
SIAM J. ALG. DISC. METH.
Vol. 8, No. 2, April 1987

(C) 1987 Society for Industrial and Applied Mathematics
007

EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS*

LENWOOD S. HEATH

Abstract. We investigate the problem of embedding graphs in books. A book is some number of half-
planes (the pages of the book), which share a common line as boundary (the spine of the book). A book
embedding of a graph embeds the vertices on the spine in some order and embeds each edge in some page so
that in each page no two edges intersect. The pagenumber of a graph is the number of pages in a minimum-
page embedding ofthe graph. The pagewidth ofa book embedding is the maximum cutwidth ofthe embedding
in any page. A practical application of book embeddings is in the realization of a fault-tolerant array of VLSI
processors.

Our result is an O(n log n) time algorithm for embedding an n-vertex outerplanar graph with small pagewidth.
The algorithm embeds any d-valent outerplanar graph in a two-page book with O(d log n) pagewidth. This
result is optimal in pagewidth to within a constant factor for the class ofouterplanar graphs. As there are trivalent
outerplanar graphs that require fl(n) pagewidth in any one-page embedding, the pagenumber ofour embedding
is exactly optimal for the stated pagewidth. The significance for VLSI design is that any outerplanar graph can
be implemented in small area in a fault-tolerant fashion.

Key words, outerplanar graphs, book embedding, algorithm, hamiltonian cycles

AMS(MOS) subject classifications. 05C45, 68Q35, 94C15

1. The problem. We study embeddings ofgraphs in structures called books. A book
consists of a spine and some number ofpages. The spine of a book is a line. For simple
exposition, view the spine as being horizontal. Each page ofthe book is a half-plane that
has the spine as its boundary. Thus any half-plane is a one-page book, and a plane with
a distinguished horizontal line is a two-page book.

The embedding of an undirected graph in a book consists of two steps. The first
step places the vertices of the graph on the spine in some order. The second step assigns
each edge of the graph to one page of the book in such a way that on each page, the
edges assigned to that page do not cross. Whether two edges cross is determined by the
order of the vertices. If (s, t) and (u, v) are edges of the graph with s < u < v and s < t,
then the edges cross if and only if s < u < < v. The resulting embedding is called a
book embedding of the graph.

There are two measures of the quality of a book embedding for G.
The first measure is the pagenutnber of the embedding, which is the number of
pages in the book.

The pagenumber of the graph G is the minimum pagenumber of any book embedding
of G. The pagenumber of a class of graphs is the minimum number of pages that every
member of the class can be embedded in, as a function of graph size. The width of a
page is the maximum number of edges that intersect any half-line perpendicular to the
spine in the page.

The second measure is the pagewidth of the embedding, which is the maximum
width of any page.

The pagewidth of the graph G is the minimum pagewidth of any book embedding of G
in a book having a minimum number of pages. The pagewidth of a class of graphs is the
minimum pagewidth that every member of the class can be embedded in, as a function
ofgraph size. The book embeddingproblem is to find good book embeddings for a graph
family with respect to one or both of these measures.
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A

FIG. 1. Grid graph G.

As an example, consider the grid graph G of Fig. 1. A two-page embedding of G is
shown in Fig. 2. The vertices of G are placed on the spine in the order A-B-C-F-E-D-G-
H-I. The first page consists of the upper half-plane, and the second page consists of the
lower half-plane. Edge (B, E) of the first page crosses edge (F, I) of the second page, so
these two edges cannot be assigned to the same page of this book. The pagenumber of
the book embedding is two, and the pagewidth is three as witnessed by the nested edges
(A, D), (B, E), and (C, F) (both measures are optimal for G).

The book embedding problem is of interest because it models problems in several
areas of computer science and VLSI theory. We mention here only problems arising
from the DIOGENES approach of Rosenberg [9]. For further motivations, see Heath [5]
or Chung, Leighton and Rosenberg [2].

Rosenberg [9] proposes the DIOGENES approach to the design of fault-tolerant
arrays of VLSI processors. The elements ofthe approach are sketched here. One lays out
some number of identical processors in a (conceptual) line. One provides sufficiently
many processors so that one expects (probabilistically) that enough good processors exist
to implement the desired array.

Bundles ofwires with embedded switches run parallel to the line ofprocessors. Each
bundle is capable of implementing a hardware stack of connections among processors.
Each connection occurs on exactly one hardware stack (bundle). For any processor, a
connection to a processor on its right is pushed on a stack; each connection to a processor
on its left is popped from a stack. In this way, each connection to a good processor
requires one stack operation at that processor. No stack operations occur at a bad pro-
cessor. Since the state of a processor as good or bad is a binary value, a single control
signal can cause the shift (push or pop) of many connections. Thus, fault tolerance is
achieved by switching in only good processors.

FIG. 2. Two-page embedding ofG.
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200 LENWOOD S. HEATH

The desired array ofprocessors is modeled as a connection graph; the vertices represent
the processors, and the edges represent the desired connections between processors. The
DIOGENES design problem is to determine the number of stacks and the stackwidths
(the number of connections carried by each stack) required to implement the array of
processors. In a way analogous to a hardware stack, it is possible to view one page of a
book embedding as a stack of edges. For any vertex, each incident edge that connects it
to a vertex to its right is pushed on a stack; each incident edge that connects it to a vertex
to its left is popped from a stack. The DIOGENES design problem for an array of pro-
cessors is exactly the book embedding problem for the corresponding connection graph.
The number of stacks is exactly the number of pages. The stackwidths are the widths of
the pages.

In this paper, we consider the problem ofsimultaneously attaining small pagenumber
and small pagewidth. We consider the class of outerplanar graphs (an outerplanar graph
is one that has a planar embedding with all vertices on the exterior face). There exist
outerplanar graphs of size n that have pagewidth f(n) in any one-page embedding but
have pagewidth O(1 in an optimal two-page embedding. These graphs exhibit a tradeoff
between pagenumber and pagewidth. We present an algorithm that produces a two-page
embedding of small pagewidth for any outerplanar graph. The pagewidth that is attainable
depends partly on the valence (maximum degree) of the outerplanar graph. Let G be a
d-valent outerplanar graph with n vertices. Our algorithm embeds G in a two-page book
having pagewidth less than Cd log n where C 8/(log 3/2) (all logarithms are to the base
two). This result is within a constant factor of optimal in pagewidth for the class of
outerplanar graphs. The algorithm executes in time O(n log n).

The remainder ofthe paper consists of seven sections. In the next section, we survey
previous results on book embeddings relevant to our algorithm. In 3, we discuss tradeoffs
between pagenumber and pagewidth and give an example of such a tradeoff. Section 4
presents the essential ideas ofthe algorithm, while 5 gives the detailed statement. Section
6 proves the correctness of the algorithm, and 7 establishes its performance. In the last
section, we conclude with a discussion of the significance of our result and suggest an
area for further research.

2. Previous results. The original statement ofbook embedding is a linear embedding
performed in two parts. First, the vertices of a graph are placed on a line in some order.
Second, each edge of the graph is embedded in one page so that no edges in the same
page cross.

The resulting linear embedding can be transformed into a circular embedding in
three steps. First, choose a distinct color for each page of the book, and assign each edge
the color of its page. Second, "close" the book by projecting all pages (and their edges)
into a single page. In this one-page book, if two edges cross, then the two edges have
different colors. Third, curve the spine into a circle so that the "ends" at infinity are
identified.

The result of the transformation is an alternate two-pan formulation of the book
embedding problem. First, order the vertices of the graph on a circle. Second, draw the
edges of the graph as chords of the circle. Color the chords (edges) so that if two chords
intersect in the interior of the circle, the chords have different colors. The number of
colors in the circular embedding is exactly the number of pages in the corresponding
linear embedding.

A useful consequence of the circular formulation is that any p-page graph is a
subgraph ofap-page hamiltonian graph. (A graph is hamiltonian ifit has a cycle containing
all its vertices; such a cycle is called a hamiltonian cycle.) Moreover, the order of the
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EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS 201

vertices in the circular embedding is exactly the order of the vertices in the hamiltonian
cycle. To see this, let v, v2, vn be the vertices ofthe p-page graph in the cyclic order
of the circular embedding. Add each of the edges (chords) (Vk, Vk-), <-- k <- n (where
k is taken modulo n) that are not already present. Since these edges connect vertices
adjacent on the circle, they cannot intersect any other edges. Therefore, each ofthe edges
can legitimately be assigned to any page. The resulting edge-augmented graph is a p-page
graph, with hamiltonian cycle v, Vn.

The idea of adding edges to a graph to obtain a hamiltonian cycle is a strategy for
obtaining the vertex order of a book embedding. We will call a cycle obtained in this
fashion superhamiltonian. The following heuristic for book embedding a graph G is
proposed in [2]:

(1) Obtain a superhamiltonian cycle for G and place the vertices of G on the
circle in the order of the cycle;

(2) Color the edges of G by coloring the associated circle graph.
Finding an optimal solution to the second step in the heuristic is an NP-complete problem
(Garey et al. [3]). The first step can be done in a number of ways; in fact, any ordering
of the vertices can be obtained for a superhamiltonian cycle by adding the right edges.
Thus, the problem offinding good book embeddings can be approached as that offinding
a superhamiltonian cycle in an intelligent fashion so that a good (but not necessarily
optimal) edge coloring can be produced.

2.1. One-page graphs. Any one-page graph can be embedded in the plane so that
its vertices are on the spine and its edges are in the first page (the upper half-plane). Then
all its vertices are exposed to the lower half-plane, which is a subset of the exterior face
of the embedding. Thus the graph is outerplanar.

One characterization of an outerplanar graph is that its vertices can be embedded
on a circle so that all its edges are inside the circle and no two edges intersect. This is
just the condition that the graph be one-page embeddable under the circular formulation.
We have the following:

PROPOSITION (Bernhart and Kainen [1 ]). G is one-page embeddable ifand only
if it is outerplanar.

In fact, a k-page embedding of a graph G yields a decomposition of G into k out-
erplanar subgraphs, one for each page. The subgraphs share the vertices of G but are
edge-disjoint. The outerplanarity of each subgraph is witnessed by the same circular
ordering as that of the original book embedding.

2.2. Two-lage gralhs. Each two-page graph is a subgraph ofa two-page hamiltonian
graph. Every two-page graph is planar since the two half-planes (pages) together form a
plane. Thus a two-page graph is a subgraph of a planar Hamiltonian graph.

Define a graph to be subhamiltonian if it is the subgraph of a planar hamiltonian
graph. Given a subhamiltonian graph G, it is easy to show that G has a two-page embedding
([ ]). Edge-augment G to obtain a superhamiltonian cycle in a planar graph. Order the
vertices ofG on a circle according to the superhamiltonian cycle. The edges ofG interior
to the cycle form an outerplanar graph. The edges exterior to the cycle form another
outerplanar graph with its vertices in the same order as those of the interior one. A two-
page embedding of G results. Thus we have the following:

PROPOSITION 2 [1]. G is two-page embeddable ifand only if it is, subhamiltonian.
Propositions and 2 are the results we use in our algorithm to obtain two-page

embeddings of outerplanar graphs with small pagewidth. From Proposition l, an out-
erplanar graph G has a one-page embedding with all edges embedded in the upper half-
plane (page). Our algorithm adds edges to G in the lower half-plane so that a planar,
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202 LENWOOD S. HEATH

V V2 V3 V4 V VG V7

T T T T T T T

U U2 U3 U4 U U6 U
7

FG. 3. The 7-ladder LT.

hamiltonian supergraph results. By Proposition 2, the superhamiltonian cycle yields a
two-page embedding of G with the vertices of G in cycle order.

3. Tradeotfs. We investigate the problem of tradeoffs between pagenumber and
pagewidth in book embeddings. Motivation is best provided by an example from Chung,
Leighton and Rosenberg [2]. The example is a sequence of outerplanar graphs {Lm} for
which any one-page embedding requires large pagewidth m/2q, but for which there exist
two-page embeddings with pagewidth 2. The sequence consists of m-ladders (in [2], an
m-ladder is called a depth-m K2-cylinder). The m-ladder Zm has vertex set

{U,, ,Um) U(1)l, ,/)m)
and edge set

{(Uk, Uk+ )ll <=k<m} U {(Vk, Vk+ )ll <=k<m} U ((Uk, vk)ll <=k<=m}.
The first two components of the edge set constitute the two sides of the ladder while the
last component constitutes its rungs. Figure 3 illustrates L7. The sides are solid and the
rungs are dashed.

The m-ladder is clearly outerplanar and biconnected. By biconnectivity, Lm has a
unique outerplanar embedding (Syslo 10]). Therefore, Lm has a unique one-page embed-
ding up to reflection and circular permutation. Figure 4 illustrates a one-page embedding
of L7 of minimal pagewidth over all one-page embeddings. The rungs {(u4, v4), (us, vs),
(u6, v6), (UT, VT)} nest over the interval (UT, v7). Hence the pagewidth is >_-4. A moment’s
reflection generalizes this observation: In any one-page embedding for Lm, at least
[m/2] rungs nest over some interval; hence pagewidth is >=[m/2q.

Figure 5 illustrates a two-page embedding for L7 that has pagewidth 2. The corre-
sponding superhamiltonian cycle is illustrated in Fig. 6. This superhamiltonian cycle is
easily generalized, giving a two-page embedding of any Lm with pagewidth 2.

We now discuss tradeoffs in the general setting of an arbitrary graph G. Let P be
the pagenumber of G. For each p >= P, there exist one or more embeddings of G in a p-

1 1

V3 Y2 YI Ul U2 U3 U4 U5 U6 U7 Y7 Y6 Y5 Y4
FIG. 4. One-page embeddingfor LT.
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EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS 203

VI V2

FIG. 5. Two-page embeddingfor LT.

page book. Among all those p-page embeddings of G, let wp denote the pagewidth of one
having minimum pagewidth. These pagewidths are nonincreasing:

Wp >-- Wp+ >= >= wp,P>-P.
In the extreme case that p >= IEI, wp 1, as each edge may be assigned to a distinct page.

We are particularly interested in the product pwp. We seek cases where pwp is within
a constant factor of the cutwidth of G. Note that pw is an upper bound on the cutwidth
of the best p-page embedding of G. In the context of the DIOGENES approach, pw is
an upper bound on the height of a p-stack DIOGENES layout of G. Hence, we seek
DIOGENES layouts of G that are within a constant factor of optimal in area over all
linear layouts and within a small additive constant of optimal in stacknumber.

Our result is for the class ofone-page (i.e., outerplanar) graphs. The m-ladder exhibits
an extreme pagewidth tradeoffbetween one-page and two-page embeddings. For general
outerplanar graphs, we do not expect such an extreme tradeoff. Since there exist outer-
planar graphs that have one-page embeddings ofminimal pagewidth, e.g., complete binary
trees, the tradeoff in going from one page to two pages can be arbitrarily small,
even zero.

An n-vertex complete (d 1)-ary tree has cutwidth >-(d/2) log n (Lengauer [6]). (All
logarithms are to the base 2.) Hence, any book embedding ofa complete (d 1)-ary tree
in a constant number of pages requires pagewidth fl(d log n). In general, we cannot
assume that outerplanar graphs have pagewidth o(log n).

4. Overview of the algorithm.The tradeoff result we show is that any d-valent out-
erplanar graph G can be embedded in a two-page book with pagewidth Cd log n, where
C 8/(log 3/2). From the observations in the preceding section regarding m-ladders and
complete (d- 1)-ary trees, this result is optimal in pagenumber and within a constant
factor of optimal in pagewidth for the class of d-valent outerplanar graphs. We prove
our result via a recursive algorithm.

V V2 V3

1 1

.1 T U2 U3

V4 Vi V6 V7

! !
U4 U5 U6 U7

FG. 6. Superhamiltonian cyclefor L7.
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204 LENWOOD S. HEATH

We aim for an algorithm that, when given an n-vertex d-valent outerplanar graph,
returns a two-page embedding with pagewidth logarithmic in n. The input and output
requirements of such an algorithm are a useful place to start.

The input to the algorithm is a d-valent outerplanar graph G (V, E). The manner
of representing this input should witness the outerplanarity of G. Hence, a one-page
embedding of G is the required form for the input. The linearization of V orders the
vertices and provides names 1, 2, , n for the vertices. The order ofthe vertices in the
two-page embedding will not be the original order, but we shall continue to use the
names. Since the algorithm is recursive, the same vertex will have different names
at different levels of recursion. Figure 7 illustrates a possible form of the input
when G LT.

The output of the algorithm is a two-page embedding of G with logarithmic page-
width. To give a two-page embedding for G, it is sufficient to give a superhamiltonian
cycle H in a supergraph G’ of G (Proposition 2). G’ (V, E) is actually a multigraph
(i.e., it may contain loops and multiple copies of edges) that contains all the edges of G
plus possibly edges added to obtain H. H c E is a set of n edges; since H is superham-
iltonian, each of 1, ..., n appears exactly twice among these edges. H represents 2n
different book embeddings for G: there are n choices for the leftmost vertex, and there
are two directions to the cycle. The algorithm fixes the desired book embedding by re-
turning the leftmost (x) and rightmost (y) vertices of the two-page embedding. We call
x and y the vertices ofattachment for G’, for reasons that will become clear. The output
of the algorithm is then the ordered triple (G’, H, (x, y)).

We imagine the one-page embedding ofG as follows. The vertices are on a horizontal
line in a plane, and the edges are drawn in the upper half-plane. In general, there are
many sets of edges that can be added to G without destroying planarity. We restrict
ourselves to two types of edges, upper edges and lower edges, depending on which half-
plane the edges are embedded in. (Thus our restriction is that no edge uses both half-
planes in its embedding.) The original edges of G are always upper edges. The algorithm
may add an upper edge if it will not cross an existing upper edge. The algorithm may
add a lower edge if it will not cross an existing lower edge. In particular, we may (and
shall) assume that the upper edges (i, + 1), =< < n are always present in G; they can
always be added with no affect on pagenumber and at most unit increase in pagewidth.

The algorithm uses the divide-and-conquer paradigm. It determines subgraphs of
G to work on separately before the results are joined together to obtain G’. Each subgraph
is induced by a subinterval of[l, n]. We define the closed subinterval [i, j] to be the set
of integers { i, + 1, ..., j }. We define two types of half-closed, half-open subintervals:
[i,j) denotes [i,j 1] and (i,j] denotes [i + 1,j]. For any subinterval a, size (a} denotes
the number of vertices in the subinterval; hence, size {[i, j]} j + 1. Define G[i, j]

2 3 4 5 6 7 8 9 I0 II

IG. 7. Input representation for L7.

12 13 14
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G

2 3 4 5 6 7 8 9 10

FIG. 8. Sample Gfor divide-and-conquer.

to be the subgraph of G induced on the vertices in the interval [i, j]. If the algorithm is
applied to G[i, j] the result is (G’[i, j], H, (x, y)), where (x, y) determines the first
and last vertices of a two-page embedding of G[i, j] with pagewidth logarithmic in
size { [i, j] }.

The choice of subintervals depends on the structure of the one-page embedding of
G. Define an exposed vertex w of G to be one for which G contains no (upper) edge
(u, v) satisfying u < w < v. Thus an exposed vertex w is one that is "visible" from the
infinite region of the upper half-plane. Each exposed vertex of G except and n is a
cutpoint of G whose removal separates G into left and right subgraphs.

An example will illustrate the divide-and-conquer paradigm. Figure 8 shows a sample
G in a one-page embedding. The exposed vertices of G are 1, 3, 7 and 10. The algorithm
recognizes that each of the edges (1, 3), (3, 7) and (7, 10) is "highest" in the sense that
no other edge passes over it. These three edges determine three nondisjoint subintervals
[1, 3], [3, 7] and [7, 10]. In order to decompose the interval into disjoint subintervals,
the algorithm chooses the largest, [3, 7], to remain intact, and removes one vertex from
each of the other two subintervals. The resulting subintervals are [1, 2], [3, 7] and
[8, 10]. The algorithm recursively applies itself to each of the subintervals. The result to
this.point is shown in Fig. 9. Each subproblem displays a superhamiltonian cycle of its
subgraph and the first and last vertices ofthe corresponding two-page embedding. In Fig.
10, these three superhamiltonian cycles are replaced by a superhamiltonian cycle for the
entire graph. Lower edges (1, 2), (4, 6) and (8, 10) are deleted and lower edges (2, 4),
(6, 8) and (1, 10) are added.

If two exposed vertices andj are joined by an (upper) edge (i, j), then there are no
other exposed vertices in the interval [i, j]. In this case, we call G[i, j] a block, denoted
B[i, j]. When the interval [1, n] is partitioned into subintervals, there will be edges with
endpoints in different subintervals. Such dangling edges are exactly those edges of G not
in any ofthe subgraphs generated by the subintervals. In the case of a block B[i, j], these
dangling edges can be incident to only or j. The total number of such edges incident to
orj is called the edge deficit of B[i, j], denoted def {[i, j]}. It is always true that

def {[i, Jl} =<2(d- 1).

2 3 4 5 6 7 8 9 I0

FG. 9. Results ofsubproblems.
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206 LENWOOD S. HEATH

G

J -)

2 3 4 5 6 7 8 9 I0

FIG. 10. Superhamiltonian cyclefor G.

In Fig. 8, B[ 1, 3], B[3, 7] and B[7, 10] are the blocks of G, and def {[3, 7]} 5 (because
of edges (1, 3), (2, 3), (7, 8), (7, 9), and (7, 10)).

The example of Figs. 8-10 illustrate the execution of the algorithm in the case that
G has two or more blocks. There is another possible case: G has only one block. In that
case, the divide-and-conquer construction is more complex. The two divide-and-conquer
constructions corresponding to these two cases are developed in turn in the next two
subsections.

4.1. String construction. We now describe one of the two constructions used to

obtain a superhamiltonian cycle for G from superhamiltonian cycles for the graphs induced
by subintervals. It is called the string construction. (The name suggests that the super-
hamiltonian cycles for the subintervals are strung together to obtain a superhamiltonian
cycle for the entire interval.) It is employed when the number of exposed vertices is
greater than two, i.e., when G is not one block. The partition into subintervals keys on
the largest block, say B[i, j]: B[i, j], is taken to be one of the subintervals.

A precise description of the partition into subintervals requires more notation. Let
m, m2, mq be the exposed vertices of G in ascending order. Suppose B[mk, mk/ ]
is the largest block in G. Figure 11 illustrates the situation. The partition into q
subintervals is

{ [ml, m2), [m2, m3), [mk- 1, mk), [mk, mk + 1], (mk + 1, mk + 2], (me- 1, mq] }.

Note that B[mk, mk/ ] is the only block of G in the partition. It is called the key block
of the partition. The other subintervals are called side subintervals. Figure 12 illustrates
the partition of G.

The algorithm is recursively applied to the jth subinterval to obtain

m!

G

m2 ink_ m k mk+ mk+2 mq_ mq
FIG. 11. Exposed vertices.
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{Gj} Key Block

m m2 mk_ m k mk+ mk/2 mq_ mq

} }1 1(

FIG. 12. Partition into subintervals.

G’ is obtained in two steps. First, all edges added to the Gj are added to G (Fig. 13).
Second, the lower edges { (xj, yj)} are deleted and the lower edges

{(yj,xj+ )ll =<j=< q-2} U {(x,yq_ 1)}
are added. H is obtained from U/-/ by deleting and adding the same edges (Fig. 14).
Assigning (x, y) (x, yq_ 1) completes the string construction. The correctness of the
construction is proved in Lemma 5 ( 6).

4.2. Ladder construction. In this section, we consider the case when G has only
one block, so we are unable to divide G into subintervals based on blocks. To reach a
solution, we first focus on the problem of obtaining logarithmic pagewidth. To obtain
logarithmic pagewidth, it is clearly sufficient that the linear layout corresponding to the
two-page embedding have logarithmic cutwidth. An approach to small cutwidth is the
recursive application of a separator theorem (see Lipton and Tarjan [7]). A separator
theorem states that the removal of some number of vertices from a graph will partition
the remainder ofthe graph into two subgraphs ofapproximately equal size. For outerplanar
graphs, a two-vertex separator always exists.

LEMMA 3. Let G be an outerplanar graph containing at least 3 vertices. There exist
vertices x and y whose removal separates G into disjoint subgraphs G and G_ such that
n < [Gk[ < n, k 1, 2. If(x, y) is not an upper edge ofG, then it can be added to G as
an upper edge without inducing a crossing.

Proof Since G is outerplanar, we can use the circular formulation ofbook embedding
to embed G in a circle. The vertices of G are placed equally spaced on the circle. The
edges of G are chords of the circle with no two chords intersecting. If the center of the
circle lies on an edge, let x and y be the endpoints of the edge; in this case, IGI < 1/2n,
k 1, 2, and the result follows. Otherwise, let F be the face of G containing the center.
If two vertices on F are on a diameter, let them be x and y, and the result follows.

{Gj’}

m m2 mk_ m k mk+ mk+2 mq_ mq
FIG. 13. Resultsfor subintervals.
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208 LENWOOD S. HEATH

G’ and H

d,

FIG. 14. Subintervals strung together.

Otherwise, triangulate Fwithin the circle. The center ofthe circle lies within some resulting
triangle (u, v, w). Let the angle Luvw be the largest of the triangle. This angle is easily
seen to be between 60 and 90. Let x u and y w. Let G be the graph induced by
the vertices within the angle/_uvw, and let G2 be the graph induced by the vertices outside
the angle/_uvw. Then the removal of x, y separates G into G and G2 where

Note that the edge (x, y) can be added to G without destroying the outerplanar embedding.
The lemma follows.

If (x, y) is not already an edge of G, it can be added without destroying outerplanarity.
An edge (x, y) that satisfies Lemma 3 is called a separating edge. An algorithm to obtain
logarithmic cutwidth for a d-valent outerplanar graph G can select a separating edge
(x, y) and apply itself recursively to the resulting G and G2. However, it is unclear how
to obtain a superhamiltonian cycle for G from superhamiltonian cycles for G and G2.

Our algorithm uses separating edges in another way so as to make it possible to
derive a superhamiltonian cycle from superhamiltonian cycles for the pieces. The key is
the following definition. Let G be an outerplanar graph, and let (x, y) be a separating
edge for G. A set of edges P c E is parallel to (x, y) if

(1) (x, y)
(2) if(u, v), (w, z) e P, then {u, v} fq {w,z} (there are no shared endpoints);
(3) P can be ordered as ((u, v), (u2, v2), (Uk, Vk)} in such a way that

/,,/l </,/2 < ....Uk.l)k. ....(V2.V

(the edges ofP nest).
A sample set of parallel edges for a graph G is shown in Fig. 15 by dashed lines. A set P
of parallel edges is maximal if no edge of G can be added to P to obtain a larger set of
parallel edges.

U U
2

U3 U4 V4 V3 V2 V

FIG. 15. Parallel edges in G.
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FIG. 16. Removal of Ve.

Suppose P is a maximal set of parallel edges for G containing the separating edge
(x, y). Let Ve be the set of endpoints of edges in P. The removal of the vertices Ve from
G separates the interval 1, n] into some number of subintervals. Let Ge be the subgraph
of G resulting from the removal of Ve and all incident edges. Let [i, jl], [is, js] be
these subintervals in left-to-right order. The planarity of G and the maximality of P
guarantees that there is no edge of G between two vertices in different subintervals. This
in turn guarantees that Ge can be obtained an alternate way: Ge is the (disjoint) union
of the induced subgraphs G[ik, jk], <= k <= s. By Lemma 3, the presence of a separating
edge in P guarantees that

size { ik ,jk] } < In, <- k <- s.

Figure 16 shows the graph of Fig. 15 after the removal of Ve.
The algorithm is applied recursively to each G[ik, jk] to obtain a superhamiltonian

cycle for each. To obtain a superhamiltonian cycle for G, one need only reintroduce the
endpoints of the parallel edges Ve. A second look at Fig. 15 provides inspiration. If each
subinterval [is, js] were replaced by an edge (is 1, js + 1) between two vertices in Ve,
the result is the one-page embedding ofa ladder where all the rungs nest. The construction
of a superhamiltonian cycle H for G is patterned after the superhamiltonian cycle for a
ladder, as illustrated in Fig. 6. Appropriately, we name the construction ofH the ladder
construction.

There are two cases to consider, depending on whether or not the edge (1, n) is in
P. The case (1, n) P illustrates all the ideas and is simply modified to cover the case
(1, n)e.

Start with the picture of the parallel edges alone in Fig. 17. Some lower edges are
added to obtain a supercycle containing exactly the vertices in Ve. This supercycle is
indicated in Fig. 18 by arrows. It remains to place all the subintervals within this supercycle.
To accomplish this, each lower edge is replaced by new lower edges that connect two
subintervals into its place in the supercycle. For a right arrow (Uk, Uk / ), the result is as
in Fig. 19. For a left arrow (v_ , Vk), the result is as in Fig. 20; is chosen so that [it, jt]
is the subinterval between Vk / and Vk.

u U
2

U3 U4 V4 V3 V2

FIG. 17. Parallel edges.

v
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210 LENWOOD S. HEATH

U2 3 U4 V4 V3 V2

FIG. 18. Supercyclefor parallel edges.

For the case (1, n) P, [il, jl] is to the left of the ladder and [is, L] is to the right of
the ladder. The connection of [i, j] into H is shown in Fig. 21. The connection of
[is, L] into H is shown in Fig. 22.

5. The algorithm. This section describes our algorithm for embedding a d-valent
outerplanar graph in a two-page book with logarithmic pagewidth. The correctness of
the algorithm, embodied in Theorem 4, is given in the next section. Section 8 analyzes
the performance of the algorithm.

For the statement of our algorithm, see Algorithm 1. As the algorithm is recursive,
it is useful to give it a name. The name is TRADEOFF. TRADEOFF is a recursive
function which has as input the d-valent outerplanar graph G and as output the planar
supergraph G’ having hamiltonian cycle H and vertices of attachment x and y.

It is to be noted that, for simplicity, certain trivial cases are not included in the
statement ofTRADEOFF. These cases occur when a recursive invocation ofTRADEOFF
returns an empty G’. This cannot occur in step 5, as each subinterval contains at least
one vertex. However, it can occur in step 9 when some Gk is empty. In that case, the
ladder construction merely skips the empty interval [ik, j] (which is caused by two
adjacent elements of Ve).

Uk-I Xk_ X kYk-I Uk Yk Uk+l

Replaced
Arrow

FIG. 19. Replacing a right lower edge.
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Vk/l Xt Yt Vk Xt/l Yt+l Vk-I

Replaced
Arrow

FIG. 20. Replacing a left lower edge.

ALGORITHM 1. The TradeoffAlgorithm.
Function TRADEOFF (G), returns (G’, H, (x, y)).
(1) (Trivial cases)

If G , then assign G’ , H and (x, y) undefined.
If V= {1}, then assign G’ ({1}, {(1, 1)}),H= {(1, 1)} and(x,y)
(1, 1).
If V= { 1, 2}, then assign G’ ({ 1, 2}, {(1, 2), (1, 2)}), H {(1, 2), (1, 2)}
and (x, y) (1, 2).
Return (G’, H, (x, y)).

(2) Let S {mjI1 =< j -< q} be the set of exposed vertices of G in increasing
order.

(3) Choose k, =< k -< q such that B[me, me/ 1] is the key block of G.
(4) If B[me, me/ 1] G, then go to step 7.

String Construction

(G has more than one block.) For -< j < k, assign

(G), tl, (xj, yj)) TRADEOFF (G[mj, mg+

For j k, assign

(G,H, (xj, y)) TRADEOFF (G[me, me+ 1]).

For k < j < q, assign

(G, I-I, (x, yj)) TRADEOFF (G(m,m+ 1]).

x y u u

Replaced
Arrow

FIG. 21. Adding a subinterval on the left.
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212 LENWOOD S. HEATH

V:3 Xs-2 V s

Replaced
Arrow

X$

FIG. 22. Adding a subinterval on the right.

Ys Js

(6)

(7)

(8)

(9)

Use the string construction to obtain G’, H and (x,y).
Return (G’, H, (xl, yq)).

Ladder Construction

(B[mk, mk+ 1] G.) Choose a separating edge (u, v) for G. If (u, v) is not
already an edge of G, then add it as an upper edge.
Choose P a maximal set of edges parallel to (u, v). Let Ve be the set of
endpoints of edges in P.
V- Ve determines a sequence of disjoint subintervals [il, jl], [i2, j2],
[is, L]- For _-< k =< s, make the assignment:

(G’k, Hk, (Xk, Yk)) TRADEOFF (G[ik,jk]).

Construct G’ from G and {G} using the ladder construction. Return
(G’,H, (x, y)).

We now describe TRADEOFF step by step.
(1) These are the trivial cases when n -< 2. If G is empty, return G’ . If G is a

single vertex, return G’ having a single loop. If G has two vertices, then it has one edge
(1, 2). Return G’ having the added lower edge (1, 2) which is distinct from the upper
edge (1, 2).

(2) From the one-page embedding of G, determine the exposed vertices of G. It is
straightforward to accomplish this step in linear time; see Algorithm 2. Algorithm 2
requires time O(dn) and generates the elements of S in increasing order.

(3) Choose the key block of G, B[mk, mk/ 1]. Clearly, this can be accomplished in
time linear in IsI,

(4) This step determines which of two cases is current. If G is a single block, then
the ladder construction is applied (steps 7 through 9). IfG has more than one block, then
the string construction is applied (steps 5 and 6).

(5) Decompose the interval [1, n] into subintervals so that the key block
B[mk, mk/ 1] is one ofthe subintervals. Note that each side subinterval contains fewer than
1/2n vertices. Apply TRADEOFF to the graphs induced by each subinterval to obtain
supergraphs G, -< j -< q- 1.

ALGORITHM 2. Determining exposed vertices in linear time.
(1) Assign S { } and 1.
(2) If > n, then halt.
(3) Assign max {i + 1, maxti,k)e k}.
(4) Assign S S kJ { i}. Go to step 2.
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EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS 213

(6) Apply the string construction to obtain the planar hamiltonian supergraph G’
and the hamiltonian cycle H for G’. Assign (x, y) (x, yq). Return (G’, H, (x, y)).

(7) We know that G is entirely covered by the edge (1, n). We show that it is then
safe to add a separating edge to G. If this is the initial call to TRADEOFF, we can always
add a separating edge. If this is a deeper recursive call to TRADEOFF, we imagine that
there are intervals to the left and fight of 1, n] with dangling edges incident to vertices
in 1, hi. Since these dangling edges can only be incident to exposed vertices (in this case,
and n), any upper edge added to G at this recursive level cannot cross an edge at a

higher recursive level. The determination of a suitable separating edge is accomplished
in linear time by Algorithm 3. (Note that the triangulated G has a linear number
of edges.)

(8) Select a maximal set of parallel edges. The construction of P is accomplished
in linear time by Algorithm 4.

(9) This step completes the ladder construction. TRADEOFF is invoked recursively
for each subinterval disjoint from Ve. G’ and H are obtained by the ladder construction
described in the previous section.

ALGORITHM 3. Finding a separating edge.
(1) Triangulate the interior faces of G.
(2) Examine each edge (u, v) of the triangulated G to find one such that

n=<(v-u)-< n.
ALGORITHM 4. Generating a maximal set ofparallel edges.
()
(2)
(3)

(4)
(5)
(6)

Assign P {(u, v)}, s u and t v.
If s < 1, then go to step 4.
Assign r max { 1, maxts, k)e k}. If r _-< t, then assign s s and go to
step 2. Else assign P P tO {(s, r)}, s s and t r and go to step 2.
Assign s u + 1, and v.
If s >-_ t, then halt.
Assign r min {n, mints, k)e k}. If r < t, then assign P P tO {(s, r)},
s s+ andt r and go to step 5. Else, assigns s+ and go to
step 5.

6. Correctness. In this section, we demonstrate the correctness of algorithm
TRADEOFF via the following theorem.

THEOREM 4. Let G be a d-valent outerplanar graph. Let (G’, H, (x, y)) result from
applying TRADEOFF to G. Then H is a superhamiltonian cyclefor G with thefollowing
property: following Hfrom x to y yields a two-page embedding of G with pagewidth
<Cd log n, where C is a constant that can be chosen to have any value >_-8/(log 3/2).

Proof. The proof decomposes naturally into the proof of pagenumber (Lemma 5)
and the proof of pagewidth (Lemma 6). UI

LEMMA 5. Given the assumptions of Theorem 4, following Hfrom x to y yields a
two-page embedding ofG.

Proof. The proof is by induction on n. The inductive hypothesis is
(H. 1) G c G’;
(H.2) G’ is planar;
(H.3) H is a hamiltonian cycle of G’;
(H.4) (x, y) H is a lower edge of G’ such that there is no lower edge (u, v) of
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214 LENWOOD S. HEATH

G’ with u < x =< y < v (i.e., x and y are on the unbounded region of the
lower half-plane).

Step of Algorithm guarantees that the inductive hypothesis is satisfied when n -< 2.
For purposes of induction, assume that the inductive hypothesis is true for graphs

of size less than n and that n > 2. There are two cases determined by the cardinality of
the set S of exposed vertices of G: (1) [SI > 2 and (2) ISI 2.

(1) IsI > 2. TRADEOFF applies the string construction in steps 5 and 6. The in-
ductive hypothesis guarantees that after the applications of TRADEOFF to all the sub-
intervals, each xj and each yj is on the unbounded region ofthe lower half-plane. Therefore,
the lower edges (y, x+ 1), -< j =< q and (Xl, yq) can be added while maintaining
planarity (H.2). Clearly, G c G’ (H.1), and H is a hamiltonian cycle of G’ (H.3). Finally
x x and y y satisfy (H.4).

(2) IS[ 2. The edge (1, n) is in G and covers all other upper edges. TRADEOFF
applies the ladder construction to G in steps 7 through 9. In 2.2, the addition of the
separating upper edge (u, v) was shown to maintain planarity. In step 9, the application
of TRADEOFF to each G[ik, jk] yields (G’k, H, (Xk, Yk)) that satisfies the inductive hy-
pothesis. In particular, (H.4) applies to each (xg, yg). Since each x and Yk is on the
unbounded region of the lower half-plane, the ladder construction yields a planar result
(H.2). The ladder construction also makes G c G’ (H.1) and H a hamiltonian cycle of
G’ (H.3). Finally, (x, y) is explicitly chosen to satisfy (H.4).

This extends the induction for arbitrary G. Since His a hamiltonian cycle ofa planar
supergraph of G, it yields a two-page embedding of G ]. V1

To complete the proof of Theorem 4, we must bound the pagewidth of the two-
page embedding. It is sufficient to bound the cutwidth ofthe underlying linear embedding.
We use the notation cw (H) to mean the cutwidth of the linear embedding obtained by
following H from x through y. (G, x and y will be clear from context.) If and j are
vertices in H such that comes before j in the linear embedding, define cw ([i, j]) to be
the cutwidth of the linear subembedding from to j.

LEMMA 6. Given the assumptions of Theorem 4, cw(H)< Cd log n, where
C 8/(log 3/2).

Proof. The proof is by induction on n. The statement of the inductive hypothesis
mirrors the two cases of the algorithm. The inductive hypothesis is

(I. 1) If G has more than one block, then

cw (H)< Cd log n;

(1.2) If G is a singleblock, then

cw (H) =< max (1, Cd log n) def { 1, n] }.

Some explanation of the presence of the edge deficit in (1.2) is in order. In the string
construction, a large key block [mk, mk/ 1] must be able to absorb def {[mk, mk/ 1]}
additional cutwidth, as its cutwidth will dominate the cutwidth of the entire string con-
struction. The precise meaning of this statement will be clear from the proof. The max
(1, Cd log n) takes care of the case n 1. Note that a G with a single vertex can never
be the key block in a string construction.

For the basis of the induction, it is easy to check the inductive hypothesis for
n= landn=2.

For purposes of induction, assume that the inductive hypothesis is true for graphs
of size less than n and that n > 2. There are two cases: (1) G has more than one block
and (2) G is a single block.
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EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS 215

(1) G has more than one block. In this case, the string construction is applied (steps
5 and 6). Let us examine the linear order induced by H and (x, y) on V. H1 is a super-
hamiltonian cycle for G([ml, m2)) that begins at x Xl and ends at Yl. As such, HI can
be viewed as a permutation on [ml, m2). The string construction places the vertices of
[ml, m2) first in H, in this permuted order. Similarly, the vertices of [mz, m3) come next
in H, in the permuted order given by H2. In general, the q subintervals appear in
the same order in H as they do in the partition, though H permutes the vertices within
each subinterval. The permutation of the jth subinterval is always that of/-/.

It is now possible to bound cw (H) based on {cw (Hi)}. First, consider the cutwidth
of H between two subintervals, that is, cw ([yj, x+ 1]), _-< j _-< q 2. Suppose j < k.
Then the only edges that pass over the interval [y, x+ ] are dangling edges from m/

to [m, m+ 1). Hence,

cw ([yj, x + 1])--< d- < Cd log n.

Ifj >- k, by a similar argument, we have

cw ([y, x + 1]) --< d- < Cd log n.

Second, consider the cutwidth over a side subinterval. Consider the jth subinterval
in H, [x, y]. If j < k, then there are at most (d- 1) dangling edges from mj+l to

[m, m+ 1) that can contribute to cw ([x, y]) and at most d dangling edges from m to

Iraj_ 1, m) that can contribute to cw ([x., y]). Hence by (I. l)

cw ([x,y])<2d+ Cdlog (size {[mj, my+ 1)})

< Cd log n

since size {[m, m+ 1)} < 1/2n. Ifj > k, we have similarly

cw ([x,yj])<2d+ Cdlog (size {(m, m+ 1]})

< Cd log n.

Third and finally, consider the cutwidth over the key block, B[mk, mk + 1]- By (I.2),

cw ([Xk, Yk]) <= (Cd log (size { [rag, mk + 1] })) clef { [mk, mk + 1] }.
The only dangling edges that can contribute to the cutwidth over [xg, y] are those
incident to mk and mk+ 1. There are def { [mk, mk+ 1] } of these. Hence

cw ([Xk, Yk]) <---- Cd log (size { [rag, mk + l] })

< Cd log n.

Putting these three results together yields cw (H) < Cd log n. Thus G satisfies (I. 1).
(2) G is a single block. In this case, the ladder construction is applied (steps 7

through 9). The subintervals are [il, jl], [i, j]. Let

’= {(u, v,), (u, v2), "’, (u, v)}
where

Ul<U2<’" <ut<vt<"" <v2<vl and t=/(s+l)/23.

We first consider the case (1, n) e P. We can represent the order in H of the vertices of
Ve and of the subintervals by the following string:

ulvl[is- l,js- l][is,js]V2U2[il ,jl][i2,j2]u3v3[is- 3,js- 3][6- 2,js- 2]l)4u4[i3,j3][i4,j4]lt51)5

Of course, the vertices of the subintervals are permuted with H as they were in case (1).
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From the ladder construction, there are four recognizable types of subintervals,
two types on the left and two types on the right. While we could write down subscript for-
mulas for each of the four types, for the cutwidth argument it is sufficient to consider
the following four representatives of the four types: [i3, j3], [i4, j4], [is-3, js-3] and
[is-2, js-2]. The only edges that add to cw (Hk) are edges incident to vertices in Ve that
pass over the kth subinterval in H. The diagram in Fig. 23 illustrates the potential for a
vertex in Ve to have edges incident to some subinterval. For example, u2 or v2 might
have one or more edges to subintervals [il, jl], [is, js], [i2, j2], and [is-1, js-1]. Since we
are interested only in an upper bound on cutwidth, we ignore the possibility that the
existence of some edge may preclude the existence of other edges.

We start with the type represented by subinterval [i3, j3]. An examination of the
string for H together with Fig. 23 reveals the potential for edges passing over [x3, Y3]
from u3, v3, u4, v4, u5 and v5 only. Hence, by inductive hypothesis,

cw ([x3, Y3]) -< 6d+ cw (H3)

<= 6d+ Cd log (size { [i3 ,j3] })

<= 6d+ Cd log ]n
<= (Cd log n)- 2d

< (Cd log n) def { 1, n] }
since each subinterval contains at most ] n vertices.

Similarly, consideration of the three types represented by [i4, j4], [is-3, js-3] and
[is-2, js-2] reveals that at most 6 vertices in Ve can have incident edges adding to the
cutwidth of a subinterval. Hence, for all subintervals [xk, Yk] in H,

cw ([Xk, Yk]) <= (Cd log n) -def {[ 1, n] }.
Consideration of intervals in H between the subintervals (e.g., [us, vs]) yields no worse
an upper bound. Hence we conclude that cw (H) -< (Cd log n) def {[1, n] }.

The case in which (1, n) ’ P is similar to the preceding case. The additional left or
fight subinterval cannot boost the cutwidth above (Cd log n) -def {[1, n] }. Hence in all
cases, (I.2) holds.

This completes the induction and the proof of the lemma. E3

7. Performance. In this section, we analyze the time and space complexity of
TRADEOFF. Of course, the complexity depends on the representation of data. While

FIG. 23. ProofofLemma 9.
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we do not prescribe the details of the data representation, we do require that the repre-
sentation make elementary operations efficient (i.e., constant time per edge or vertex).
A place where this requirement is crucial is Algorithm 3 for finding a separating edge.
To accomplish step in linear time, it is necessary to be able to recognize the next
(counterclockwise) edge of an interior face in constant time. It is easy to represent G so
that this is possible. A reasonable representation puts all the edges adjacent to a vertex
of G in a circular list in counterclockwise order; for each edge (u, v), there is a link from
its position in the u-list to its position in the v-list. In this representation, the edges ofan
interior face can be traversed in constant time per edge.

First, we note that all operations ofTRADEOFF performed on G except the recursive
calls require linear time. From the description of the steps in 3, all steps are clearly
linear time except steps 6 and 9. From the description of the string construction, G’ can
be constructed in linear time from the { Gj } (step 6). Similarly, the ladder construction
can be accomplished in linear time (step 9). Hence, the entire algorithm excluding recursive
calls can be implemented in linear time.

Let T(n) be the time complexity of TRADEOFF. Let n, n2, "", np be the sizes of
the subintervals either in step 5 or in step 9, depending on which case holds. Then,
,= nk <= n and nk <---- n, <--_ k <- p. By the result ofthe previous paragraph, there exists
a constant c such that

p

T(n) <= cn + , T(nk).
k=l

LEMMA 7. If T(1) is one unit oftime, thenfor all n > 1,

T(n) <- (c]log )n log n.

Proof. By induction on n. The lemma is certainly true for n 2. Assume n > 2
and assume the truth of the lemma for values smaller than n. Then,

p

T(n) cn + T(nk)
k=l- cn + k. C log n log n

Ncn+ c log nlogn
k=l

=cn+ c log nlogn

(/ 3)(/ 3) 3
=cn+ c log nlogn- c log nlog

c log nlogn.

The lemma follows by induction, ff]

The space requirements of TRADEOFF are clearly n times some small constant.
We thus have the following.

THEOREM 8. TRADEOFF has time complexity at most Cln log n and space com-
plexity at most C2n, for small constants C, C2.
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8. Conclusion. We have investigated tradeoffs between pagenumber and pagewidth
that are significant in a YLSI context. Our main result is an algorithm for obtaining a
book embedding for outerplanar graphs that is within a constant factor of optimal in
VLSI area for the class of outerplanar graphs. While this near-optimality is not guaranteed
for individual outerplanar graphs, we know of no example of an outerplanar graph for
which our algorithm fails to obtain near-optimal area. Our algorithm embeds any
d-valent n-vertex outerplanar graph in a two-page book with at most Cd log n pagewidth,
C 8/(log 3/2); the algorithm executes in time O(n log n). We show that at the cost of
one additional page above optimal pagenumber, layouts of near-optimal cutwidth for
outerplanar graphs can be obtained constructively.

Our result is applicable to the motivating DIOGENES design problem. The result
bounds the area of a two-stack DIOGENES layout for a circuit represented by an out-
erplanar graph.

A fruitful area for further research is tradeoffs between pagenumber and pagewidth.
It is not known how prevalent such tradeoffs are or whether dramatic tradeoffs exist for
any pagenumber. In the context of VLSI problems, algorithms for embedding a graph
in a bounded number of pages with pagewidth close to the cutwidth of the graph could
be most practical. We do not know ofany example where adding one or two pages above
the pagenumber of G does not give us an embedding whose pagewidth is within a small
constant factor ofthe pagewidth ofG; there is hope that such algorithms exist for important
classes of graphs. In particular, we believe that such an algorithm is possible for planar
graphs. The algorithm would embed any d-valent planar graph in a B-page book with
Cd/- pagewidth where B and C are small constants. Our planar graph algorithm [4] or
the similar algorithm of Yannakakis 11 might serve as the starting point for obtaining
bounded pagenumber. The small pagewidth would depend on a version of Lipton and
Tarjan’s [7] planar separator theorem tailored to this problem. The result of Miller [8]
on separating cycles in planar graphs is relevant here, though it is not sufficient by itself.
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