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ABSTRACT

Lower bounds for the dilation of a graph embedding of a

guest graph in a host graph are considered. of particu-

lar interest are graphs that have been proposed as com-

munication networks for parallel architectures. Bhatt et

al. provide a lower bound on dilation for embedding a

planar guest graph in a butterfly host graph. Here, this

lower bound is extended in two directions. First, a lower

bound that applies to arbitrary guest graphs is derived.

Second, this lower bound is shown to apply to arbitrary

host graphs through a new graph-theoretic measure. As

corollaries to the main result, lower bounds are derived

for embedding arbitrary planar graphs, genus g graphs,

and k-dimensional meshes in a butterfly host graph.

1 Int reduction

A (graph) embedding of one undirected graph G1 =

(Vl, El) (the guest) in another undirected graph G2 =

(k’z, E*) (the host) is a one-to-one function p : VI ~ V2

together with an assignment (or routing) of each edge

(u, v) c El to a path in Gz between p(u) and p(v). The
length of the longest assigned path is called the dilation

of the embedding, The expansion of the embedding is

the ratio IV2 I/IVl 1. The congestion of the embedding

is the maximum number of edges of G1 routed through

any single edge of G2.

Graph embedding provide a standard framework for

investigating the ability of one parallel network (rep-

resented by a graph G2) to emulate another network

(represented by a graph Gl). An embedding of GI in

G2 provides a scheme for network G2 to simulate the
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processor-to-processor communication of network G1.

The expansion of the embedding gives a (rough) ratio

of the hardware costs of the two networks. The dilation

and congestion of the embedding indicate the communi-

cation slowdown caused by simulation. These three are

the primary cost measures studied in research on graph

embedding. Developing embedding that are (asymp-

totically) optimal for one or more of these messures and

proving lower bounds on these measures is an important

theoretical pursuit.

Typically, G1 is selected from one infinite family of

graphs fl (such as the family of 2-dimensional meshes)

that is to be emulated by G2 selected from another infi-

nite family 32 (such as the family of hypercubes). The

central issue is how well 3P can emulate %; that is,

given an arbitrary element G1 E 71, how costly is the
best element of 32 at emulating Gl? In this abstract,

we restrict attention to the cost measure of dilation.

One thread of research in graph embedding is to es-

tablish upper bounds on dilation by constructing ex-

plicit embedding of one family of graphs into anoth-

er. Greenberg, Heath, and Rosenberg [5] show that

the FFT graph is a subgraph of the smallest hyper-

cube that can contain it. They further show that there

is an embedding of each butterfly and of each cube-

connected cycles graph the hypercube with dilation at

most 2. Annexstein, Baumslag, and Rosenberg [1] give

an embedding of each butterfly in the smallest de Brui-

jn graph that can hold it with dilation logarithmic in

the diameter of the host graph. Baumslag et al. [2] give

an embedding of each de Bruijn graph in the smallest

hypercube that can hold it with dilation about 2/5 of

the diameter of the host graph.

A second thread of research is to establish noncon-

stant lower bounds on dilation, hence revealing an in-

compatibility in communication capabilities between

two networks. Lower bound arguments typically rely
on the graph-theoretic measures of diameter, degree,

and separator size. For example, no bounded-degree

network can emulate the n-dimensional hypercube with

less than fl(log n) dilation.

311



Bhatt et al. [4, 3] develop the most sophisticated low-

er bound argument to date for the case of eybedding

a planar guest graph in a butterfly. A set V c V is

a separator for a graph G = (V, E) if every connected

component of G —~ contains at most [2 IV [/31 vertices.

The separator size Z(G) of G is the minimum cardinal-

ity of any separator of G. Note that every graph has a

separator of cardinality [1VI /3J, and that every planar

graph of bounded degree has separator size 0(~).

Suppose G is a connected planar graph with separator

size E(G). Further suppose that G has a planar embed-

ding in which the largest interior face has size *(G) (if

G is a tree, take @(G) = 2). Bhatt et al. show that any

embedding of G in a butterfly has dilation

As corollaries, they derive lower bounds for embedding

the X-tree and the 2-dimensional mesh in the butterfly.

Our intention is to generalize this lower bound in two

directions. In the first direction, we extend the lower

bound to arbitrary guest graphs. We do this by in-

troducing a new graph-theoretic measure inspired by

algebraic topology. We eliminate the need for ad hoc

arguments by viewing graphs as simplicial complexes

and graph embedding as simplicial maps. (This view

is extended further in Heath [7].) In the argument, we

employ the Mayer-Vietoris exact sequence. As a hint of

the lower bound result, we obtain a more general lower

bound for planar graphs whose face sizes are somewhat

non-uniform. Suppose G is a planar graph with sep-

arator size Z(G) and with a planar embedding having

only A interior faces with size greater than <. Then any

embedding of G in a butterfly has dilation

Thus if G has only a few large faces, a good lower bound

on dilation results.

The second direction is to show that this lower bound

argument applies to arbitrary host graphs. We define

a new graph-theoretic measure, bidecomposabilit y, and

show that the lower bound argument applies to an ar-

bitrary host graph based on its bidccomposability. We

give an upper bound on the bidecomposability of but-

terfly graphs. We conjecture that the bidecomposability

of the de Bruijn graph is close enough to the bidecom-

posability of the butterfly to prove a conjecture of Bhatt

et al. that the n x n mesh requires Q(log n) dilation in

any embedding in a de Bruijn graph; their lower bound

for dilation is $l(log log n).

The remainder of this “abstract consists of three sec-

tions. Section 2 defines formally several proposed com-

munication networks. Section 3 introduces simplicial

complexes and simplicial maps as the topological setting

for graph embedding. Section 4 defines bidecompos-

ability, bounds the bidecomposability of the butterfly,

and proves our main result: a lower bound on dilation

for arbitrary guest and host graphs. As corollaries to the

main result, we derive lower bounds for embedding arbi-

trary planar graphs, genus g graphs, and k-dimensional

meshes in a butterfly host graph.

2 Network Definitions

See Leighton [8] for greater details on the networks de-

fined in this section. Let Z% denote the set {O, 1,..., n –

1}, the integers modulo n. Elements of Z2 are bits. Ele-

ments of Z: are bit st m“ngs of iength n. The complement

of a bit b is denoted ~.

The n-dimensional butterfly B(n) has vertex set Z& x

Z; and two kinds of edges:

1. a straight edge connects each (i, bObI . . . bn_I) to
(i+ 1 mod n,bObl . .. bn_l).

2. a cross edge connects each (i, bobl . . . bi . . . bn-1) to

(i+ 1 mod n, bObl . . .F... bl)l).

B(n) has n2° vertices and n2n+l edges. For each vertex

v = (i, b) of l?(n), i is the ievei of v, and b is the position-

rvithin-ievel (P WL) of v. The set of vertices K = {(i, b) I

b c Z?} is the ith level of B(n).

The 2-dimensional n x n mesh M(n) has vertex set

Z~ x % and an edge between (ii, jl) and (k, ~2) if Iil -

~21 + 1~1 – ~21 = 1. M(n) has n2 vertices and (n – 1)2
edges. The k-dimensional mesh M (k, n) has vertex set

.Z~ and an edge between two vertices VI and V2 if V1 and

V2 are identical in k — 1 coordinates and differ by 1 in

one coordinate.

The n x n torus T(n) has vertex set Z. x Z. and an

edge between (il, jl ) and (iz, jz):

1. ifi1=i2and jl-,j2~lmodn;

2. ifjl=jz andil=i2&lmodn.

T(n) has n2 vertices and n2 edges

3 Graph Embedding as Simplicial Maps

This section defines the necemary concepts from alge

braic topology and quotes the necessary results. Among

numerous others, Munkres [10] is a standard introduc-

tion to algebraic topology. As we have no need for in-

finite dimensions or complexes, those generalities are

not included in the definitions we give or the results we

quote.

R“ is n-dimensional Euclidean space. Suppose A =
{a~, a~,..., ar } c JR” is an affinely independent set of

points of cardinality r + 1< n + 1. The r-dimensional

simplex c(A) is the convex hull of A in R“. Each ai is a
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vertez of u(A). If A’ c A is a nonempty subset of A of

cardinality r’ + 1, then u(A’) is an r’-dimensional face

of c(A). Each l-dimensional face is an edge.

A simplicial complex (or just complex) K in R“ is a

finite set of simplices such that

1. If a(A) G K and O #A’ C A, then u(A’) c K;

2. If C(A1), 0(A2) c K and U(A1) n C(A2) # 0, then

Al n AZ # 0 and U(A1) n U(A2) = U(A1 n AZ).

By the second condition, any two intersecting simplices

intersect only in a common face.

If ~ is a simplicial complex that is a subset of the

complex K, then ~ is a subcomplex of K. The subcom-

plex of K consisting of simplices in K of dimension at

most r is the r-skeleton of K, denoted K(r). The points

in K(o) are the vertices of K. The si.z~ of a complex

K is the cardinality of K(o). If 0 # V C K(o), the

subcomplex induced by ~ is

ASC(K, ~) = {u(A) E K I A C ~}.

If ~ is a subcomplex of K, then the difference K – ~ is
—

the subcomplex ASC(K, K(o) – K(o)). Suppose K is a

complex of size n. A separator of K is a sub complex ~

of size less than n such that every component of K – K

hss size at most [2n/31. The separator size S(K) oj K

is the minimum cardinalit y of any separator of K.

The union of the simplices of K is a topological sub-

space of R“ called the polytope of K and denoted lKl.1

The components of IKI are its connected components,

in the topological sense. We freely apply the topolog-

ical notion of components, as well as other topological

notions, to K with the understanding that we are really

talking about its polytope IKI.

Suppose K and L are simplicial complexes and ~ :
K(o) ~ L(o) is a function between vertex sets. If when-

ever a(A) E K we have u(f(A)) E L, then ~ can be

extended to a continuous function g : IK I + IL I such

that g is linear when restricted to each simplex of K; g

is called a simplicial map. (Note that if ~ is not l-to-l,

then the dimension of u(f(A)) may be strictly leas than

the dimension of u(A).)

An abstract simplicial complex Son a finite set V is a

set of nonempty subsets of V such that whenever A c S

and O # A’ c A, then A’ c S and such that {v} G S,

for all v G V. The dimension of A E S is IAI – 1, A

subcomplex of S is a subset S c S such that S’ is an

abstract simplicial complex.

For every simplicial complex K and every bijection

O : K(o) + V, there is an abstract simplicial complex S

on V: for every simplex G(A) G K, the corresponding
set 6(A) E S. K is called a geometn”c realization of S.

1‘To a @ven polytope P, there correspond an infinite number
of simplicial complexes K such that P = IK 1. Each such K is
a triangulation of P. For our purposes, there is always a fixed
triangulation associated with a polytope.

Proposition 1 (Munkres [10]) Every abstract sim-

plicial complex has a geometm’c realization.

Thus, every abstract simplicial complex maybe thought

of as a simplicial complex by choosing a geometric re-

alization K for it and may also be thought of as the

topological space IK 1. We assume that for every ab-

stract simplicial complex S, a canonical choice for its

geometric realization, denoted [S], has been made. The

corresponding topological space (polytope) is denoted

1S[. We freely apply the terminology of complexes and
polytopes to an abstract simplicial complex S when we

are really talking about [S] or IS I.

A simple undirected graph G = (V, E) can be
viewed alternately as the abstract simplicial complex

S(G) = V U E, as the corresponding geometric realiza-

tion [S(G)], or as the polytope [S(G)], depending on

the circumstances. We generally shorten the notation

for the geometric realization to [q and for the polytope

to IGI. It is useful to view a graph embedding as a sim-

plicial map of simplicial complexes. If u, v c V, define

~G(U, v) to be the length of a shortest path between u

and v in G or +00 if there is no such path in G. If p z 1,

the pth power of G = (V, E), denoted @, is a graph

with vertex set V and edge set {(u, v) I ~G(U, v) < p}.

A graph embedding of G1 = (Vl, El) in Gz = (Vi, -%) Of

dilation 6 is an injective simplicial map O : [Gil ~ lG~l.

In other words, G1 is homomorphic to a subcomplex of

G:. This new definition ignores issues related to routing

within G2, in particular congestion.

Of course, the above notion of embedding extends to

complexes of higher dimension. For our purposes, we as-

sociate with each graph a sequence of complexes of ever

higher dimension. The r-dimensional (abstract simpli-

cial) complez of G, denoted S(G, r), is the abstract sim-

plicial complex each of whose simplices is a nonempty

set of vertices that occurs on some paths of length s r.

More precisely, if P = V., q,..., u~ is a (not necessarily

simple) path in G of length k and if k s r, then every

nonempty subset of {VO, q,. ... vk} is in S(G, r). Note

that the l-skeleton of S(G, r) is G’. The following is an

obvious observation.

Proposition 2 If G1 has a dilation 6 graph embedding

in G2, then there is an injeciive simplicial map from

IS(G,k)l tO IS(G2, k6)[, for all k >1.

A slightly different observation is the following, which

Bhatt et al. implicitly use in their lower bound proof

(see Corollary 11).

Proposition 3 If G1 has a dilation 6 graph embedding

in G2 and K is a subcomplez of [S(GI, k)], ihen fhe~

is an injective simplicial map from IK] to lS(G~, k)l -

Homology2 is a functor from some category of topo-

logical spaces (in our case, polytopes with simplicial

zWe ~tufiY use reduced homology because k sk’difks the
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maps) to the category of sequences of abelian groups

with sequences of group homomorphisms, the sequences

being indexed by the nonnegative integers. In particu-

lar, if X is a polytope~ then the ith reduced homology

group of X, denoted Hi(X)J is an abelian group of fi-

nite rank and is denoted Hi(X). Roughly speaking,

fii (X) gives information about cycles formed by the i-

dimensional simplices of X. In dimension O, reduced

homology directly gives the number of components of a

polytope.

Proposition 4 (Munkres [10]) Suppose X is a pol-

ytope that has k components. Then fro(X) is a free

abelian group of rank k – 1.

The first reduced homology group of a graph gives its

cycle space. (See Harary [6], page 38.)

Proposition 5 (Massey [9] Theorem 3.4) +ppose

G = (V, E) is a graph with s components. Then .H1(IG[)

is a free abelian group of rank IEI – IV] + s.

Suppose

4.-2 &-1 %%+1
. . . — Ai_l _AifiAi+l_.!.

is a (possibly infinite) sequence of abelian groups and

group homomorphisms. The sequence is exact at Ai if

the image of #i_ 1 equals the kernel of +i. The sequence

is an exact sequence if it is exact at every Ai. One of the

many exact sequences that arises in algebraic topology

is the Mayer-Vietoris sequence (Munkres [10]).

Theorem 6 (Mayer-Vietoris Sequence) Let K be

a complex with subcomplezes K1 and K2 such that K =

.K1 UKZ. Let A = K1 fl K2. Then there is an infinite

exact sequence

. ..- fiP(A) a iiP(K1)tB&P(K2) ~

iiP(K) a fiP-l(A) -+ . . . .

This corollary bounds the number of components in the

intersection of subcomplexes.

Corollary 7 Let K be a connected complex with con-

nected subcomplezes K1 and K2 such that K = K1 UK2.

Let A = K1 n K2. Then the number of components in

A is at most rank ~l(K) + 1.

PTOOJ Since K, 1<1, and I(2 are connected,

tie(K) S fio(K1) s J%O(K2) R Z.

This gives us the following subsequence of the Mayer-

Vietoris sequence

f fro(A) ~ O.fil(K) +

proof of Corollary 7. The standard homology groups of a topo-
logical space are the sane as its reduced homology groups, except
in dimension O, where the rank of the reduced homology group is
one less than the rank of the homology group.

Since g is trivial, its-kernel is fro(A). Because the se-

quence is ~xact at Ho(A), f is subjective. It follows

that rank HO(A) s rank HI (K). By Proposition 4, the

number of components of A is at most rank Xl (K) +1.

•1

4 Bidecomposability

This section defines the measure of the bidecomposabil-

ity of a graph. Our main result, a lower bound on the

dilation of graph embedding in an arbitrary host, is

proved. As a corollary, we obtain a generalization of

the dilation lower bound of Bhatt et al. [3] for graph

embedding in the butterfly. Several other corollaries

are derived.

The motivation for the upcoming definition of bide-

composability originates in the observation by Bhatt et

al. that if one takes a subgraph of the butterfly induced

by the vertices of consecutive levels, then that subgraph

has numerous components, each rather small. The ob-

servation remains valid even if the subgraph is of a pow-

er of the butterfly, as long as the power is a bit smaller

than the diameter of the butterfly.

A set of vertices V is bicolored blue and red if V is

partitioned into two nonempty sets Vblu. and Vred. If K

is a complex whose vertex set is bicolored, then Kb& is

the sub complex of K induced on Vblue; Kred is defined

analogously. Let ~ : Z+ ~ Z+ be an increasing function

defined on the positive integers. A graph G = (V, E) is

f (p)- bidecomposable if and only if, for each p z 1, there

is a bicoloring of V such that no component of G~lu,

or of G~ed haa more than ~(p) vertices; alternately, ev-

ery component of S(GP, .f(p))blue and of S(GP, .f(P))red

cent ains at most f(p) vertices.

As an example, we show an upper bound on the bide-

composability of the butterfly.

Theorem 8 (13hatt et al. [3]) The butterfly B(m) is

5p25P-bidecompos able.

Proofi If m ~ 5p, then the size of B(m) is at most 5p25P

and the result follows trivially.

Henceforth, assume m > 5p. Write m = 4pq + r,

where O ~ r < 4p. Recall that ~ is the ith level of

B(m). Partition the levels of B(m) into q consecutive

units of size 4p and one additional of size r. Color the

first 2p levels blue and the second 2p levels red. Color

the last r levels first half red, then the second half blue.

More precisely, for O < i < q– 1 and O < j < ‘.2P– 1, color

~Pi+j blue and color V4pi+2~+~ red; for 0< ~ < (r/21,

color V4pq+j red; for Fr/21 + 1 < j < r, color v4Pi7+j

blue. The greatest number of consecutive levels of one

color is 2p+ [r/21 s 4p. By the transitive symmetry of

levels in B(m), we need only consider the components

of the subgraph of B(m)J’ induced by levels O through
4p – 1. Since m > 5p, vertices in V. and V4P- 1 cannot
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be adjacent. A path in B(m)P between two vertices in

these levels can involve changes to at most 5p of the bit

positions in the PWL string. Hence there are at most

4p25P vertices in any component, implying the desired

result. c1

The following theorem is the central lower bound.

Theorem 9 Suppose G2 = (V2, E2) is f(p) -bidecom-

posable and G1 = (VI, El) is a connected graph with
separa~or size Z(G1). Suppose that < ~ 1 and that
rank H1([S(GI, ()]) = A. Let 0 be any graph embed-
ding of G1 in Gz, and let its dilation be 6. Then the

following bound holds:

~(Gl) S (A+ l)f(C~)-

Proof To prove this theorem, we utilize some additional

notation. If v is a vertex of a complex S, the neighbor-

hood of v in S is the following set of vertices

r(v,s) = u A(o) - {V}.

vcAGS

If ~ is a subset of the vertex set of S, the neighborhood

of V in S is the following set of vertices

r(ti,s) = (J r(v,s) - V.
UE7

Let n = IVII, and let p = <6. Let K = S(G1, ~).

Clearly, Z(G1) ~ Z(K). We actually show that Z(K) <

(A+ l)~(P). The existence of 6 implies the existence
of an injective simplicial map from IKI to IS(G2, P) 1,

which we also call 0. Bicolor V2 to witness the f(p)-

bidecomposability of G2. The inverse 6-1 induces a
bicoloring of VI; clearly, the components of Kbl~~ and

Kred have size at most f(p).

Our intention is to find a triple (Kl, K2, A) of sub-

complexes of K such that K1 and K2 are connected,

K = K1 U K2, and A = K1 n K2 is a monochromatic

separator of K. Applying Corollary 7, A has at most

A+l components. Since A is monochromatic, each com-

ponent has size at most f(p), for a total size of at most

(A+ 1)$(P). Since A is a separator of K, A has size
at least Z(K) < (A+ l)~(p). From this inequality, this
theorem follows.

The proof constructs inductively a sequence

(Lo, Ro, Ao), (Ll, Rl, Al),..., (L~, &,A~)

of triples of subcomplexes of K until one triple fulfills

the intention. To construct the first triple, choose an
arbitrary v c (VI )blUe. Let LO be the component of the

sub complex Kblue that contains v. Let R. = K, and let

A. = Lo = Lo n R.. Clearly, Lo and R. are connected.

If the components of K – A. are of size at most [2n/31,

then A. = LO n R. is a monochromatic separator of G1,

and we are done. Otherwise, the construction continues

as follows.

For purposes of induction, assume that we have con-

structed a triple (Li, &, Ai ) that satisfies the following

properties:

1.

2.

3.

4.

5.

6.

Li and & are connected;

K= LiU&;

Ai =Lin&;

A:”) is monochromatic;

I’(Ai, K) contains no vertices the color of Ai (the

neighborhood of Ai is monochromatic, of the oiher

color);

The size of the largest component of &–Ai exceeds

[2n/31.

To begin the induction, we easily verify that the triple

(Lo, Ii!o, Ao) satisfies these properties.

We now construct (Li+l, &+l, Ai+l ). Without IOSSof

generality, assume that A!”) is blue (Property 4). Let

~ be the component of ~ – Ai that has size exceeding

[2n/31 (Property 6). By Property 5, I’(Ai, ~) is~lue.

Let Ai+l be the union of the compon~nts of (&)red

that intersect 17(Ai, &). Let &+l = &. Let Li+l =

ASC(K, L~O) U A$)l). Then Ai+l = Li+l n &+l.
First we show that the triple (Li+l, l&+l, Ai+l) satis-

fies Properties 1–5. (Property 1) &+l = ~ is connect-

ed since ~ is a component of &.. By assumption, Li

is connected. since each component of Ai+l intersects

I’(Ai, K), there is a path in K between any pair of ver-

tices of L~+l. Hence, Li+l is connected. (Property 2)

Since Ai+l was chosen such that there is no l-simplex

having one vertex in Li+l – Ai+l and another vertex in

Ri+l – Ai+l, any 1- or higher-dimensional simplex has
all of its vertices in Li+l or in l&+l. Hence, every sim-

plex of K is either in Li+l or in &+l. (Property 3) By

the definition of Ai+l, every simplex in Ai is in both Li

and &. (Property 4) Since Ai is chosen to be red, A\o)

is monochromatic. (Property 5) As Ai is the union of

components of (~)red, its neighbors must all be blue.

If no component of &.+l – Ai+l has size greater than

[2n/31, we claim that Ai+l is a separator for K. The

components of K – Ai+l consist of the components of

Li+l _ Ai+l together with the components of &+l –

Ai+l. Each of the components of Li+l – Ai+l has size

less than in/3J, since the size of ~+1 exceeds [2n/31.

Hence, Ai+l is a separator for K. If some component of

&+l –Ai+l has size that exceeds [2n/31, then Property
6 holds for the triple (L~+l, Q+l, Ai+l).

Since
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the induction must end with some Ak being the desired

monochromatic separator. ❑
The following corollary of the central theorem is our

most general lower bound on embedding in the butter-

fly graph.

Corollary 10 Suppose G is a connected graph with

separator size Z(G). Suppose that ~ ~ 1 and that

rank El ([S(G, <)]) = A. Let O be any graph embedding

of G in B(m), and let its dilation be 6. Then the dilation

of $ is at least

Proofi From Theorems 8 and 9, we have

Z(G) < (A+ l)5~625cb.

Algebra shows

Since <6 ~ 1, the desired bound on 6 follows. U

The next corollary is the lower bound of Bhatt et

at. [3].

Corollary 11 (Bhatt et al. [3]) Suppose G is a con-

nected planar graph with separator size Z(G) such that

G has a planar embedding with no interior face larg-

er than Q(G). Then any embedding of G in B(m) has

dilation at least

logz X(G)

8(@(G) – 1) “

Proof We give an intuitive argument for the corollary,

reserving a precise proof for the full version of the paper.

Add edges to the interior faces of G to obtain a planar

graph G with only triangular interior faces. For each

triangular inte~or face of G, add the corresponding 2-

simplex to S(G), ultimately obtaining a complex K.

(For the purpose of applying Corollary 10, we are taking

< = @(G) – 1.) K is a 2-dimensional simplicial complex

embedded in the plane. since every interior face of ~ is

in K, every loop in K can be continuously deformed to

(!s homotopic to) a point. Hence K is contractible, and
HI(K) = O (Munkres [1O], page 108). Since each face

of G is covered by a simplex in $(G, O(G) – 1), K is a

subcomplex of S(G, O(G) — 1) with the same vertex set.

Hence, El (S(G, O(G) – 1)) = O. This corollary follows

by an application of Corollary 10. ❑
By a similar but more elaborate argument, we can

prove this more general corollary.

Corollary 12 Suppose G is a connected planar graph

with separator size E(G) such that G has a planar em-

bedding with no more than A interior faces larger than

C. Then any embedding of G in B(m) has dilation at

least

Z(G)
(8(~ – 1))-1 log, ~.

Proof Deferred to the full version of the paper. •l

The following is our most general corollary for a guest

graph embedded in an orientable surface.

Corollary 13 Suppose G is a connected graph with

separator size Z(G) such that G has an embedding in

an on’entable surface of genus g with no more than A

faces larger than ~. Then any embedding of G in B(m)

has dilation at least

X(G)
(8C)-11°g2 A + Zg + 1 ‘

Proof We use Euler’s formula, IV I– IJ?ZI+f = 2–2g, for

a connected graph embedded in an orientable surface of

genus g to obtain

fil(lGI) = IEl – IV! + 1

= f+2g–1,

where .f is the number of faces in the embedding. By an

adaptation of the proof of Corollary 12, this corollary

follows (see Heath [7]). ❑

As an example, we apply this corollary to the n x n

torus.

Corollary 14 Any embedding of7(n) in any butterfly

graph B(m) has dilation !J(log2 n).

Proof Apply Corollary 13 with g = 1, A = O, < = 4,

and Z(T(n)) = ~(n). ❑

One more application of Corollary 10 is to the k-

dimensional mesh.

Corollary 15 Any embedding of M(k, n) in any but-

ierjhj graph B(m) has dilation Q (log2 nk-l).

Proof As ~~([S(G, 3)]) = O, we get 2(M(k, n)) =
@ (nk-l) from Corollary 10. •l
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