Atomic concepts:

- Store
- Issuer
- Credential
- GovernmentAgency

Atomic roles:

- HasCredential
- IssuedBy
- ControlledBy

Definitions:

- UntrustedIssuer \equiv Issuer $\sqcap \neg \exists$ ControlledBy.GovernmentAgency
- TrustedIssuer $\equiv \neg$ UntrustedIssuer
- UntrustedCredential \equiv Credential $\sqcap \neg \exists$ IssuedBy.TrustedIssuer
- TrustedCredential \equiv Credential \sqcap \exists IssuedBy.TrustedIssuer
- TrustedStore \equiv Store $\sqcap \exists$ HasCredential.TrustedCredential

Concept assertions:

- Store(amazon)
- Store(malroysShadyEmporium)
- Issuer(veriSign)
- Issuer(malroysShadyEmporium)
- GovernmentAgency(nsa)
- Credential(sslCertificate_amazon)
- Credential(sslCertificate_malroysShadyEmporium)

Role assertions:

- HasCredential(amazon, sslCertificate_amazon)
- HasCredential(malroysShadyEmporium, sslCertificate_malroysShadyEmporium)
- IssuedBy(sslCertificate_amazon, veriSign)
- IssuedBy(sslCertificate_malroysShadyEmporium, malroysShadyEmporium)

• ControlledBy(veriSign, nsa)

Algorithm Rules

 $\mathbf{The} \to \sqcap \mathbf{-rule}$ Condition: \mathcal{A} contains $(C_1 \sqcap C_2)(x)$, but it does not contain both $C_1(x)$ and $C_2(x).$ Action: $\mathcal{A}' = \mathcal{A} \cup \{C_1(x), C_2(x)\}.$ $\mathbf{The} \rightarrow \sqcup \textbf{-rule}$ Condition: \mathcal{A} contains $(C_1 \cup C_2)(x)$, but neither $C_1(x)$ nor $C_2(x)$. Action: $\mathcal{A}' = \mathcal{A} \cup \{C_1(x)\}, \mathcal{A}'' = \mathcal{A} \cup \{C_2(x)\}.$ $\mathbf{The} \to \exists \textbf{-rule}$ Condition: \mathcal{A} contains $(\exists R.C)(x)$, but there is no individual name z such that C(z) and R(x, z) are in \mathcal{A} . Action: $\mathcal{A}' = \mathcal{A} \cup \{C(y), R(x, y)\}$ where y is an individual name not occurring in \mathcal{A} . $\mathbf{The} \rightarrow \forall \textbf{-rule}$ Condition: \mathcal{A} contains $(\forall R.C)(x)$ and R(x, y), but it does not contain C(y). Action: $\mathcal{A}' = \mathcal{A} \cup C(y).$ The $\rightarrow \geq$ -rule Condition: \mathcal{A} contains $(\geq nR)(x)$, and there are no individual names $z_1 \dots z_n$ such that $R(x, z_i)$ $(1 \le i \le n)$ and $z_i \ne z_j$ $(1 \le i < j \le n)$ are contained in \mathcal{A} . Action: $\mathcal{A}' = \mathcal{A} \cup \{ R(x, y_i) \mid (1 \le i \le n) \} \cup \{ y_i \ne y_j \mid 1 \le i < j \le n \}, \text{ where }$ $y_1 \ldots y_n$ are distinct individual names not occurring in \mathcal{A} . The $\rightarrow \leq$ -rule

Condition: \mathcal{A} contains distinct individual names $y_1 \ldots y_n + 1$ such that $(\leq nR)(x)$ and $R(x, y_1) \ldots R(x, y_n + 1)$ are in \mathcal{A} , and $y_i \neq y_j$ is not in \mathcal{A} for some $i \leq j$. Action: For each pair y_i, y_j such that i > j and $y_i \neq y_j$ is not in \mathcal{A} , the ABox $\mathcal{A}_{i,j} = [y_i/y_j] \mathcal{A}$ is obtained from \mathcal{A} by replacing each occurrence of y_i by y_j .