

• Cohesion
– The degree to which the elements of a module 

belong together
– A cohesive module performs a single task 

requiring little interaction with other modules
• Coupling
– The degree of interdependence between 

modules
• High cohesion and low coupling

N. Meng, B. Ryder 7



Information Hiding

• Do not expose internal information of a 
module unless necessary
– E.g., private fields, getter & setter 

methods

N. Meng, B. Ryder 8



Abstraction & Refinement

• Abstraction
– To manage the complexity of software,
– To anticipate detail variations and future 

changes
• Refinement 
– A top-down design strategy to reveal low-level 

details from high-level abstraction as design 
progresses

N. Meng, B. Ryder 9



Abstraction to Reduce Complexity

• We abstract complexity at different 
levels
– At the highest level, a solution is stated in 

broad terms, such as “process sale”
– At any lower level, a more detailed 

description of the solution is provided, such 
as the internal algorithm of the function 
and data structure

N. Meng, B. Ryder 10



Abstraction to Anticipate Changes

• Define interfaces to leave 
implementation details undecided

• Polymorphism

<<interface>>
ITaxCalculator

getTaxes(…)

TaxMaster TurboTaxTaxBonanza

N. Meng, B. Ryder 11



Software Design Practices Include:

• Two stages
– High-level: Architecture design
• Define major components and their relationship

– Low-level: Detailed design
• Decide classes, interfaces, and implementation 

algorithms for each component

N. Meng, B. Ryder 12



How to Do Software Design?

• Reuse or modify existing design models
– High-level: Architectural styles
– Low-level: Design patterns, Refactorings

• Iterative and evolutionary design
– Package diagram
– Detailed class diagram
– Detailed sequence diagram

N. Meng, B. Ryder 13



Software Architecture

• “The architecture of a system is a 
comprehensive framework that 
describes its form and structure -- its 
components and how they fit together” 

--Jerrold Grochow

N. Meng, B. Ryder 14



What is Architectural Design?

• Design overall shape & structure of 
system
– the components 
– their externally visible properties
– their relationships 

• Goal: choose architecture to reduce 
risks in SW construction & meet 
requirements 

N. Meng, B. Ryder 15



SW Architectural Styles

• Architecture composed of
– Set of components
– Set of connectors between them
• Communication, co-ordination, co-operation

– Constraints 
• How can components be integrated?

– Semantic models 
• What are the overall properties based on 

understanding of individual component properties?

N. Meng, B. Ryder 16



Architecture Patterns

• Common program structures
– Pipe & Filter Architecture
– Event-based Architecture
– Layered Architecture

N. Meng, B. Ryder 17



Pipe & Filter Architecture

• A pipeline contains a chain of data 
processing elements
– The output of each element is the input of the 

next element
– Usually some amount of buffering is provided 

between consecutive elements

N. Meng, B. Ryder 18

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe
pipe

pipe

pipe

pipe pipe

pipe

Data



Example: Optimizing Compiler 

N. Meng, B. Ryder 19

Compiler Optimization
[Engineering a Compiler, K. D. Cooper, L. Torczon]

Compiler Structure

IR

O
pt

 1

O
pt

 2

O
pt

 n…
IR



Pros and Cons

• Other examples
– UNIX pipes, signal processors 

• Pros
– Easy to add or remove filters
– Filter pipelines perform multiple operations 

concurrently
• Cons
– Hard to handle errors 
–May need encoding/decoding of input/output 

N. Meng, B. Ryder 20



Event-based Architecture

N. Meng, B. Ryder 21

EventEmitter

EventDispatcher

EventConsumerEventConsumer EventConsumer

event
subscription

• Promotes the production, detection, 
consumption of, and reaction to events

• More like event-driven programming



Example: GUI

N. Meng, B. Ryder 22



Pros and Cons

• Other examples:
– Breakpoint debuggers, phone apps, robotics

• Pros
– Anonymous handlers of events
– Support reuse and evolution, new consumers 

easy to add
• Cons
– Components have no control over order of 

execution

N. Meng, B. Ryder 23



Layered/Tiered Architecture

• Multiple layers are defined to allocate 
responsibilities of a software product

• The communication between layers is 
hierarchical

• Examples: OS, network protocols 

N. Meng, B. Ryder 24

kernalkernel

utilities
application layer

users



3-layer Architecture

N. Meng, B. Ryder 25

Data

Presentation

Logic

• Presentation: UI to interact with users
• Logic: coordinate applications and perform 

calculations
• Data: store and retrieve information as 

needed



Example: Online Ordering System

N. Meng, B. Ryder 26

http://www.cardisoft.gr/frontend/article.php?aid=87&cid=96



Model-View-Controller

N. Meng, B. Ryder 27

https://commons.wikimedia.org/wiki/File:MVC_Diagram_(Model-View-Controller).svg
Design of Finite State Machine Drawing Tool



Key Points about MVC

• View layer should not handle system 
events

• Controller layer has the application logic 
to handle events

• Model layer only respond to data 
operation

N. Meng, B. Ryder 28



Layered Architecture: Pros and Cons

• Pros
– Support increasing levels of abstraction 

during design
– Support reuse and enhancement

• Cons
– The performance may degrade 
– Hard to maintain

N. Meng, B. Ryder 29


