Numerical Representation of a Genome

Reza Mazloom

October 2022

What we refer to as a genome sequence is a set of short nucleotide sequences, called reads, identified by a sequencing machine and then assembled into longer and more contiguous sequences called scaffolds. In this section we will introduce a numerical notation to represent the assembled genome. We will be using equation (1) as our representation for a genome assembly G.

$$
G=\left[\begin{array}{lllll}
g_{11} & g_{12} & g_{13} & \ldots & g_{1 n} \tag{1}\\
g_{21} & g_{22} & g_{23} & \ldots & g_{2 n} \\
g_{31} & g_{22} & g_{33} & \ldots & g_{3 n} \\
g_{41} & g_{42} & g_{43} & \ldots & g_{4 n}
\end{array}\right]
$$

In this matrix the length of the matrix (sequence) is represented as $\bar{G}=n$. Each column, also denoted by j below, represents the probability of the sequence having one of the four possible nucleotides at position j, also referred to as a base in the genome sequence. The subscript i represents each of the four nucleotide types, we formalize this such that:

$$
\begin{aligned}
& g_{1 j}=P\left(G_{j}=\mathbf{A} \text { denine }\right) \\
& g_{2 j}=P\left(G_{j}=\mathbf{C} \text { ytosine }\right) \\
& g_{3 j}=P\left(G_{j}=\mathbf{G} \text { uanine }\right) \\
& g_{4 j}=P\left(G_{j}=\mathbf{T} \text { hymine }\right)
\end{aligned}
$$

We expect, based on biological properties of a DNA, that each base j must have one of the four possible nucleotides Adenine, Cytosine, Guanine, or Thymine, referred to A, C, G, T in short. Therefore we can ascertain:

$$
\begin{equation*}
P\left(G_{j}\right)=\sum_{i=1}^{4} g_{i j}=1 \tag{2}
\end{equation*}
$$

Hence, in cases where the nucleotide at position j is an unknown nucleotide, denoted by " N " in the FASTA and FASTQ seqeunce formats, we will set all probabilities to an equal value, conveying uncertainty.

$$
\begin{equation*}
g_{1 j}=g_{2 j}=g_{3 j}=g_{4 j}=0.25 \Longleftrightarrow P\left(G_{j}=u \mathbf{N} k n o w n\right)=1 \tag{3}
\end{equation*}
$$

In the process of extracting the assembled genome G from the true biological genome sequence B each step of the process introduces uncertainties, possible errors, into the assembled sequence. Therefore, given G we can define $B=G-d(B, G)$ where $d(B, G)$ is the percentage of different nucleotides between the two sequences. if we define the matrix B similar to G, we can calculate the percentage difference as:

$$
\begin{equation*}
d(B, G)=1-\frac{\lfloor B \odot G\rceil}{\max (\bar{B}, \bar{G})}=1-\frac{\sum_{j=0}^{\max (\bar{B}, \bar{G})} \sum_{i=0}^{4}\left\lfloor b_{i j} g_{i j}\right\rceil}{\max (\bar{B}, \bar{G})} \tag{4}
\end{equation*}
$$

Where $B \odot G$ is the Hadamard (element-wise) product of the two matrices and $\left.\sum_{i=0}^{4} L_{i j} g_{i j}\right\rceil$ is the sum of the binary sequence denoting correct nucleotide identification where 0.5 is rounded (LT) up. Note that the smaller matrix (between B and G) is padded with zeros at the end to equalize the matrix sizes.

