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1. Introduction 

An important class of combinatorial problems 
consists of set covering and partitioning problems. 

Many such problems are NP-complete. A typical 
problem is the MINIMUM COVER problem [2]. 

MINIMUM COVER 
Instance: Collection C of subsets of a finite set 

S, positive integer K < 1 C I. 

Question : Does C contain a cover for S of size 
K or less, i.e., a subcollection C’ c C 
with 1 C’ 1 6 K such that every ele- 
ment of S belongs to at least one 
member of C’? 

In an instance of MINIMUM COVER, the 
subsets of S are listed, and S itself is implicitly 
represented as the union of these subsets. For our 
problems, the representation of the instance is in 
some sense the reverse. The instance consists of a 
set of integers. The subsets are implicitly derived 
from the set; in particular, the subsets are the 
finite arithmetic progressions contained in the set. 

We define two new problems for this class of 
instances. The first is the set covering problem 
that is the analog of MINIMUM COVER. The 
second is an exact covering problem where the 
cover must also be a partition of the set. Our 
result is that both problems are NP-complete. 

Arithmetic progressions in finite sets of integers 
have been studied by mathematicians for many 

years (see, for example, [1,5,6]). The primary pur- 
pose of this study has been to estimate rk(n), the 

greatest integer such that some subset of { 1, . . , n } 
of cardinality rk(n) contains no arithmetic pro- 
gression of length k. 

One practical motivation for our problems ap- 
pears in Grobman and Studwell [3] in a two-di- 
mensional version. A programmed electron-beam 
machine places patterns at discrete locations 
(points) on a mask used in the manufacture of 
VLSI chips. The pattern points are given as a set 
of integral grid coordinates. An m X n rectilinear 
grid is a set of mn pattern points arranged regu- 
larly to form both m rows of n points each and n 

columns of m points each. The electron-beam 
machine is able to process the set significantly 
faster when its input is encoded as a set of rectilin- 
ear grids that cover the pattern set. The encoding 
problem is then to cover the pattern set with as 
few rectilinear grids as possible. Grobman and 
Studwell give an heuristic for this two-dimensional 
encoding problem. The corresponding one-dimen- 
sional problem is our EXACT COVER BY 
ARITHMETIC PROGRESSIONS. Our NP-com- 
pleteness results imply the NP-completeness of the 
two-dimensional problem of Grobman and 
Studwell. 
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2. Definitions 

Let X be a finite set of positive integers. Let 
Y = {Y 11 < i < M} be a collection of subsets of 
X such that X = U,“~,F. A subcollection { Y, 11 < 
j < K } chosen from Y is a K-couer for X (or 
simply a couer) if X = UT=iY,. The subcollection 
is an exact K-cover (or simply an exact cover) for 
X if it is a K-cover and Y, n Y, = B whenever 
i, Z i,. 

An arithmetic progression (AP) of length k is a 
set of integers of the form: { a + bi 10 < i < k} 

where a > 1 and b > 1 are constants; b is the 
increment of the AP. An arithmetic progression of 
length k is called a k-AP. If x =G y, let [x, r] 
denotethe(y-x+1)-AP{x,x+l, . . .._y}. 

The known NP-complete problem that will be 
used in the reduction of the next section is EX- 
ACT COVER BY 3-SETS [2]. 

EXACT COVER BY 3-SETS (X3C) 
Instance: Set X with ] XI = 3q and a collec- 

tion Y of 3-element subsets of X. 
Question: Does Y contain an exact cover for X, 

i.e., a subcollection Y’ c Y such that 
every element of X occurs in exactly 
one member of Y’? 

X3C was shown to be NP-complete by Karp 
[4]. Note that an exact cover Y’ for X has cardi- 
nality I Y’ ( = q. 

We now define the decision problem versions 
of our two set covering problems. 

EXACT COVER BY ARITHMETIC PROGRES- 
SIONS (XAP) 
Instance: Set S of integers, positive integer J =G 

IS I. 
Question: Is there an exact J’-cover of S, J’ < 

J, taken from the collection 

Z= {Z,cS]Z, isanAP}? 

COVER BY ARITHMETIC PROGRESSIONS 

(CAP) 
Instance: Same as XAP. 
Question: Is there a J’-cover of S, J’ G J, taken 

from the collection 

Z= {Z,cS]Z, isanAP}? 

294 

Note that the collection Z is not explicitly part 
of the instance but is defined implicitly as all 
arithmetic progression in S. It is easy to see that 
both XAP and CAP are in NP (for definitions of 
NP and NP-complete, see [2]). A nondeterministic 
Turing machine can guess a collection of subsets 
of S and check in polynomial time that each 
subset is a k-AP, that the size of the collection is 
no greater than J, and that the collection is an 
exact cover (or cover) for S. The reduction of an 
instance of X3C to an instance of XAP or CAP is 
given in the next section, where several properties 
of the reduction are presented as lemmas. The 
NP-completeness of XAP and CAP is proved in 
Section 4. 

3. The reduction 

Let X and Y constitute an instance of X3C 
such that I XI = 3q. We may assume that X= 
(1, 2,. . .,3q} (otherwise, first map X to (1, 2, 
. . . ,3q}). This instance will be reduced to an in- 
stance S, J of either XAP or CAP. Let ] Y I = M. 
Let the bound on the number of APs in a cover be 
J = q + 4M. The S we construct contains no AP 
of length greater than 3, and I S I = 3(q + 4M). 
Thus any cover of S must consist of exactly J 

3-APs; in particular, we need not consider 2-APs. 
We construct inductively a sequence of sets S,,, S,, 
. . . . S,,, such that S, c S, c ..* C S,= S. S, 
represents X, and S, - S, _ 1 represents Yj E Y. 

Along with each set Sj, we define an integer Nj 
which is always the largest element of Sj. Initially 
define 

S,={eiIej=3X4’,1<i<3q}, 

N, = 3 x 43q. 

The integer e, E S, represents i E X. Note that the 
elements of S, encode the elements of X so that 
no three elements of S, form a 3-AP. 

Now assume that S,_ 1 and N,-, have been 
defined, 0 cj G M. Let rJ = {r, s, t }, r < s < t, be 
the jth subset of X in Y. Let aj = e,, b, = e, and 
c, = e,. Note that these are the three elements of 
S, that represent r, s, and t. Define twelve in- 
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tegers to represent 

a,’ = aj + 6OON,_,, 

b; = b, + 606N,_,, 

c; = c/+ 612N,_,, 

a, = a, + 9OON,_,, 

p, = b, + 909N,_ 1, 

yj = c, + 918N,_,, 

r/ in S: 

ai’ = aj + 12OON,_,, 

b,” = bj + 1212N,_,, 

CJ 
I' = cj + 1224N,_,, 

Proof. 9OONj_, < ~j ~ 9OlNj_1 < 909Nj_l < pj ~ 
910NJ_ 1 < 918N,_, < yj G 919N,_, follows from 

O<a,, b,, cJ < NJ_, and the definitions of ‘Y~, flj 
and yj. 

Expanding the definition of S,, we obtain 

S, = 24 - aJ + 918N,_, 

=2x3x4”-3x4’+918NJ_, 

> 918N,_, 
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SJ = 2pJ - CX~ = 2bJ - a, + 918N,_,, 

eJ = ii$, - fy, = f(8bj - 4a, - c,) + 918N,_,, 

[, = $8, + iyJ = +(4bj - 2a, + c,) + 918N,_,. 

Now define S, and N,: 

7;= {al, b,‘, c;}. 

q.= {a/, pj, 7~9 ‘j, ‘jt SJ}? 

y= {a;‘, bJ’, c,“}, 

SJ=SJ_1u7;uu,u~., 

NJ = c;‘. 

Finally, define S = SM. 
That S is well defined is easy to show by 

induction. Clearly, S can be obtained in poly- 
nomial time. The following lemmas are easy to 
obtain. 

Lemma 3.1. 1 S 1 = 3q + 12M. 

Lemma 3.2. S, c [0, N,] and hence if x, y E SJ, 

then ) x -y ) < NJ. 

Lemma3.3.(Sj-S,_,)n[O, N,_,]=fl, i.e.,(S,- 
S,_,) is totally “to the right” of Sj_l. 

We now determine the structure of the arith- 
metic progressions of S. In particular, we aim to 
show that 3-APs of a certain form exist and no 
others (Lemma 3.6). To begin, the following lemma 
gives the order of the elements of q. 

Lemma 3.4. For 1 <j G M, 

9OON,_, < (y/ < 9OlN,_,, 

909N,_, < pj 6 91ON,_,, 

917NJ_,<ej<SJ<5,<yj<919Nj_,. 

since s > r. Also, 

sj < 3 x 4$+l - 3 x 4’ + 918N,_, 

<3x4’+918NJ_, 

= yj. 

Hence, 918N,_, < S, < y,. 
Expanding the definition of eJ, we obtain 

Cj = $6, - fy, 

-c $8, - $3, 

= 6 
J' 

Also, 

EJ=f(8bJ-4a,-cj)+918NJ_, 

= 8 x 4” - 4 x 4’ - 4’ + 918N,_, 

> -4’ + 918N,_, 

> 917N,_,. 

Hence, 917N,_, < cJ < 6,. 
Since S; is a convex combination of SJ and y,, 

sJ’S;CYJ. q 

The following lemma states that there are large 
gaps between any two of the sets S,_i, T,, UJ and 
V,. Such gaps will make 3-APs of certain forms 
impossible. 

Lemma 3.5. For 1 <j< M, Sj_l c [l, N,_,], T/C 
[6OON,_,, 613N,_,], U, c [9OON,_,, 919N,_,], and 
v; c [12OON,_,, 1225N,_,]. 

Proof. SJ_l c [l, NJ_,] follows from Lemma 3.2. 
q c [6OON,_ 1, 613N,_,] follows from 0 < a, < b, 

< cj < N,_, and from the definitions of al, b;, ci. 
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VJ c [12OON,_,, 1225Nj_,] follows by a similar which implies b, = +( a, + cj). But this is a con- 
argument. Uj C [900Nj_i, 919N,_,] follows from tradiction to the fact that { aj, b,, c,} does not 
Lemma 3.4. 0 constitute a 3-AP. 

To summarize, we have shown that the ele- 
ments of Sj - S,_i occur in the order 

a;, b,‘, ci, a,, P,, e,, sj, S*, Yj, al’, b,“, cl’, 

We are now prepared to define 3-sets of S that 
are 3-APs. For 1 <j G M, define 

Aj= {aj, al, a(‘}, Bj= {b,, b,!, bj’}, 

C,= {C,’ c;, c(‘}, 

A; = {al, aj, a;‘}, B,! = {b,‘, pj, bj”}, 

c,‘= {CJ, Y,, q>, 

Dj= {aj> Pj, a,}, Ej= (~1, S;, Yj}, 

q= { cj9 sj, S,}. 

(2) P = V;. The contradiction is the same as for 
(1) P = q. 

The main result of this section is the following 
lemma. 

Lemma 3.6. The only 3-APs in S are Aj, B,, Cj, AS, 
B,‘, C,‘, D,, E,, and F,, 1 6 j < M. 

Proof. It is easy to check that each of the given 
sets is a 3-AP. The proof that only these sets are 
3-APs is by contradiction. Assume that S contains 
a 3-AP P={x, y, z} such that x<y<z and 
such that P is not one of the given sets. 

Let j be smallest such that z E S,. As already 
noted, no three elements of S, constitute a 3-AP. 
Thus j # 0. From the bounds in Lemma 3.5, it is 
clear that the only possibilities for P are 

(1) P = TJ; 
(2) P = v;; 
(3) x E Tj, y E Uj, Z E Vj; 
(4) X E Sj-1, Y E Tj, Z E V,; 
(5) PC q. 

We now derive contradictions for each of these 
possibilities. 

(1) P= q. Then x = a;, y = b,‘, z = ci and 
y = +(x + z). Expanding x and z, we obtain 

y = :(X + z) 

= i(aj + 6OON,_, + c, + 612N,_,) 

= i( aj + c,) + 606N,_, 

= b, + 606N,_, 

(3) x E T,, y E Uj, z E V,. Since Al, B,! and C,’ 
are 3-APs meeting this condition, we need not 
consider them here. There remain 6 subcases: 

(i) x = al, z = b,“. Then, 

y = i ( a,’ + b," ) 

= i( aj + 6OON,_, + b, + 1212N,_,) 

= I( aj + b, + lSlZN,_,) 

E [906~,_,, 907~~_,]. 

(ii) x=aJ, z = c;‘. Then, 

y = i( a, + 6OON,-, + c, + 1224N,-i) 

E [912Nj_,, 913N,_,]. 

(iii) x = b,‘, z = al’. Then, 

y = :(b, + 606N,_, + aj + 12OON,_,) 

E [903N,_,, 904N,p,]. 

(iv) x = b,‘, z = cl’. Then, 

y = ;(b, + 606N,_, + c, + 12244-i) 

E [915N/_r, 916N,_,]. 

(v) x=c! ,, z = a;‘. Then, 

y = i( c, + 612N,_, + a, + 12OON,_,) 

E [906~,-,, 907~,_,]. 

(vi) x=c(, z = b,“. Then, 

y = ;(c, + 612N,_, + b, + 1212N,_,) 

E [912N,_,, 913N,_,]. 

For each subcase, the inequalities of Lemma 3.4 
show that y G U,, a contradiction to y E Uj. 

(4) x E sj-12 Y E T,, z E q. Consider the fol- 
lowing bounds: 

x E [O, N,-,] > 

a; E [600~,_,, 601N,_,], 
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b; E [606N,-,, 607N,_,], 

c; E [612+,, 613N,_,], 

ayE [12OON,_,, 12OlNj_,], 

b;’ E [1212Nj_,, 1213N,_,], 

c;’ E [1224&i, 1225&l. 

If z = cl’, then y = $(x + z) and 612N,_, <y < 
613N,_,, hence y = c;, x=c, and P=C,. Simi- 
larly, if z = b,“, then P = B,, and if z = a;‘, then 
P = A,. All cases are contradictions to P not being 
one of the 3-APs named in the lemma. 

(5) P c l$. From the bounds in Lemma 3.4 and 
from P # D,, we can further assume that x, y, 
z E { cj, S,, {,, y, }. From the inequalities of Lemma 
3.4, x and y must be chosen from ( E,, S,, S, }, 
and the only choice not covered by E, or F, is 
x = S,, y = {,. From the order properties of Lemma 
3.4, z = yj. But c, = ;S, + +y, + ;(a, + y,). 

For all possible values of P, there is a con- 
tradiction. Thus the only 3-APs in S are those 
given in the statement of the lemma. 0 

4. NP-completeness 

Theorem 4.1. X3C reduces to XAP. 

Proof. Suppose Y’ is an exact cover for X. We 
construct an exact cover by APs Z’ c Z. For each 
r, E Y’, put A,, BjJ Cj, D, and E, in 2’. For 
each Y, E Y’, put Aj, B,‘, C,’ and F, in Z’. It is 
easy to check that Z’ covers S and that no 
element of S is in two elements of Z’. The cardi- 
nality of Z’ is q + 4M = J. Hence, Z’ is an exact 
cover by J APs for S. 

Now suppose that Z’ is an exact cover by J 
APs for S. By Lemma 3.6, we need only consider 
3-APs, since S contains no 4-APs. Let Y’ = 
{y IE,EZ’}. If E,EZ’, then C,‘, F,EZ’, since 
Z’ is a partition of X. But then D, must be in Y’ 
for 8, to be covered. Dj E Z’ implies A’ B,! 66 Z’. 
Thus, Aj, Bj; Cj E Z’. If Ej 4 Z’, C,f’: 5 E Z’. 
Thus, Dj ~5 Z and Ai, B,’ E Z’. A,, B,, C, @ Z’. 
Thus A,, Bj, C, E Z’ if and only if E, E Z’. Now, 
Aj, B,, C, E Z’ corresponds to covering the three 

integers in S, that encode the three elements of 
Y,. Thus lJ, ~ y,Y, = X. Y’ is an exact cover of X 
since Z’ is an exact cover by J APs of S. 0 

Corollary 4.2. XAP is NP-complete. XAP re- 
stricted to instances where S contains no AP longer 

than 3 is NP-complete. 

Theorem 4.3. X3C reduces to CAP. 

Proof. Same as Theorem 4.1 since a cover for S of 
size J by 3-APs cannot cover any element more 
than once and hence is also an exact cover. q 

Corollary 4.4. CAP is NP-complete. CAP restricted 

to instances where S contains no AP longer than 3 is 

NP-complete. 

5. Conclusion 

Because the integers used in our proofs are 
exponentially larger than 1 X 1, we have not shown 
our problems to be NP-complete in the strong 
sense [2]. Therefore, there is hope for a pseudo- 
polynomial time algorithm for each problem. 

Let 1 S I = n. If we restrict Z to only those 
APs having a fixed increment m, then we 
find a minimum cover from Z in O(n log n) time 
as follows. Associate each b E S with the re- 
mainder/quotient pair (b mod m, [b/m]). Sort 
the pairs lexicographically. A single scan of the 
sorted pairs finds all maximal APs in S having 
increment m. More generally, if we restrict Z to 
contain only APs having increments from a fixed 
set {m,, . . . , m, }, then there is a dynamic pro- 
gramming algorithm to find a minimum cover or 
an exact cover in O(n log n + 2’n) time. Since 
there can be (J) different increments among the 
APs of S, a dynamic programming algorithm can 
find a minimum or exact cover in 

0( n log n + 2’;‘n) 

time. We challenge the reader to find more effi- 
cient solutions for these new set covering prob- 
lems. 
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