Atomic concepts:

- Store
- Issuer
- Credential
- GovernmentAgency

Atomic roles:

- HasCredential
- IssuedBy
- ControlledBy

Definitions:

- UntrustedIssuer \equiv Issuer $\sqcap \neg \exists$ ControlledBy.GovernmentAgency
- TrustedIssuer $\equiv \neg$ UntrustedIssuer
- UntrustedCredential \equiv Credential $\sqcap \neg \exists$ IssuedBy.TrustedIssuer
- TrustedCredential \equiv Credential $\sqcap \exists$ IssuedBy.TrustedIssuer
- TrustedStore \equiv Store $\sqcap \exists$ HasCredential.TrustedCredential

Concept assertions:

- Store(amazon)
- Store(malroysShadyEmporium)
- Issuer(veriSign)
- Issuer(malroysShadyEmporium)
- GovernmentAgency(nsa)
- Credential(sslCertificate_amazon)
- Credential(sslCertificate_malroysShadyEmporium)

Role assertions:

- HasCredential(amazon, sslCertificate_amazon)
- HasCredential(malroysShadyEmporium, sslCertificate_malroysShadyEmporium)
- IssuedBy(sslCertificate_amazon, veriSign)
- IssuedBy(sslCertificate_malroysShadyEmporium, malroysShadyEmporium)
- ControlledBy(veriSign, nsa)

```
Algorithm Rules
The \(\rightarrow \sqcap\)-rule
Condition: \(\mathcal{A}\) contains \(\left(C_{1} \sqcap C_{2}\right)(x)\), but it does not contain both \(C_{1}(x)\) and
\(C_{2}(x)\).
Action: \(\mathcal{A}^{\prime}=\mathcal{A} \cup\left\{C_{1}(x), C_{2}(x)\right\}\).
The \(\rightarrow\) ப-rule
Condition: \(\mathcal{A}\) contains \(\left(C_{1} \cup C_{2}\right)(x)\), but neither \(C_{1}(x)\) nor \(C_{2}(x)\).
Action: \(\mathcal{A}^{\prime}=\mathcal{A} \cup\left\{C_{1}(x)\right\}, \mathcal{A}^{\prime \prime}=\mathcal{A} \cup\left\{C_{2}(x)\right\}\).
The \(\rightarrow \exists\)-rule
Condition: \(\mathcal{A}\) contains \((\exists R . C)(x)\), but there is no individual name \(z\) such that
\(C(z)\) and \(R(x, z)\) are in \(\mathcal{A}\).
Action: \(\mathcal{A}^{\prime}=\mathcal{A} \cup\{C(y), R(x, y)\}\) where \(y\) is an individual name not occurring
in \(\mathcal{A}\).
The \(\rightarrow \forall\)-rule
Condition: \(\mathcal{A}\) contains \((\forall R . C)(x)\) and \(R(x, y)\), but it does not contain \(C(y)\).
Action: \(\mathcal{A}^{\prime}=\mathcal{A} \cup C(y)\).
The \(\rightarrow \geq\)-rule
Condition: \(\mathcal{A}\) contains \((\geq n R)(x)\), and there are no individual names \(z_{1} \ldots z_{n}\)
such that \(R\left(x, z_{i}\right)(1 \leq i \leq n)\) and \(z_{i} \neq z_{j}(1 \leq i<j \leq n)\) are contained in \(\mathcal{A}\).
Action: \(\mathcal{A}^{\prime}=\mathcal{A} \cup\left\{R\left(x, y_{i}\right) \mid(1 \leq i \leq n)\right\} \cup\left\{y_{i} \neq y_{j} \mid 1 \leq i<j \leq n\right\}\), where
\(y_{1} \ldots y_{n}\) are distinct individual names not occurring in \(\mathcal{A}\).
The \(\rightarrow \leq\)-rule
Condition: \(\mathcal{A}\) contains distinct individual names \(y_{1} \ldots y_{n}+1\) such that \((\leq n R)(x)\)
and \(R\left(x, y_{1}\right) \ldots R\left(x, y_{n}+1\right)\) are in \(\mathcal{A}\), and \(y_{i} \neq y_{j}\) is not in \(\mathcal{A}\) for some \(i \leq j\).
Action: For each pair \(y_{i}, y_{j}\) such that \(i>j\) and \(y_{i} \neq y_{j}\) is not in \(\mathcal{A}\), the ABox
\(\mathcal{A}_{i, j}=\left[y_{i} / y_{j}\right] \mathcal{A}\) is obtained from \(\mathcal{A}\) by replacing each occurrence of \(y_{i}\) by \(y_{j}\).
```

