Semantic Web Foundations

Part 2: Reasoning in Description Logic

Peter Radics CS6204 - Usable Security Fall 2009 Dr. Dennis Kafura Virginia Tech

September 24, 2009

Reasoning in DL (Peter Radics)

Semantic Web Foundations

September 24, 2009 1 / 25

3

イロト イポト イヨト イヨト

Goal of Presentation

- Demonstrate the power (or lack thereof) of reasoning (**what** can be reasoned about?)
- Introduce an algorithm for reasoning (how can the computer reason?)

3

イロト イポト イヨト イヨト

Three main building blocks

- Concepts
- Relationships
- Individuals

э

590

・ロン ・四 と ・ ヨン

Further building blocks

- Union
- Intersection
- Complement
- Existential quantification
- Universal quantification
- Number restriction

3

< □ > < 同 >

Introducing formality:

We will write:

A, B for atomic concepts
R for atomic roles
C, D for concept descriptions (concepts that are defined through combination of other concepts)

Attributive Languages (cont'd)

The basic description language \mathcal{AL}

Definition

- $C, D \longrightarrow A \mid (atomic concept)$
 - \top | (universal concept)
 - \perp | (bottom concept)
 - $\neg A \mid$ (atomic negation)
 - $C \sqcap D \mid$ (intersection)
 - $\forall R.C \mid$ (value restriction)
 - $\exists R. \top \mid$ (limited existential quantification)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Definition (Interpretations)

An interpretation \mathcal{I} consists of a non-empty set $\Delta^{\mathcal{I}}$ (the domain of the interpretation) and an interpretation function $\cdot^{\mathcal{I}}$, which assigns to every atomic concept A a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and to every atomic role R a binary relation $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$. \mathcal{I} furthermore maps every individual a to an element $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.

Therefore:

Definition

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}}.\\ \bot^{\mathcal{I}} &=& \varnothing.\\ (\neg A) &=& \Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}.\\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}}.\\ (\forall R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid \forall b. \, (a,b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}} \right\}.\\ (\exists R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid \exists b. \, (a,b) \in R^{\mathcal{I}} \right\}. \end{array}$$

We say $C \equiv D$ iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ for all interpretations \mathcal{I} .

イロト イポト イヨト イヨト

1

8 / 25

Attributive Language (cont'd)

Extensions of \mathcal{AL} :

Definition $\mathcal{AL}[\mathcal{U}]$ (Union)

$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}.$$

Definition $\mathcal{AL}[\mathcal{E}]$ (Full existential quantification)

$$(\exists R.C)^{\mathcal{I}} = a \in \Delta^{\mathcal{I}} \mid \exists b (a, b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}.$$

Definition $\mathcal{AL}[\mathcal{N}]$ (Number restrictions)

$$\begin{array}{ll} (\geq nR)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid \left| \left\{ b \mid (a,b) \in R^{\mathcal{I}} \right\} \right| \geq n \right\}. \\ (\leq nR)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid \left| \left\{ b \mid (a,b) \in R^{\mathcal{I}} \right\} \right| \leq n \right\}. \end{array}$$

Reasoning in DL (Peter Radics)

Semantic Web Foundations

Definition

 $C \sqsubseteq D$ and $R \sqsubseteq S$ are called *inclusions*.

- $C \equiv D$ and $R \equiv S$ are called *equalities*.
- $A \equiv C$ is called a *definition*.

Definition

C(a) is called a *concept assertion*. R(a, b) is called a *role assertion*.

Definition

The interpretation \mathcal{I} satisfies the concept assertion C(a) if $a^{\mathcal{I}} \in C^{\mathcal{I}}$, and it satisfies the role assertion R(a, b) if $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$.

Atomic concepts:

- Store
- Issuer
- Credential
- GovernmentAgency

Atomic roles:

- HasCredential
- IssuedBy
- ControlledBy

-

< A

Definitions:

- UntrustedIssuer \equiv Issuer $\sqcap \neg \exists$ ControlledBy.GovernmentAgency
- TrustedIssuer $\equiv \neg$ UntrustedIssuer
- UntrustedCredential \equiv Credential $\sqcap \neg \exists$ IssuedBy.TrustedIssuer
- TrustedCredential \equiv Credential $\sqcap \exists$ IssuedBy.TrustedIssuer
- TrustedStore \equiv Store $\sqcap \exists$ HasCredential.TrustedCredential

↓ ∃ ▶ ∃ • ∩ Q ∩

Concept assertions:

- Store(amazon)
- Store(malroysShadyEmporium)
- Issuer(veriSign)
- Issuer(malroysShadyEmporium)
- GovernmentAgency(nsa)
- Credential(sslCertificate_amazon)
- Credential(sslCertificate_malroysShadyEmporium)

13 / 25

Role assertions:

- HasCredential(amazon, sslCertificate_amazon)
- HasCredential(malroysShadyEmporium, sslCertificate_malroysShadyEmporium)
- IssuedBy(sslCertificate_amazon, veriSign)
- IssuedBy(sslCertificate_malroysShadyEmporium, malroysShadyEmporium)
- ControlledBy(veriSign, nsa)

There are four reasoning tasks for TBoxes:

- Satisfiability (Consistency)
- Subsumption
- Equivalence
- Disjointness

3

-

< □ > < 同 >

Definition (Satisfiability)

A Concept *C* is *satisfiable* with respect to a TBox \mathcal{T} if a model \mathcal{I} of \mathcal{T} exists such that $C^{\mathcal{I}}$ is not empty. In this case, we say that \mathcal{I} is a *model* of *C*.

Definition (Subsumption)

A concept *C* is *subsumed* by a concept *D* with respect to \mathcal{T} if $C^{\mathcal{I}} \sqsubseteq D^{\mathcal{I}}$ for every model \mathcal{I} of \mathcal{T} . In this case we write $C \sqsubseteq_{\mathcal{T}} D$ or $\mathcal{T} \models C \sqsubseteq D$.

イロト イポト イヨト イヨト

Definition (Equivalence)

Two concepts *C* and *D* are *equivalent* with respect to \mathcal{T} if $C^{\mathcal{I}} = D^{\mathcal{I}}$ for every model \mathcal{I} of \mathcal{T} . In this case we write $C \equiv_{\mathcal{T}} D$ or $\mathcal{T} \models C \equiv D$.

Definition (Disjointness)

Two concepts C and D are disjoint with respect to \mathcal{T} if $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ for every model \mathcal{I} of \mathcal{T} .

Theorem

All reasoning questions for TBoxes can be reduced to satisfiability!

Corollary

- C is subsumed by $D \Leftrightarrow C \sqcap \neg D$ is unsatisfiable;
- C and D are equivalent ⇔ both (C □ ¬D) and (¬C □ D) are unsatisfiable;
- **③** *C* and *D* are disjoint \Leftrightarrow *C* \sqcap *D* is unsatisfiable.

Reasoning for ABoxes:

- Satisfiability (Consistency)
- Instance Check (Entailment)

Definition

An ABox \mathcal{A} is consistent with respect to a TBox \mathcal{T} , if there is an interpretation that is a model of both \mathcal{A} and \mathcal{T} .

Definition (Entailment)

An assertion *a* is entailed by A and we write $A \models a$ if every interpretation that satisfies A, that is, every model of A, also satisfies *a*.

Reasoning in DL (Peter Radics)

19 / 25

Theorem

All reasoning questions for ABoxes can be reduced to consistency!

Corollary

 $\mathcal{A} \models C(a)$ iff $\mathcal{A} \cup \{\neg C(a)\}$ is inconsistent. C is satisfiable iff $\{C(a)\}$ is consistent.

Tableau Calculus

Definition

- Formulate query
- 2 Expand query
- Sring query into negative normal form
- Start with ABox $\mathcal{A} = \{C_0(x_0)\}$
- Iterate transformations on ABox (see next slide)
- O Check consistency on transformed ABoxes

Algorithm

The $\rightarrow \Box$ -rule *Condition*: A contains $(C_1 \sqcap C_2)(x)$, but it does not contain both $C_1(x)$ and $C_2(x)$. Action: $\mathcal{A}' = \mathcal{A} \cup \{C_1(x), C_2(x)\}.$ The $\rightarrow \Box$ -rule *Condition*: A contains $(C_1 \cup C_2)(x)$, but neither $C_1(x)$ nor $C_2(x)$. Action: $\mathcal{A}' = \mathcal{A} \cup \{C_1(x)\}, \mathcal{A}'' = \mathcal{A} \cup \{C_2(x)\}.$ The $\rightarrow \exists$ -rule Condition: A contains $(\exists R.C)(x)$, but there is no individual name z such that C(z) and R(x, z) are in \mathcal{A} . Action: $\mathcal{A}' = \mathcal{A} \cup \{ C(y), R(x, y) \}$ where y is an individual name not occurring in \mathcal{A} . The $\rightarrow \forall$ -rule Condition: A contains $(\forall R.C)(x)$ and R(x, y), but it does not contain C(y). Action: $\mathcal{A}' = \mathcal{A} \cup \mathcal{C}(\mathbf{y}).$ ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ The \rightarrow >-rule

Condition: A contains $(\geq nR)(x)$, and there are no individual names $z_1 \dots z_n$ such that $R(x, z_i)$ $(1 \le i \le n)$ and $z_i \ne z_i$ $(1 \le i < j \le n)$ are contained in \mathcal{A} .

Action: $\mathcal{A}' = \mathcal{A} \cup \{R(x, y_i) \mid (1 \le i \le n)\} \cup \{y_i \ne y_i \mid 1 \le i < j \le n\},\$ where $y_1 \ldots y_n$ are distinct individual names not occurring in \mathcal{A} . The \rightarrow <-rule

Condition: A contains distinct individual names $y_1 \dots y_n + 1$ such that $(\leq nR)(x)$ and $R(x, y_1) \dots R(x, y_n + 1)$ are in \mathcal{A} , and $y_i \neq y_i$ is not in \mathcal{A} for some i < j.

Action: For each pair y_i, y_i such that i > j and $y_i \neq y_i$ is not in \mathcal{A} , the ABox $\mathcal{A}_{i,i} = [y_i/y_i] \mathcal{A}$ is obtained from \mathcal{A} by replacing each occurrence of y_i by y_i .

23 / 25

Help me try to reason, using the algorithm and the example defined earlier, whether malroysShadyEmporium is a TrustedStore!

Reasoning in DL (Peter Radics)

Semantic Web Foundations

- What is the impact of reasoning on the usefulness of Description Logics?
- What uses do you see for reasoning in a Usable Security context?