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Abstract. An undirected graph is viewed as a simplicial complex. The notion of 
a graph embedding of a guest graph in a host graph is generalized to the realm of 
simplicial maps. Dilation is redefined in this more general setting. Lower bounds on 
dilation for various guest and host graphs are considered. Of particular interest are 
graphs that have been proposed as communication networks for parallel architec- 
tures. Bhatt et al. provide a lower bound on dilation for embedding a planar guest 
graph in a butterfly host graph. Here, this lower bound is extended in two directions. 
First, a lower bound that applies to arbitrary guest graphs is derived, using tools from 
algebraic topology. Second, this lower bound is shown to apply to arbitrary host 
graphs through a new graph-theoretic measure, called bidecomposability. Bounds 
on the bidecomposability of the butterfly graph and of the k-dimensional torus are 
determined. As corollaries to the main lower-bound theorem, lower bounds are de- 
rived for embedding arbitrary planar graphs, genus g graphs, and k-dimensional 
meshes in a butterfly host graph. 

I. Introduction 

A (graph) embedding of one undirected graph G1 = (VI, El) (the guest) in another 
undirected graph G2 = (Vz, E2) (the host) is a one-to-one function p: VI --+ Ve together 
with an assignment (or routing) of each edge (u, v) 6 El to a path in G2 between p(u)  
and p (v). The length of the longest assigned path is called the dilation of the embedding. 

* This research was supported by National Science Foundation Grant CCR-9009953. A preliminary 
version of some of this research appears in "Lower Bounds for Graph Embeddings via Algebraic Topology 
(Extended Abstract)," Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and A rchitec- 
tures, 1993, pp. 311-317. 
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The expansion of the embedding is the ratio I V2J/lV~l. The congestion of the embedding 
is the maximum number of edges of G1 routed through any single edge of G2. 

Graph embeddings provide a standard framework for investigating the ability of one 
parallel network (represented by a graph G2) to emulate another network (represented 
by a graph G0.  An embedding of Gl in G2 provides a scheme for network G2 to 
simulate the processor-to-processor communication of network G~. The expansion of 
the embedding gives a (rough) ratio of the hardware costs of the two networks. The 
dilation and congestion of the embedding indicate the communication slowdown caused 
by simulation. These three are the primary cost measures studied in research on graph 
embeddings. Developing embeddings that are (asymptotically) optimal for one or more 
of these measures and proving lower bounds on these measures are important theoretical 
pursuits. 

Typically, Gl is selected from one infinite family of graphs 5t-1 (such as the family 
of two-dimensional meshes) that is to be emulated by G2 selected from another infinite 
family f2  (such as the family of hypercubes). The central issue is how well ~'2 can 
emulate f l ;  that is, given an arbitrary element G ~ 6 ~ ,  how costly is the best element 
of ~2 at emulating G ~ ? Here, we restrict attention to the cost measure of dilation. 

One thread of research in graph embeddings is to establish upper bounds on dilation 
by constructing explicit embeddings of one family of graphs into another. Greenberg 
et al. [8] show that the FFT graph is a subgraph of the smallest hypercube that can 
contain it. They further show that there is an embedding of each butterfly and of each 
cube-connected cycles graph in the hypercube with dilation at most 2. Annexstein et al. 
[I] give an embedding of each butterfly in the smallest de Bruijn graph that can hold 
it with dilation logarithmic in the diameter of the host graph. Baumslag et al. [2] give 
an embedding of each de Bruijn graph in the smallest hypercube that can hold it with 
dilation about two-fifths of the diameter of the host graph. Bettayeb et al. [3], Chan and 
Chin [7], and Chan [6] give small-dilation embeddings of grids of various dimensions 
in the smallest hypercubes that can hold them. 

A second thread of research is to establish nonconstant lower bounds on dilation, 
hence revealing an incompatibility in communication capabilities between two networks. 
Lower-bound arguments typically rely on the graph-theoretic measures of diameter, 
degree, and separator size. For example, no bounded-degree network can emulate the 
n-dimensional hypercube with less than f2 (log n) dilation. 

Bhatt et al. [5], [4] develop the most sophisticated lower-bound argument to date for 
the case of embedding a planar guest graph in a butterfly. A set V C V is a separator for 
a graph G = (V, E) if every connected component of G - f" contains at most 121VI/3] 
vertices. The separator size Y~ (G) o f  G is the minimum cardinality of any separator of G. 
Note that every graph has a separator of cardinality [1V I/3j and that every planar graph 
of bounded degree has separator size O (I VI1/2). Suppose G is a connected planar graph 
with separator size E (G). Further suppose that G has a planar embedding in which the 
largest interior face has size qb (G) (if G is a tree, take ~ (G) = 2). Bhatt et al. show that 
any embedding of G in a butterfly has dilation 

( log E (G) "~ 
/ .  
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As corollaries, they derive lower bounds for embedding the X-tree and the two-dimensional 
mesh in the butterfly. 

In this paper we generalize this lower bound in two directions. In the first direction 
we extend the lower bound to arbitrary guest graphs. The lower-bound argument of Bhatt 
et al. has a strong topological flavor, so we generalize their argument through the use 
of algebraic topology. Their notion of a face-graph is replaced by the more general one 
of a simplicial complex. Their notion of connectivity for  a face-graph is replaced by 
that of the connectivity of a simplicial complex. A graph embedding is now a simplicial 
map. The notion of dilation is generalized to simplicial maps by considering powers 
of the simplicial complex of the guest graph. Their argument involving the notion of 
a d-quasi-connected graph can be seen to be a contractibility argument in the context 
of a topological space; the contractibility argument turns out to apply to a power of the 
simplicial complex of the guest graph. Their notion of an S-boundary generalizes as 
one of the simplicial complexes that occur in the Mayer-Vietoris exact sequence (the 
complex A in Corollary 7). The invocation of the Mayer-Vietoris sequence leads to 
additional generality, even though we use only the zero- and one-dimensional homology 
groups in that sequence. There remains further room for generalization by going to 
higher-dimensional homology groups. Our generalization of the lower-bound argument 
of Bhatt et al. results in a very general lower-bound theorem for the dilation of simplicial 
maps. As one corollary of this theorem, we obtain a more general lower bound than Bhatt 
et al. for planar guest graphs whose face sizes are somewhat nonuniform. Suppose G is 
a planar graph with separator size Z(G)  and with a planar embedding having only A 
interior faces with size greater than (.  We show that any embedding of G in a butterfly 
has dilation 

/ E ( G ) ' ~ .  
/~ - j  log 
\ 

Thus if G has only a few large faces, a good lower bound on dilation results. 
The second direction is to show that this lower-bound argument applies to arbitrary 

host graphs. We define a new graph-theoretic measure, bidecomposability, and show that 
the lower-bound argument applies to an arbitrary host graph based on its bidecompos- 
ability. We give an upper bound on the bidecomposability of butterfly graphs and upper 
and lower bounds on the bidecomposability of the k-dimensional torus. We conjecture 
that the bidecomposability of the de Bruijn graph is close enough to the bidecompos- 
ability of the butterfly to prove a conjecture of Bhatt et al. that the n x n mesh requires 
f2 (log n) dilation in any embedding in a de Bruijn graph; their best lower bound for 
dilation is f2 (log log n). 

The remainder of this paper consists of six sections. Section 2 defines formally sev- 
eral proposed communication networks. Section 3 introduces simplicial complexes and 
simplicial maps as the topological setting for graph embeddings. Section 4 defines bide- 
composability and bounds the bidecomposability of the butterfly and of the k-dimensional 
torus. In Section 5 we prove our main result: a lower bound on dilation for arbitrary guest 
and host graphs. As corollaries to the main result, in Section 6 we derive lower bounds 
for embedding arbitrary planar graphs, genus g graphs, and k-dimensional meshes in a 
butterfly host graph. Section 7 concludes with some interesting open problems. 



54 L.S. Heath 

2. Network Definitions 

See [ 10] for greater details on the networks defined in this section. Let Zn denote the set 
{0, 1 . . . . .  n - l }, the integers modulo n. Elements of  Z2 are bits.  Elements of  Z~ are bit  

s t r ings  of l eng th  n. The complement of  a bit b is denoted/~. 
The n - d i m e n s i o n a l  but ter f ly  13(n) has vertex set Z~ x Z~ and two kinds of  edges: 

I. A s t ra igh t  edge  connects each (i, bob1 • . .  b~_ j )  to (i + 1 mod n,  bobt •. • b n - t ) .  

2. A cross  edge  connects each (i, bob t • • • b i  . .  • b~_ j ) to (i + l mod n, bob t • • • bi • • • 

b n - l ) .  

B(n) has n2 n vertices and n2 ~+1 edges. For each vertex v = (i, b) ofB(n) ,  i is the level  of  
v, and b is t h e p o s i t i o n - w i t h i n - l e v e l  ( P W L )  of v. The set of  vertices Vi = {(i, b) I b ~ Z~ } 
is the ith level  of B(n). 

T h e  t w o - d i m e n s i o n a l  n x n m e s h  A 4 ( n )  has vertex set Zn x Zn and an edge between 
(it, jr)  and (i2, j2) if [il - i21 + I jr  - j21 = 1..A4 (n) has n 2 vertices and 2 n ( n  - 1) edges. 
The k - d i m e n s i o n a l  m e s h  .Air(k, n)  has vertex set Z~ and an edge between two vertices 
vl and v2 if Vl and v2 are identical in k - 1 coordinates and differ by 1 in the remaining 
coordinate. 

The n x n torus  T ( n )  has vertex set X n x Zn and an edge between (it, jr)  and 

(ix, j2): 

1. I f i l  = i2 a n d j l  -- j24-  1 m o d n .  
2. I f j j  = j e a n d i t - - i 2 4 - 1  m o d n .  

T ( n )  has n 2 vertices and 2n 2 edges. The k - d i m e n s i o n a l  torus  T ( k ,  n )  has vertex set X*~ 
and an edge between two vertices v~ and v2 if vj and v2 are identical in k - 1 coordinates 
and differ by 1 modulo n in the remaining coordinate. 

3. Graph Embeddings as Simplicial Maps 

This section defines the necessary concepts from algebraic topology and quotes the 
necessary results. Among numerous others, the book by Munkres [12] is a standard 
introduction to algebraic topology. As we have no need for infinite dimensions or com- 
plexes, those generalities are not included in the definitions we give or the results we 
quote. 

]I~ n is n-dimensional Euclidean space. Suppose A = {a0, al . . . . .  at} C ]I~ n is an 
affinely independent set of  points of  cardinality r + 1 < n + 1. T h e  r - d i m e n s i o n a l  s i m p l e x  

tr (A) is the convex hull of  A in ~n. Each a i  is a ver tex  of  ~r (A). If  A'  C A is a nonempty 
subset of  A of  cardinality r '  + 1, then ~r(A') is an r ' - d i m e n s i o n a l f a c e  of a (A) .  Each 
one-dimensional face is an edge.  

A s imp l i c ia l  c o m p l e x  (or just c o m p l e x )  K in ~"  is a finite set of  simplices such that: 

1. IftT(A) ~ K and 0 # A' C A, then ~r(A') ~ K. 
2. I fcr (Ai) ,  ty(A2) ~ K and a ( A i )  N ~r(A2) # 0, then Al fq A2 -~ 0 and ~r(Al) A 

or(A2) = ~(At  fq A2). 

By the second condition, any two intersecting simplices intersect only in a common face. 
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If k is a simplicial complex that is a subset of the complex K, then/~ is a subcomplex 
of K. The subcomplex of K consisting of simplices in K of dimension at most r is the 
r-skeleton of K, denoted K ~r). The singleton sets in K ~°) contain exactly the vertices of 
K; let V (K) = Iv I { v } • K~°~ } denote the set of vertices of K. The size of a complex 
K is the cardinality of V(K). If 0 ~ 9 C V(K),  the subcomplex induced by 9 is 

ASC(K, V) = {~r(A) • K [ a  C 9}. 

If/~ is a subcomplex of K, then the difference K - K  is the subcomplex .ASC (K, V (K) - 
V(/~)) induced by vertices in K but not in /~. Suppose K is a complex of size n. A 
separator of K is a subcomplex/~ of size less than n such that every component of K - k 
has size at most r2n/3]. The separator size E (K) of K is the minimum cardinality of 
any separator of K. 

The union of the simplices of K is a topological subspace of R n called the polytope 
of K and denoted IK[. (To a given polytope P, there correspond an infinite number 
of simplicial complexes K such that P = I g l .  Each such K is a triangulation of P. 
For our purposes, there is always a fixed triangulation associated with a polytope.) The 
components of IKI are its connected components, in the topological sense. We freely 
apply the topological notion of components, as well as other topological notions, to K 
with the understanding that we are really talking about its polytope [K 1. 

Suppose that K and L are simplicial complexes and that f :  V(K) ~ V(L) is a 
function between vertex sets. If whenever or(A) • K we have or(f (A)) • L, then f is 
called a simplicial map from K to L. (Note that if f is not one-to-one, then the dimension 
of ~r ( f (A) )  may be strictly less than the dimension of ~r (A).) Such an f can be extended 
to a continuous function g: IK[ --+ ILl such that g is linear when restricted to each 
simplex of K. (In the standard use of simplicial map found in [12], it is the induced 
continuous function g that is the simplicial map. As we concentrate on the combinatorial 
function f ,  we call f the simplicial map.) A simplicial map f induces a function from 
K to L, which we also call f .  

An abstract simplicial complex S on a finite set V is a set of nonempty subsets of 
V such that whenever A • S and 0 ~ A' C A, then A' C S and such that {v} • S, for 
all v • V. The dimension of A • S is IAI - 1. A subcomplex of S is a subset S '  C $ 
such that S '  is an abstract simplicial complex. 

For every simplicial complex K and every bijection 0: KC°) __+ V onto a set V, there 
is an abstract simplicial complex S on V: for every simplex ~r (A) • K, the corresponding 
set is O(A) • S. K is called a geometric realization of S. 

Proposition 1 [ 12]. Every abstract simplicial complex has a geometric realization. 

Thus, every abstract simplicial complex may be thought of as a simplicial complex by 
choosing a geometric realization K for it and it also has an associated topological space, 
the polytope I KI. We assume that, for every abstract simplicial complex S, a canonical 
choice for its geometric realization, denoted [S], has been made. The corresponding 
polytope is denoted ISI. As a consequence of Proposition 1, we may freely apply the 
terminology of complexes and polytopes to an abstract simplicial complex S when we 
are really talking about [S] or ISI. 

A simple undirected graph G = (V, E) can be viewed alternately as the abstract 
simplicial complex S(G) = {{v} I v • V) U E, as the corresponding geometric realiza- 
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tion [S(G)], or as the polytope IS(G)I, depending on the circumstances. We generally 
shorten the notation for the geometric realization to [G] and for the polytope to I a l .  

We view a graph embedding as a simplicial map of simplicial complexes. If u, v ~ V, 
define Do (u, v) to be the length of a shortest path between u and v in G or +cx~ if there 
is no such path in G. If p > 1, the pthpowerofG = (V, E), denoted G p, is a graph with 
vertex set V and edge set { (u, v) I De (u, v) < p}. A graph embedding ofG l = (Vl, El ) 
in G2 = (V2, E2) of dilation 8 is an injective simplicial map 0: [G~] ~ [G~]. In other 
words, G 1 is homeomorphic to a subcomplex of G~. This new definition ignores issues 
related to routing within G2, in particular, congestion. 

Now associate with each graph a sequence of complexes of ever higher dimension. 
The r-dimensional (abstract simplicial) complex of G, denoted S(G,  r), is the abstract 
simplicial complex each of whose simplices is a nonempty set of vertices that occurs 
on some paths of length < r. More precisely, if P = v0, Vl . . . . .  vk is a (not necessarily 
simple) path in G of length k and ifk < r, then every nonempty subset of {v0, Vl . . . . .  ok} 
is in S(G,  r). Note that the l-skeleton of S(G,  r) is G r. The following is an obvious 
observation. 

Proposition 2. If  G l has a dilation 8 graph embedding in G 2, then there is an injective 
simplicial map from [S(G~, k)] to [S(G2, k~)],for all k > 1. 

(Note that this is almost describing a functor from the category of graphs and graph 
embeddings to the category of simplicial complexes and simplicial maps, but it is not 
quite functorial due to the dilation 8.) A slightly different observation is the following, 
which Bhatt et al. implicitly use in their lower-bound proof (see Corollary 1 3). 

Proposition 3. I f  G l has a dilation 8 graph embedding in G2 and K is a subcomplex 
of  [S (Gl ,k ) ] , for  some k >__ 1, then there is an injective simplicial map from K to 
[8(G~, k)]. 

For an arbitrary abstract simplicial complex 7~, we define the r-dimensional complex 
of  7¢, denoted 8(7¢, r), exactly as for a graph G. A dilation 8 embedding of one abstract 
simplicial complex Rj  in another abstract simplicial complex 7¢2 is an injective simplicial 
map from [7~1] to [S(R2, 8)]. These definitions give an even more general setting for 
graph embeddings. 

Homology is a functor from some category of topological spaces (in our case, 
triangulated polytopes with simplicial maps) to the category of sequences of abelian 
groups with sequences of group homomorphisms, the sequences being indexed by the 
nonnegative integers. We actually use reduced homology because it simplifies the proof 
of Corollary 7. The standard homology groups of a topological space are the same as 
its reduced homology groups, except in dimension 0, where the rank of the reduced 
homology group is one less than the rank of the homology group. In particular, if X is 
a polytope, then the ith reduced homology group of X, denoted Hi (X), is an abelian 
group of finite rank and is denoted/t i  (X). Roughly speaking, /~i (X) gives information 
about cycles formed by the/-dimensional simplices of X. In particular, if X contains 
no/-dimensional simplex, then Hi (X) = 0. In dimension 0, reduced homology directly 
gives the number of components of a polytope. 

Proposition 4 [ 1 2]. Suppose X is a polytope that has k components. Then 171o ( X ) is a 
free abelian group of  rank k - 1. 
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By slight abuse of notation, we write a free abelian group as being equal to (rather than 
merely isomorphic to) a direct sum of copies of Z. The homology group in the last 
proposition is then 

& ( x )  = z .  
k-I 

In particular,/40(X) ---- 0 if X is connected. 
The first reduced homology group of a graph gives its cycle space. (See p. 38 of 

[9].) 

Proposition 5 [ 1 1, Theorem 3.4]. Suppose G = ( V, E)  is a graph with s components.  

Then HI(IGI) is a free  abelian group o f  rank IEI - IVI + s. 

This is all homology tells us about a graph as a topological space unless we derive 
additional complexes from a graph, such as the r-dimensional complex of a graph that 
we defined earlier. 

To continue the definitions from algebraic topology, let 
(Pi-I ~Oi ) ~gi+I 

. . .  ~i 2) A i - t  ~ A i  Ai+l ~ " ' "  

be a (possibly infinite) sequence of abelian groups and group homomorphisms. The 
sequence is exact at Ai if the image of ~pi_t equals the kernel of ~oi. The sequence is an 
exact sequence if it is exact at every A i .  One of the many exact sequences that arises in 
algebraic topology is the Mayer-Vietoris sequence [12]. 

Theorem 6 (Mayer-Vietoris Sequence). Let K be a complex with subcomplexes Ki 

and K2 such that K = Kt U K2. Let A = Kl f3 K2. Then there is an infinite exact 
sequence 

• ..---~ ~ I p ( a ) ~  ISIe(K,)~3 l ~ p ( K 2 ) ~  I S l e ( K ) ~  I S l p _ t ( Z ) - - - ~ . . . .  

This corollary bounds the number of components in the intersection of subcomplexes. 

Corollary 7. Let K be a connected complex with connected subcomplexes Kl and K2 
such that K = Ki 0 K2. Let A = Ki fq K2. Then the number o f  components in A is at  
most  rank/41 (K) + 1. 

Proof. Since K, Kl, and K2 are connected, 

/to(K) = /4o(KI) = /-)o(K2) = 0. 

This gives us the following subsequence of the Mayer-Vietoris sequence: 

HI(K) f /t0(A) ~ /40(KI) • /~0(K2)  = 0. 

Since g is trivial, its kernel is /~0(A). Because the sequence is exact at /~0(A), f is 
surjective. It follows that rank/40(A) < rank/41 (K). By Proposition 4, the number of 
components of A is rank H0(A) + 1, which is at most rank/11 (K) + 1, as desired. [] 

This corollary is the important result used in proving the central lower bound, Theo- 
rem 1 1. 
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4. Bidecomposability 

This section defines the measure of  the bidecomposability of  a graph. The bidecompos- 
ability of  the butterfly network and of  the k-dimensional torus are derived. 

The motivation for the upcoming definition of  bidecomposability originates in the 
observation by Bhatt et al. that if a subgraph of the butterfly induced by the vertices of  
consecutive levels is taken, then that subgraph has numerous components, each rather 
small. The observation remains valid even if the subgraph is of  a power of the butterfly, 
as long as the power is a bit smaller than the diameter of  the butterfly. 

A set of  vertices V is bicolored blue and red if V is partitioned into two nonempty 
sets Vblue and Vred. If  K is a complex whose vertex set is bicolored, then Kblue is the 
subcomplex of  K induced on Vblue, and Kred is the subcomplex of  K induced on Vr~ • 
Let f :  Z + --+ Z + be an increasing function defined on the positive integers. A graph 
G = (V, E) is f(p)-bidecomposable if and only if, for each p > 1, there is a bicoloring 
of  V such that no component of  (GP)blue or of  (GP)red has more than f ( p )  vertices; 
alternately, every component of  S(G,  P)blue and of  S(G,  P)red contains at most f ( p )  
vertices. 

As an example, we show an upper bound on the bidecomposability of  the butterfly. 

Theorem 8 [4]. The butterfly 13(m) is 5p25~-bidecomposable. 

Proof. I fm < 4p,  then the size of  B(m) is at most 4p24p and the result follows trivially. 
Henceforth, assume m > 4p.  Write m = 4pq + r, where 0 < r < 4p.  Recall that 

Vi is the ith level of/3(m).  Partition the m levels of /3(m) into q units consisting of  4p  
consecutive levels each and one additional unit consisting of the last r levels. In each 
unit of  4p  levels, color the first 2p  levels blue and the second 2p levels red. Color the 
last r levels first half red, then the second half blue. More precisely, for 0 < i < q - 1 
and 0 < j < 2p - 1, color Vapi+ j blue and color V4pi+2p+j l~d; for 0 < j < Fr/2] -- 1, 
color V4pq+j red; for [r/21 < j < r - 1, color V4pq+j blue. 

Consider the components of  (/3 (m) P)red. The greatest number of  consecutive level s 
of  B(m) p in (•(m)P)red is 2p + [r/27 < 4p. Moreover, there is a gap of  at least 2p  blue 
levels between blocks of  consecutive red levels. Hence the vertices in any component of  
(13(m)P)red are confined to at most 4p  consecutive levels of  ]3(m) p. The same statement 
holds for any component of  (/3(m)P)blue. A path of  all red, respectively blue, vertices 
in 13(m) p between two red, respectively blue, vertices can involve changes to at most 
5p of  the bit positions in the PWL string. Hence there are at most 4p25p vertices in any 
component, implying the desired result. [] 

To make a comparison, we show the following bounds on the bidecomposability of  
the toms. 

Theorem 9. The torus T(n)  is 2pn-bidecomposable. Suppose f is a function such 
that, for some p > 1, we have f (p) < n. Then 7- (n) is not f (p)-bidecomposable. 

Proof. To show that 7"(n) is 2pn-bidecomposable,  let n ---- pq + r, where 0 < r < p. 
Color vertex (i, j )  of  T(n)  red, if l i /pJ is even, blue, otherwise. It is easy to verify that 
this is a bicoloring of  V such that no component of  T(n)~lue or of  T(n)P~d has more 
than 2pn vertices. Hence T(n)  is 2pn-bidecomposable.  
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To show the lower bound, we shift to a topological argument that assumes more 
familiarity with topology than is necessary elsewhere in the paper. The reader without 
the necessary background may skip the remainder of the proof. Embed T(n)  in a surface 
T known also as a torus (a compact surface of genus 1). Without loss of generality, we 
think of each face of this embedding as a unit square. Triangulate each square by adding 
a new vertex in the center of each square adjacent to all four vertices of the square. 
This triangulation gives a simplicial complex whose polytope is T. For each vertex 
v E V, define the square neighborhood S(v) to be the simplicial complex consisting of 
all simplices in the triangulation that contain v (generally known as the closed star of 
v [ 12]). Note that each S(v) consists of eight triangles together with their faces and has 
a polytope that is a square. Also, if u, v E V belong to the same square of T(n) ,  then 
~(u) and S(v) intersect. 

The homology group /41 (T) is a free abelian group of rank 2, generated by two 
cycles of T, one going around the torus in each of the two directions. Neither of these 
cycles is homotopic to a point. On the other hand, any cycle homotopic to a point in T 
is homologous to 0 in/~1 (T). 

Let (Vblue, V,~d ) be any bicoloring of V. Define 

Kl = U ~(v) 
v ~ Vblue 

and 

K2 = U S(v). 
v ~ Vred 

By construction, KI U K2 = T, and any point in KI O K2 is in the square neighborhood 
of a vertex in Vbtue as well as in the square neighborhood of a vertex in Vred. 

We claim that there is a cycle in either/41 (Kj) or/11 (K2) that is not homologous 
to 0 in HI (T) (call such a cycle a nonzero cycle). To prove this claim, we first show, 
via a substitution argument, that we may assume that no component of K~ or K2 is 
contractible (to a point). Suppose a component L of Kl is contractible. Then K2 U L 
contains a nonzero cycle if and only if K 2 contains a nonzero cycle. Hence, replacing 
K~ by K1 - L and Kz by K2 CJ L yields a pair of subcomplexes with the same nonzero 
cycles as KI and K2 (up to homology). Continuing the process a finite number of steps 
yields a pair of subcomplexes K I and K~ such that no component of K~ or of K~ is 
contractible and such that K I and K~ have the same nonzero cycles as K~ and K2. 

Since no component of K I or of K~ is contractible, any cycle in K I A K~ that is 

not homologous to zero in/41 ( K I n  K.~) must be a nonzero cycle. There are two cases 

to consider. In the first case, rank/41 (K'l 71 K~) > 0. Hence both K'  1 and K~ contain 

a nonzero cycle. In the second case, rank/41 (K~ fq K~) = 0. Consider this part of the 
Mayer-Vietoris exact sequence: 

H2(K' 10 K~) -~ H2(KI) ~)/~2(K2) --+ H2(T ) + /'tl ( K I N  K~) ~- 0, 

where/~2(T) = Z (see [12]). Clearly, K I N K~ ¢ T (since Hi (KI A K~) = 0 -7/:/tj (T)), 
so/t2(K~ N K~) = 0. By exactness, we get that/12(K~) = Z or H2(K~) = Z. This can 
happen only if K '  l = T or K~ = T. 
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In both cases, either Kl or K2 contains at least one nontrivial loop (a closed topo- 
logical path not homotopic in T to a point; see [13]), call it P. Either P passes through 
each column of T(n)  or through each row of 'T(n). Without loss of generality, assume 
P passes through each row of T(n).  Then there is a monochromatic cycle C in T(n)  2 
that contains at least one vertex in each row. Then the component of T(n)  p of that color 
containing C has at least n vertices. This establishes the lower bound on bidecompos- 
ability. [] 

By adapting the previous proof to the case of the k-dimensional torus, the following 
generalization is obtained. 

Theorem 10. The torus T(n ,  k) is 2pnk-l-bidecomposable. Suppose f is a func- 
tion such that, for some p > k, we have f ( p )  < n k-1. Then T(n ,  k) is not f ( p ) -  
bidecomposable. 

Comparing Theorems 8 and 10, we see that the bidecomposability of the butterfly 
does not depend on its size, while the bidecomposability of the torus does depend on its 
size. As we consider the lower bounds that follow from Theorem 11, we find that the 
lower bounds established for the torus are not strong for this very reason. 

5. Central Lower Bound 

The following theorem is the central lower bound. 

Theorem 11. Suppose G2 = (V2, E2) is f(p)-bidecomposable and GI = (Vj, Et) 
is a connected graph with separator size E(GI) .  Suppose that ( >_ 1 and that rank 
/-)1 ([S(Gj,  ()])  = A. Let 0 be any graph embedding of  G1 in G2, and let its dilation be 
8. Then the following bound holds: 

Z(G~) < (A + l ) f ( ( 8 ) .  

Proof To prove this theorem, we utilize some additional notation. If v is a vertex of a 
complex S, the neighborhood of v in S is the following set of vertices 

F ( v , S ) =  U {u I { u J ~ A  (°)}-{v}.  
vEAES 

If ~' is a subset of the vertex set of S, the neighborhood of ~" in S is the following set of 
vertices: 

r ( f ' ,  s )  = U r(v, 8) - 9. 

Letn  = IVll, and let p = (8. Let K = [S(Gt,  ()]. Clearly, Z (Gl )  < Z(K) .  We 
actually show that Z ( K )  < (A + 1) f (p) .  The existence of 0 implies the existence of 
an injective simplicial map from K to [S(G2, p)], which we also call 0. Bicolor V: to 
witness the f(p)-bidecomposabili ty of G2. The inverse 0 - l  induces a bicoloring of VI; 
clearly, the components of Kmue and Kr~d have size at most f ( p ) .  
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Our intention is to find a triple (KI, K2, A) of subcomplexes of K such that KI  and 
K2 are connected, K = Ki U K2, and A = Kl N K2 is a monochromatic separator of 
K. Applying Corollary 7, A has at most A + 1 components. Since A is monochromatic, 
each component has size at most f ( p ) ,  for a total size of at most (A + 1 ) f (p ) .  Since A 
is a separator of K, A has size at least E (K)  _< (A + 1) f (p) .  From this inequality, the 
theorem follows. 

The proof constructs inductively a sequence 

(L0, R0, A0), (LI, RI, Al) . . . . .  (Lk, Rk, A~) 

of triples of subcomplexes of K until one triple fulfills the intention. To construct the 
first triple, choose an arbitrary v 6 (Vl)blue. Let L0 be the component of the subcomplex 
Kb~ue that contains v. Let R0 = K, and let A0 = L0 = L0 n Ro. Clearly, Lo and R0 are 
connected. If the components of K - A0 are of size at most [2n/3], then A0 = L0 n R0 is a 
monochromatic separator of G1, and we are done. Otherwise, the construction continues 
as follows. 

For purposes of induction, assume that we have constructed a triple (Li, Ri, Ai) that 
satisfies the following properties: 

1. Li and Ri are connected. 
2. K = L i U R i .  
3. Ai : Li N R i. 
4. AI °) is monochromatic. 
5. I" (Ai ,  K )  contains no vertices the color of Ai (the neighborhood of Ai is monochro- 

matic, of the other color). 
6. The size of the largest component of R i -- Ai exceeds [-2n/3]. 

To begin the induction, we easily verify that the triple (L0, R0, A0) satisfies these 
properties. 

We now construct (L/+l, Ri+l,  Ai+l) .  Without loss of generality, assume that AI °) 

is blue (Property 4). Let ,~ be the component of  Ri -- Ai that has size exceeding [2n/3] 
(Property 6). By Property 5, [ ' (Ai ,  Ri)  is red. Let Ai+l be the union of the components of 
(Ri)red that intersect F ( A  i , Ri).  Let Ri+l : Ri. Let Li+ 1 = .ASC(K, V ( K ) -  V(Ri+I ) U  

V(Ai+l)). Then Ai+l = Li+l n Ri+l. 
Firstwe show that the triple (Li+l, Ri+l,  Ai+l ) satisfies Properties 1-5. (Property 1 ) 

Ri+l : Ri is connected since R i is a component of Ri. By assumption, Li is connected. 
Any vertex in Li+l - Li is connected to a component of Ai by a path in L~+~ and hence 
by a path to Li. We conclude that Li+l is connected. (Property 2) Since Ai+ 1 w a s  chosen 
such that there is no 1-simplex (edge) having one vertex in Li+~ - Ai+l and another 
vertex in Ri+l - Ai+l,  any one- or higher-dimensional simplex has all of its vertices in 
Li+l o r  in Ri+l. Hence, every simplex of K is either in Li+ 1 o r  in Ri+l. (Property 3) 
By the definition of Ai+l,  every simplex in Ai is in both Li and Ri. (Property 4) Since 
Ai is chosen to be red, A~ °) is monochromatic. (Property 5) As Ai+j is the union of 

components of (/~i)red, its neighbors must all be blue. 
If  no component of Ri+l - Ai+l has size greater than V2n/3], we claim that Ai+l is a 

separator for K. The components of K - Ai+l consist of the components of Li+l Ai+~ 
together with the components of Ri+l -- Ai+l.  Each of the components of Li+l -- Ai+! has 
size less than [n/3J, since the size of Ri+l exceeds [2n/3]. Hence, Ai+l is a separator 
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for K. If  some component  of  Ri+l  - A i + l  has size that exceeds [2n /3] ,  then Property 6 
holds for the triple (Li+I, Ri+I, Ai+I). 

Since 

R 0 ~ R j  ~D..-;~DRi, 

the induction must end with some Ak being the desired monochromatic  separator. []  

6. Lower  Bounds  for the Butterfly 

The following corollary of the central theorem is our most general lower bound on 
embeddings in the butterfly graph. 

Corollary 12. Suppose G is a connected graph with separator size E ( G ) .  Suppose 
that ~ > 1 and that rank/-)~([S(G, ~)]) = A. Let 0 be any graph embedding of  G in 
/3(m), and let its dilation be 8. Then the dilation of  O is at least 

E(G)  
> (8( ) -1  l°g2 A + 1' 

Proof From Theorems 8 and 11, we have 

E ( G )  < (A + i)5(~25¢~. 

Let x = 5(8.  Algebra  shows 

E ( G )  
- -  < x + log 2 x. l°g2 A + 1 - 

Since ~6 > 1, we have that x > 5. First suppose x = 5. Then x + log 2 x = 5 + log 2 5 < 
8 = (8)x.  Now suppose x > 5. Since (log 2 x ) / x  is a decreasing function for x > 5, we 

have tha tx  + log2x < (8)x.  For all x > 5, we obtain 

E ( G )  < ( ~ ) x  = 8(~.  
l°g2 A + 1 - 

The desired bound on ~ follows. [] 

The next corollary is the lower bound of  Bhatt et al. [4]. 

Corollary 13 [4]. Suppose G is a connected planar graph with separator size E (G) 
such that G has a planar embedding with no interior face larger than ~ (G) .  Then any 
embedding of  G in 13(m) has dilation at least 

log 2 E ( G )  

8(@(G) - 1)" 

Proof We construct from G a two-dimensional  simplicial  complex embedded in the 
plane. Consider  a face f of  the planar embedding of  G. If  no vertex of  f appears 
more than once on the boundary of  f ,  then place a new vertex vf in f ,  and add an 
edge from vf to every vertex of  f .  The result is that f is triangulated. If  one or more 
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vertices of  f appear more than once on the boundary of f ,  it is necessary to add more 
than one new vertex in f so that it can be triangulated. Call the resulting planar graph 
with only triangular interior faces iS. For each triangular interior face of  (~, add the 
corresponding 2-simplex to S((~),  ultimately obtaining a complex K. (For the purpose 
of  applying Corollary 12, we take ( ----- qb(G) - i.) K is a two-dimensional simplicial 
complex embedded in the plane. Since every interior face of  t~ is in K as a 2-simplex, 
every loop in K can be continuously deformed to (is homotopic to) a point. Hence K is 
contractible, and/')1 (K)  = 0 [12, p. 108]. Since each face of  G is covered by a simplex in 
$(G,  Cb(G) - 1), K is a subcomplex o f S ( G ,  ~ ( G )  - 1) with the same vertex set. Hence, 
/)l  (S (G,  q~ (G) - 1)) = 0. This corollary follows by an application of Corollary 12. [] 

By a similar but more elaborate argument, we can prove this more general corollary. 

Coro l l a ry  14. Suppose G is a connected planar graph with separator size ~ ( G) such 
that G has a planar embedding with no more than A interior faces larger than ~. Then 
any embedding of  G in 13(m) has dilation at least 

E(G) 
(8(~ -- 1)) - l  log 2 A + 1" 

Proof Again, we construct from G a two-dimensional simplicial complex embedded 
in the plane. Consider any face f of  the planar embedding of G with size no greater 
than ~'. Triangulate each such face f as in the proof  of  Corollary 13. Call the resulting 
planar graph G. For each triangular interior face of  (~, add the corresponding 2-simplex 
to S ( G ) ,  ultimately obtaining a complex K. K is a two-dimensional simplicial complex 
embedded in the plane, but it may contain as many as A holes. A loop around one or 
more such holes is not homotopic to a point. Hence, we can only deduce this bound: 

r a n k / q l ( S ( K ,  ~" -- 1)) _< A. 

Since K is a subcomplex o f S ( G ,  ~" - 1) with the same vertex set, we obtain 

f t~(S(G, ~ - 1)) _< A. 

This corollary follows by an application of Corollary 12. [] 

The following is our most general corollary for a guest graph embedded in an 
orientable surface. 

Coro l l a ry  15. Suppose G is a connected graph with separator size E ( G) such that G 
has an embedding in an orientable surface of  genus g with no more than A faces larger 
than ~. Then any embedding of  G in 13(m) has dilation at least 

]~(G) 
(8~) - t  log 2 

A + 2 g + l "  

Proof We use Euler 's formula, I Wl - I EI + f = 2 - 2g, for a connected graph 
embedded in an orientable surface of  genus g to obtain 

/-)~ (IGI) -- IEI - IVI-t- 1 

= f + 2 g  - 1, 
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where f is the number of faces in the embedding. As in the proof of Corollary 14, 
construct a two-dimensional simplicial complex K embedded in the surface of genus g. 
As before, K may have up to A holes. In addition, there are up to 2g nontrivial loops 
due to the surface of genus g. Hence, we can deduce this bound: 

rank/~I(S(K,  ~ - 1)) < A + 2g. 

Since K is a subcomplex of S(G, ~" - 1) with the same vertex set, we obtain 

/ ~ ( $ ( G ,  ~" - 1)) < A. 

This corollary follows by an application of Corollary 12. [] 

As an example, we apply this corollary to the n x n toms. 

Corollary 16. Any embedding of 7-(n) in any butterfly graph 13(m) has dilation 
f2 (log 2 n). 

Proof. Apply Corollary 15 with g = 1, A = 0, ~ = 4, and E( 'T(n))  = ®(n). [] 

One more application of Corollary 12 is to the k-dimensional mesh. 

Corollary 17. Any embedding of A4(k, n) in any butterfly graph 13(m) has dilation 

f2 (log 2 n k- i ). 

Proof. As/-)l (IS(G, 3)]) = 0, we get E(NI(k ,  n)) = ®(n k-l)  from Corollary 12. [] 

7. Open Problems 

In this paper we have proved in a topological setting a general lower bound on the 
dilation of graph embeddings. Applying this lower bound to a specific pair of guest 
and host graphs requires knowledge of the separator size of the guest graph and the 
bidecomposability of the host graph. Several open problems are suggested; we mention 
those we find most interesting. 

Bidecomposability of the de Bruijn Graph. It is not known whether the butterfly and 
the de Bruijn graph are equivalent with respect to graph embeddings (that is, whether each 
can be embedded in the other with constant dilation). It is not even known whether there 
is a constant dilation embedding of the de Bruijn graph in the butterfly or vice versa (but 
see [ 1 ]). Our central lower bound suggests a weaker question: Is the bidecomposability 
of the de Bruijn graph sufficiently close to the bidecomposability of the butterfly that the 
lower bound of Corollary 12 holds (within a constant factor) when the de Bruijn graph 
is the host? More specifically, is the de Bruijn graph cp2CP-bidecomposable for some 
constant c? 

Bidecomposability of the Hypercube. What bounds can be proved on the bidecom- 
posability of the hypercube? Unfortunately, it is clear that the bidecomposability of 
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the hypercube is so large that the resulting lower bounds on dilation of embeddings in 
hypercubes will be very weak. 

Lower Bounds on Embedding Grids in Hypercubes.  For the case that a general k- 
dimensional grid is the guest graph and a smallest-possible hypercube is the host graph, 
optimal, or nearly optimal, dilation embeddings are not known. One conjecture is that 
there is no constant bound on dilation that applies to all such embeddings (see Prob- 
lems 3.25 and 3.26 of  [10]). As was just mentioned, the bidecomposability of  the hyper- 
cube is too large to prove this conjecture using Theorem I l. A possible line of attack 
for this special case is to again study simplicial maps but to associate different simplicial 
complexes (other than our r-dimensional, complex of a graph) with the grid and the hy- 
percube, complexes chosen specifically to expose a topological mismatch between the 
grid and the hypercube. For more general pairs of guest and host graphs, there may be 
other lower-bound theorems based on different associated simplicial complexes. 
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