
1/31/19

1

Software Process

Overview

• What is software process?
• Examples of process models
• Agile software development

N. Meng, B. Ryder 2

Software Process

• Definition [Pressman]
– a framework for the tasks that are 

required to build high-quality software.
– to provide stability, control and 

organization to an otherwise chaotic 
activity

N. Meng, B. Ryder 3

Code-and-Fix Process

• The first thing people tried in the 1950s 
1.Write program
2.Improve it (debug, add functionality, 
improve efficiency, ...) 
3.GOTO 1 

• Works for small 1-person projects and 
for some CS course assignments 

N. Meng, B. Ryder 4

Problems with Code-and-Fix

• Poor match with user needs 
• Bad overall structure – No blueprint 
• Poor reliability - no systematic testing 
• Maintainability? What’s that? 
• What happens when the programmer 

quits?

N. Meng, B. Ryder 5

Code-and-Fix Process

N. Meng, B. Ryder

From McConnell, After the Goldrush, 1999

6



1/31/19

2

A More Advanced Process

N. Meng, B. Ryder 7

Examples of Process Models

• Waterfall model
• Prototyping model
• Spiral model 
• Incremental model

N. Meng, B. Ryder 8

Waterfall Model

• The “classic” process model since 1970s
– Also called “software life cycle”

N. Meng, B. Ryder 9

Analysis

Testing & Integration

Maintenance

Design

Implementation

Waterfall Phases

• Analysis: Define problems 
– requirements, constraints, goals and domain 

concepts
• Design: Establish solutions
– System architecture, components, relationship

• Implementation: Implement solutions
• Testing and integration: Check solutions
– Unit testing, system testing

• Maintenance: the longest phase

N. Meng, B. Ryder 10

Analysis

Testing & Integration

Maintenance

Design

Implementation

Key Points of the Model

• The project goes through the phases 
sequentially 

• Possible feedback and iteration across 
phases
– e.g., during coding, a design problem is 

identified and fixed 
• Typically, few or no iterations are used
– e.g., after a certain point of time, the 

design is “frozen”

N. Meng, B. Ryder 11

Waterfall Model Assumptions
• All requirements are known at the start and 

stable
• Risks(unknown) can be turned into known 

through schedule-based invention and 
innovation

• The design can be done abstractly and 
speculatively
– i.e., it is possible to correctly guess in advance how 

to make it work 
• Everything will fit together when we start the 

integration

N. Meng, B. Ryder 12



1/31/19

3

Pros and Cons

• Pros: widely used, systematic, good for 
projects with well-defined requirements 
– Makes managers happy 

• Cons: 
– The actual process is not so sequential

• A lot of iterations may happen 
– The assumptions usually don’t hold
– Working programs are not available early

• High risk issues are not tackled early enough
– Expensive and time-consuming

N. Meng, B. Ryder 13

When would you like to use waterfall?

N. Meng, B. Ryder 14

• Work for big clients enforcing formal 
approach on vendors

• Work on fixed-scope, fixed-price 
contracts without many rapid changes

• Work in an experienced team

Observation

• Top three reasons for at least partial 
failure projects
– lack of user input
– incomplete requirements, and
– changing requirements

N. Meng, B. Ryder 15

Standish group 1995

Prototyping Model

• Build a prototype when customers have 
ambiguous requirements

N. Meng, B. Ryder 16

Analysis

Testing & 
Integration

Maintenance

Design

Implementation

Prototyping
Customer 
Evaluation

Review & 
Update

Customer
satisfied

Key Points of the Model

• Iterations: customer evaluation followed 
by prototype refinement

• The prototype can be paper-based or 
computer-based

• It models the entire system with real data 
or just a few screens with sample data

• Note: the prototype is thrown away!

N. Meng, B. Ryder 17

Spiral Model

• A risk-driven evolutionary model that combines 
development models (waterfall, prototype, etc.)

18

Spiral model 
(SOM)



1/31/19

4

Spiral Phases
• Objective setting
– Define specific objectives, constraints, 

products, plans
– Identify risks and alternative strategies

• Risk assessment and reduction
– Analyze risks and take steps to reduce risks

• Development and validation
– Pick development methods based on risks

• Planning
– Review the project and decide whether to 

continue with a further loop

N. Meng, B. Ryder 19

Key Points of the Model

• Introduce risk management into process
• Develop evolutionary releases to 
– Implement more complete versions of 

software
–Make adjustment for emergent risks

N. Meng, B. Ryder 20

Incremental Model

• A sequence of waterfall models

N. Meng, B. Ryder 21

Analysis

Testing & Integration

Design
Implementation

Iteration n: 3 weeks 
(for example)

Analysis

Testing & Integration

Design
Implementation

Iteration n+1: 3 weeks 
(for example)

Release n Release n + 1

Feedback, adaptation

Key Points of the Model

• Iterative: many releases/increments
– First increment: core functionality
– Successive increments: add/fix functionality
– Final increment: the complete product

• Require a complete definition of the whole 
system to break it down and build 
incrementally

N. Meng, B. Ryder 22

Agile Software Development

• A timeboxed iterative and evolutionary 
development process

• It promotes
– adaptive planning
– evolutionary development, 
– incremental delivery
– rapid and flexible response to change

N. Meng, B. Ryder 23

Any iterative method can be applied in an agile spirit.

Key Points of Agile Modeling
• The purpose of modeling is primarily to 

understand, not to document
• Modeling should focus on the smaller 

percentage of unusual, difficult, tricky parts of 
the design space

• Model in pairs (or triads)
• Developers should do the OO design modeling 

for themselves
• Create models in parallel
– E.g., interaction diagram & static-view class diagram

N. Meng, B. Ryder 24


