Semantic Web Foundations

Part 1: Modeling in Description Logic Peter Radics

Goal

- Goal of presentation:
 - Introduce building blocks of Description Logic
 - Provide starting point for modeling in Description Logic
 - Take away fear of difficult-sounding domain

History

- First knowledge representation systems in the 1970s
 - Focused on high level descriptions of the world for intelligent applications
- Approaches roughly divided into:
 - Logic-based formalisms
 - Non-logic-based representations

History (cont'd)

Non-logic-based representations

Frames

- Semantic Networks
- Rely on network-based representation structures
 - Nodes
 - Links

History (cont'd)

However:

"...early Semantic Networks suffered from the drawback that they did not have clear semantics."

History (cont'd)

- Core features of frames and semantic networks and first-order logic can provide clear semantics
- $\blacksquare \rightarrow \text{Description Logic (DL)}$

Aside: First-Order Logic

Example of a typical statement:

 $C \equiv x \quad y \quad R \quad a, x \quad R \quad a, y \quad M \quad x \quad \neg M \quad y$

Hard to read and interpret by non-mathematicians

DL: Concepts

DL is "object-centered modeling language"

Concepts (Classes, Nodes)

- Collections of Individuals with same properties
- Two default concepts (for reasoning):
 - Thing
 - Nothing
- Modeled as unary symbols in first-order logic

DL: Concepts (cont'd)

Concept definition:

- Provides both necessary and sufficient information for classifying individual
- Establishes logical equivalence

Acyclic

 Classification basic task in constructing terminology

DL: Relationships

- Relationships (Links, Slots, Roles)
 - Subsumption (is-a relationship)
 - Relationship shared with many other modeling languages (e.g. Entity-Relationship diagrams)
 - Used for building taxonomy of classes
 - However, DL allows for arbitrary (binary) relationships
 - Modeled as binary symbols in first-order logic

DL: T-Box

 Together, concepts and relationships form terminology (T-Box)

 Terminology models intensional knowledge (i.e. general domain knowledge)

DL: Individuals

Individuals

Instances (members) of classes

Convey assertional/extensional knowledge (i.e. problem specific knowledge about a domain)

□ Form A-Box

Aside: Expressiveness

- Do we have enough to define:
 - Concept "Male students"?
 - Concept "Friends and family"?
 - Concept "Non-smokers"?
 - Concept "Parents?"
 - Concept "Parents of only girls"?
 - Concept "Parents with three children"?
 - \rightarrow Additional building blocks needed

DL: Additional building blocks

- Added to increase expressiveness
 - Intersection of concepts (logical and)
 - Allows for:
 - MaleStudent = Male and Student
 - Union of concepts (logical or)
 - Allows for:
 - FriendsAndFamily = Friends or Family
 - Complement of concepts (logical not)
 - Allows for:
 - NonSmoker = not Smoker

DL: Additional building blocks

Existential quantification

- Allows for:
 - Parents = exists hasChild (a, x)
- Universal quantification
 - Allows for:
 - ParentsOfOnlyGirls = for all hasChild (a,x) Female(x)
- Cardinality restriction
 - Allows for
 - ParentsWithThreeChildren = (>=3 hasChild) and (<=3 hasChild)

Example

First-Order Logic example:

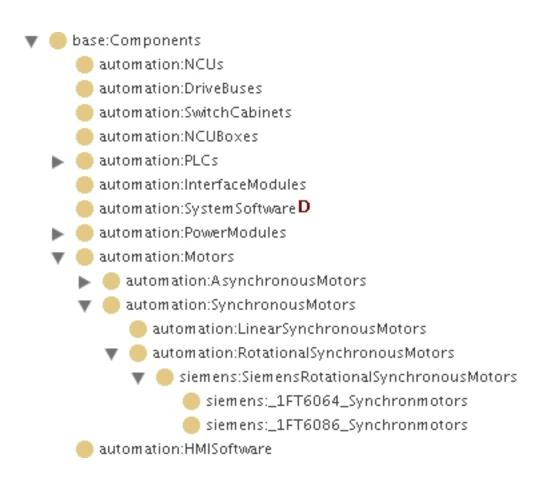
 $C \equiv x \quad y \quad R \quad a, x \quad R \quad a, y \quad M \quad x \quad \neg M \quad y$

Becomes:

ParentWithSonAndDaughter = hasChild.x and hasChild.y and x.Male and y.Female

DL: Modeling

- Knowledge base should clearly characterize the question it can answer.
- Model hast to be complete before reasoning can be applied.
- Expressiveness of DL language influences complexity of reasoning


DL: Making it user-friendly

Two approaches:

Providing syntax that is closer to natural language

 Providing graphical user interface for specifying relationships

Real-World examples

Real world examples

<base:BoltedClampConnection
rdf:ID="SmartflexClutchSize3_RotatingBall
Screw">

<base:hasPosition
rdf:resource="Pos_Connection_Clutch_Ba
IIScrew"/>

<base:isConnectionOfObject2

rdf:resource="#RotatingBallScrew"/> Usable Security – CS 6204 – Fall, 2009 – Dennis Kafura – Virginia Tech

Conclusion

- Description Logic is not "scary"
- Allows modeling of real world knowledge in vocabulary similar to natural language

Recommended Read

 Noy, McGuinnes: "Ontology Development 101: A Guide to Creating Your First Ontology", Tech Report, Knowledge Systems Laboratory, Stanford University, 2001

Discussion

- How does modeling in Description Logic apply to Usable Security?
- What are potential benefits?
- What are potential downfalls?

Outlook: Reasoning

- Open world assumption of DL
 - Example:
 - hasChild (lokaste, Oedipus)
 - hasChild (lokaste, Polyneikes)
 - hasChild (Oedipus, Polyneikes)
 - hasChild (Polyneikes, Thersandros)
 - Patricide (Oedipus) Patricide (Oedipus) Patricide (Oedipus)

Question: Does lokaste have a child that is a patricide and that itself has a child who is not a