Numerical Representation of a Genome

Reza Mazloom

October 2022

What we refer to as a genome sequence is a set of short nucleotide sequences, called reads, identified by a sequencing machine and then assembled into longer and more contiguous sequences called scaffolds. In this section we will introduce a numerical notation to represent the assembled genome. We will be using equation (1) as our representation for a genome assembly A.

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \tag{1}\\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{22} & a_{33} & \ldots & a_{3 n} \\
a_{41} & a_{42} & a_{43} & \ldots & a_{4 n}
\end{array}\right]
$$

In this matrix the length of the matrix (sequence) is represented as $\bar{A}=n$. Each column, also denoted by j below, represents the probability of the sequence having one of the four possible nucleotides at position j, also referred to as a base in the genome sequence. The subscript i represents each of the four nucleotide types, we formalize this such that:

$$
\begin{aligned}
a_{1 j} & =P\left(A_{j}=\mathbf{A} \text { denine }\right) \\
a_{2 j} & =P\left(A_{j}=\mathbf{C} \text { ytosine }\right) \\
a_{3 j} & =P\left(A_{j}=\mathbf{G} \text { uanine }\right) \\
a_{4 j} & =P\left(A_{j}=\mathbf{T} \text { hymine }\right)
\end{aligned}
$$

We expect, based on biological properties of a DNA, that each base j must have one of the four possible nucleotides Adenine, Cytosine, Guanine, or Thymine, referred to A, C, G, T in short. Therefore we can ascertain:

$$
\begin{equation*}
P\left(A_{j}\right)=\sum_{i=1}^{4} a_{i j}=1 \tag{2}
\end{equation*}
$$

Hence, in cases where the nucleotide at position j is an unknown nucleotide, denoted by " N " in the FASTA and FASTQ seqeunce formats, we will set all probabilities to an equal value, conveying uncertainty.

$$
\begin{equation*}
a_{1 j}=a_{2 j}=a_{3 j}=a_{4 j}=0.25 \Longleftrightarrow P\left(A_{j}=u \mathbf{N} \text { known }\right)=1 \tag{3}
\end{equation*}
$$

In the process of extracting the assembled genome A from the true biological genome sequence G each step of the process introduces uncertainties, possible errors, into the assembled sequence. Therefore, given A we can define $G=A-d(G, A)$ where $d(G, A)$ is the percentage of different nucleotides between the two sequences. if we define the matrix G similar to A, we can calculate the percentage difference as:

$$
\begin{equation*}
d(G, A)=1-\frac{\lfloor G \odot A\rceil}{\max (\bar{G}, \bar{A})}=1-\frac{\sum_{j=0}^{\max (\bar{G}, \bar{A})} \sum_{i=0}^{4}\left\lfloor g_{i j} a_{i j}\right\rceil}{\max (\bar{G}, \bar{A})} \tag{4}
\end{equation*}
$$

Where $G \odot A$ is the Hadamard (element-wise) product of the two matrices and $\sum_{i=0}^{4}\left\lfloor g_{i j} a_{i j}\right\rceil$ is a binary sequence denoting correct nucleotide identification where 0.5 is rounded up. Note that the smaller matrix is padded with zeros to equalize the matrix sizes.

