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Abstract

Networks of biological components are common in
the life sciences. The annotation of such networks with
experimental data and biological knowledge gives rise
to a rich, though generally incomplete, semantics of a
real biological phenomenon. One tool for investigating
such networks is microarray technology, a modern win-
dow into patterns of gene expression in cells. Current
bioinformatics work on gene expression data addresses
mechanisms underlying successful responses to drought
stress in plants, which naturally leads to problems in-
volving biological networks. Some biological context
precedes a discussion of these problems.

1. Introduction

Plants have evolved to cope with a variety of en-
vironmental stresses, both abiotic — drought, heat,
cold, and salt — and biotic — pathogens and in-
sects. The imposition of stress on a plant marshals
defense responses at the cellular level. The exact de-
fensive resources marshaled exhibit both common fea-
tures and divergent features among the various stres-
sors. In addition, defense mechanisms can operate col-
laboratively or independently under different circum-
stances. The Expresso project — a Next Generation
Software system for microarray experiment manage-
ment and data analysis — is actively pursuing func-
tional genomic and bioinformatic approaches to inves-
tigate these defense mechanisms, particularly in the
context of drought stress in loblolly pine, Arabidopsis
thaliana, and potato. The project utilizes biological in-
formation from multiple sources — experimental data
(especially gene expression data); sequence, protein,
and other databases; and the biological literature —
to build a new generation of biological models, called
multimodal networks, that can represent multiple as-

pects of the current state of biological knowledge and
of biological systems themselves: responses over time;
response variation by subcellular compartments; un-
certainty (our lack of complete knowledge of cell state);
and the dynamic changes in biological information due
to the boom in biological data and knowledge. This is a
preliminary report on experience with networks within
the Expresso project.

2. Some Biological Background

Chapter 1 of Waterman [45] gives a mathematician-
friendly introduction to molecular biology. Text-
books with an intermediate or advanced treatment of
the requisite biology include Cooper [12]; Brown [5];
Lewin [30]; Griffiths et al. [19]; and Buchanan et al. [6].
The Oxford Dictionary of Biochemistry and Molecular
Biology [41] is a good reference for essential terminol-
ogy.

All organisms consist of living subunits called cells.
Plants are eukaryotes (as are animals), meaning their
cells contain subcellular compartments, including a nu-
cleus. Deorxyribonucleic acid (DNA) is the class of
macromolecule that is the primary carrier of the in-
herited (genetic) information used to perpetuate the
life of the cell. In eukaryotes, the nucleus of each cell
contains DNA organized in some number of chromo-
somes, which is a characteristic of the species. each
cell of a eukaryote carries the same genetic informa-
tion, that is, identical copies of all the chromosomes of
that individual organism. Each chromosome contains
genetic information as a string over a 4-letter alphabet
{A,C,G, T}. A gene is a substring of a chromosome
that, for our purposes, is the instruction for a partic-
ular, basic function within a cell. The entirity of the
genetic information within an organism is its genome.
Ribonucleic acid (RNA) is the class of macro-

molecule that carries information on a more transient
basis. Messenger RNA (mRNA) is the form of RNA
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that is used to transcribe (make a copy of) the en-
coding of a gene from the chromosome containing the
gene. This mRNA (copy) then travels through the nu-
clear membrane to the intracellular space outside the
nucleus and then to the ribosome, an organelle respon-
sible for translating the information in the mRNA into
a functional unit called a protein, a polypeptide de-
termined by a sequence of amino acids encoded via
the mRNA string. For our purposes, the amino acids
are an alphabet of 20 distinct chemical components.
It is the sequence of amino acids that determines the
function of a protein. A protein may be an enzyme, a
molecule that catalyzes a chemical reaction, or a struc-
tural component, such as a part of the nuclear mem-
brance. Over time, proteins are degraded and their
chemical constituents (the amino acids) are recycled
for reuse. This occurs because a protein age or because
its function is no longer needed. Hence, within a cell,
new proteins must be constantly produced as needed.
The transcription/translation process is the basis pro-
cess for protein production. This is by no means the
only common process within a cell. For example, nu-
merousmetabolic pathways are involved in essential cell
processes such as bioenergetics and the biosynthesis of
macromolecules. All such pathways participate in in-
teresting biological networks.

Within a cell, at any particular time, only a sub-
set of the genes are being transcribed. Gene activation
is the process by which transcription of a gene is ini-
tiated. A gene undergoing transcription is said to be
expressed; gene expression can be detected through the
existence of the corresponding mRNA. The amount of
transcription and the amount of mRNA varies from
gene to gene among the genes that are expressed. The
amount of mRNA in a cell is an indicator — albeit a
weak indicator — of a need for the function of the cor-
responding protein. The exploitation of this indicator
is one part of functional genomics.

3 Reactive Oxygen Species

A plant is subject to a variety of environmental
stresses, including drought, heat, cold, and salt, that it
must protect itself against. One reason these stresses
are dangerous and destructive is that they promote
the creation of reactive oxygen species (ROS) (among
which are H2O2 and O−

2 ) within the cell. ROS, in turn,
are capable of dismantling essential proteins and other
molecules within the cell. The cellular environment
becomes more oxidized as a result of the presence of
ROS. Hence it is imperative that the cell rapidly re-
duce ROS to harmless molecular species. Figure 1 il-
lustrates some basics of the process by which the cell

responds to a shift to a more oxidized (less reduced)
state (a change in redox status). The cell always has
some antioxidant molecules present to respond rapidly
to increased ROS levels; these constitute the metabo-
lite defense. Significant oxidative stress can overwhelm
the metabolite defense, leading to a net increase of ROS
levels in the cell. These increased levels are detected
by various means, including receptors in the cell mem-
brane, protein kinases, phosphatases, and redox sensi-
tive transcription factors. These transcription factors
travel to the nucleus and activate genes necessary to a
sustained defense against ROS. The transcription and
translation of these defense genes leads to an increase in
proteins and other metabolites involved in antioxidant
defense and in damage repair. If the stress continues
for a sufficient time, the plant acclimates to the stress
and devotes additional resources to being prepared for
future stress events, even after the stress is removed.

Activation of stress resistance genes associated with
three distinct functions can occur as a consequence
of exposure to drought: (1) synthesis of molecules
associated with specific resistance to drought stress,
such as proline for osmotic adjustment to water stress,
aquaporins for water movement across membranes, ex-
tensins, and proline-rich proteins for cell wall exten-
sibility events; (2) activation of oxidative stress resis-
tance processes, such as antioxidant-based mechanisms
for sustained removal of ROS; and (3) removal or re-
pair of damaged macromolecules, such as the action
of molecular chaperones on denatured proteins, or the
enzymatic removal of lipids that have undergone per-
oxidation.

Unless ROS are removed promptly, their action can
cause protein unfolding, the inactivation of enzymes,
DNA damage, mutagenesis, lipid peroxidation, and
disruption of cell membrane function. A novel alde-
hyde reductase acts to remove the products of drought-
mediated lipid peroxidation [37]. Heat shock pro-
teins/molecular chaperones are important players in re-
sistance to oxidative stress [20, 21, 46]. Molecular chap-
erones interact to protect against damage to macro-
molecules through the repair of denatured proteins or
through targeting irreversibly damaged proteins to the
ubiquitin/proteasome pathway.

In the case of adaptation to threats to cellular sta-
bility, such as oxidative stress, biologists know already
that defense mechanisms are abundant and diverse.
These mechanisms are organized in functional and sig-
naling pathways that span space and time. One man-
ifestation of cellular organization and plasticity in eu-
karyotes is subcellular specialization within compart-
ments. Each subcellular compartment is specific with
respect to its internal environment, the metabolic func-
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tions that are enabled there, and the means by which
it communicates with the rest of the cell. In the case of
organelles such as the mitochondrion and the chloro-
plast that contain their own genome, an organellar-
nuclear interdependence necessitates the exchange of
signals to balance gene expression in the two compart-
ments, and the coordination of responses to environ-
mental changes. In the case of organelles such as the
peroxisome, signals imposed external to the cell lead
to organelle proliferation. These mechanisms indicate
the complex, dynamic processes occurring constantly
within the cell and among the structural components
of its hierarchy.

Plants have evolved anti-ROS protective response
mechanisms involving the production of colored pig-
ments such as carotenoids and anthocyanins [2, 32, 43,
48], sometimes called sunscreens for plants. Biosynthe-
sis of the protective pigments is stimulated upon expo-
sure to oxidative stress. Carotenoids act to protect the
genome among other anti-ROS functions [11]. Antho-
cyanins are synthesized via the phenylpropanoid path-
way in plants; this pathway also produces flavonoids,
another class of protectant molecules. Carotenoids are
produced via the isoprenoid pathway [11].

4. Microarrays and Expresso

The desire to understand the complex networks
of interactions that characterize plant response to
drought stress leads to experiments that investigate
patters of gene expression in cells under drought
and non-drought conditions. Microarrays are a high-
throughput biotechnology to access in parallel the gene
expression patterns in cells under specific experimental
conditions. A particular microarray experiment that
my collaborators have defined but not yet performed is
intended to determine which genes in Andean potato
varieties are responsible for the superior drought stress
resistance and vitamin content found among certain
varieties. Figure 2 contains a diagram representing
this experiment. The diagram indicates that many of
the steps in the experimental loop are computational
in nature. For our purposes, the important biological
steps result in the creation — via robotic printing —
of a microarray, which is a slide containing thousands
of “spots” of material, each representing a particular
gene; the hybridization of RNA extracted from cells
under two different experimental conditions to the ma-
terial on the slide; and the scanning of the hybridized
microarray into two images, each representing the re-
sponse of every spot to one of the two experimental
conditions.

Once the two images are obtained, there is signifi-

cant computation required to access the meaning con-
tained therein. First, image processing is done in each
image to reliably identify the thousands of spots to as-
sociate each spot with the corresponding gene and to
correlate the intensity (brightness) of each spot with
the level of gene expression of the corresponding gene.
Statistical analysis of the obtained intensities must be
performed to access a level of confidence in an hypoth-
esis such as ‘The gene expression of gene x under the
second experimental condition is higher than under the
first experimental condition.” Support for such hy-
potheses are a first hint as to which genes are important
for, say, enhanced stress resistance. Combining the re-
sults from multiple genes and multiple experiments is
a more challenging problem toward that end. Expresso
uses data mining techniques, especially inductive logic
programming (ILP), and Bayesian networks.

Expresso is an innovative and integrated solution to
microarray experiment management and data analy-
sis that is being developed by an interdisciplinary re-
search team at Virginia Tech. Expresso integrates all
phases of microarray experiments into one system, in-
cluding experiment design (selection of genes, chip lay-
out, specification of hybridizations to be performed);
image analysis; statistical analysis; data management
via a unique semi-structured database; data mining via
inductive logic programming (ILP) [33]; and integra-
tion of biological information from diverse sources into
the database, analyses, and data mining. An impor-
tant aspect of the integrated nature of Expresso is that
it organically provides support for closing the experi-
mental loop, allowing the results of the analysis of data
from previous experiments to feed directly into the de-
sign of subsequent experiments. See Figure 3. The
flexibility of Expresso is reflected in its support for mul-
tiple alternatives at each phase of the experiment (e.g.,
the statistical analysis discussed below), as opposed to
the myriad stand-alone software systems that support
a single alternative for a single phase. Of particular
interest is the planned database of biological networks.

Numerous statistical techniques for analyzing the
rich datasets generated in microarray experiments have
been proposed and implemented [3, 9, 18, 24, 25, 26,
27, 28, 29, 31, 36, 42, 47, 49]. Each technique aims to
address one or more aspects of the complexity of mi-
croarray datasets and none is capable of applying im-
mediately to resolve every dilemma posed by the high-
dimensional parameter space in which the datasets re-
side. The design of the Expresso system recognizes the
value of having multiple statistical techniques available
and, indeed, of applying diverse techniques to a data
set. Confirmation of results from multiple analyses is
analogous to confirmation via repetition of an experi-
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ment but entails only the marginal cost of some addi-
tional computation. for microarray data.

The Expresso approach to further analysis empha-
sizes data mining. Data mining techniques, primarily
ILP, are used to suggest high-level descriptors from ex-
pression data. Inductive logic programming (ILP) [34]
provides a structured approach to finding rules that
associate the level of gene expression to experimental
conditions (such as levels of stress). ILP uses the lan-
guage of first-order predicate logic to encode experi-
mental conditions, gene clusters, and other properties
useful for forming high-level representations. For ex-
ample, activation(expt1,gene-cluster1,0.5) as-
serts that genes in gene-cluster1 are moderately ac-
tivated under the conditions of experiment expt1. The
rules produced by ILP specify the interactions between
the various predicates and their parts. This also en-
ables domain-specific background knowledge (such as
the fact that the activation of a certain group of genes
are known to be inversely correlated with expression
data of a different group) to be incorporated into the
data mining process [4]. In addition, the induced con-
cept descriptions are easily comprehensible — the ex-
ample rule:
activation(E2,G,-1) :- activation(E1,G,-0.5),

stresslevel(E1,S1),

stresslevel(E2,S2),

S2>S1+2.

expresses the mined pattern that genes in a cluster
(G) go from ‘moderately repressed’ (E1) to ‘heavily
repressed’ (E2) by increasing stress levels (from S1 to
S4) by more than two orders of magnitude.

The networks mined by such techniques can rep-
resent temporal and causal relationships in a simple
form. Expresso can use Bayesian networks [22] that
propagate conditional probabilities through a graphical
representation, and thus model causal relationships in
a direct way. In addition, Bayesian networks can han-
dle noise, hypothesize missing variables, and encode
expert knowledge in a limited form. The complexity of
learning Bayesian networks is NP-hard but various ap-
proximation algorithms such as the EM (expectation-
maximization) approach lend credibility to its use in
bioinformatics.

5. Experimental Results

Colleagues Ruth Grene and Boris Chevone have in-
vestigated expression patterns of genes in needles of
loblolly pine seedlings that had been exposed to cy-
cles of drought conditions over a growing season. The
pine seedlings were subjected to mild severe drought
stress for four mild stress (a level of drying in pine

needles that results in little effect on growth and new
flushes compared to control trees) or severe stress (a
level of drying in pine needles that results in growth
retardation with markedly fewer new flushes compared
to controls) for four or three cycles, respectively. To-
tal RNA was isolated from the samples by the method
of Chang et al. [8], modified in Ruth Grene’s labora-
tory and used as a source of material to probe mi-
croarrays with spots representing genes from the NSF
Pine Genome Sequencing Project (Ronald Sederoff, PI,
NCSU).

Many of the 60,000 mRNAs sequenced by the Pine
Genome Sequencing Project have a proposed func-
tional annotation derived from a BLAST (sequence)
search of protein databases. In the first year (1999),
384 genes of known function were printed. A 2103
genes set was used on the microarrays in the second
year (2001). A system of functional categories was
set up to include all the genes that were printed. Us-
ing statistical and data mining algorithms incorporated
in Expresso [1], genes and groups of genes involved
in stress responses were identified. Signal transduc-
tion, drought acclimation, photosynthesis, and protec-
tion /repair genes are up-expressed specifically in ac-
climated needles. The numbers of genes whose expres-
sion was affected under mild conditions, and not un-
der severe conditions were 38, 960, and 281 for Cy-
cles 1, 2 and 3. Some of the categories into which
these genes fell were transcription factors, drought-
acclimation, oxidative stress resistance and protection
and repair. At the final harvest under mild condi-
tions in 1999, the expression of genes associated with
drought acclimation, such as the dehydrins and aqua-
porins was increased, with either negative or unde-
tectable change for the severe stress condition. LP-3,
an established water-stress inducible gene in loblolly
pine, increased under mild but not under severe condi-
tion. The same pattern was observed for glutathione-S-
transferase (antioxidant function), proteases, receptor-
like protein kinases (signal transduction), phospho-
ribulokinase, transketolase (chloroplast form), rubisco-
binding proteins, protochlorophyllide reductase (pho-
tosynthesis), genes encoding protection/repair genes
(HSPs) such as HSP70 (chloroplast-associated chap-
erone function [39]), HSP23 (LEA-like genes [14]) and
HSP100 (thermotolerance [23]). These data provide a
first snapshot of the status of gene expression specifi-
cally associated with acclimation during the course of
a month-long exposure to cycles of drought stress in a
woody species.
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6. Two Exemplary Networks in Biology

The detailed response of plant cells to drought stress
is only partly known (see Figure 1, but experimental
evidence lends important clues about the process. For
example, a putative osmosensor AtHK1, a histidine ki-
nase located in the cell membrane, is thought to be one
component to relay changes in osmotic potential out-
side the cell to intracellular signal transduction path-
ways [13]. Other membrane sensors are also hypothe-
sized to be present and may respond to increasing levels
of stress. These sensors trigger discrete phospholipid-
based signaling pathways which are involved in early
events in drought stress responses, with different path-
ways proposed to respond to different stress levels [7].

While the current knowledge of plant response to
drought stress is incomplete, one finds complementary
views represented in the literature that provide an ex-
cellent start on network models for drought stress re-
sponses. For example, Figure 4 gives a network ex-
emplifying response to osmotic stress adapted from
Munnik and Meijer [35], suggesting alternative re-
sponses dependent on the level of stress imposed and
the resulting perception by a variety of osmosensors
(only one of which — ATHK1 — has been identi-
fied [44]). An alternative example (Figure 5) gives
a related network that emphases the role of ABA in
drought stress responses, adapted from Shinozaki et
al. [40].

These networks are excellent starting points for a
more detailed model of drought stress responses. They
each suggest the spatial flow of events from the cell
membrane to the nucleus (gene expression), as well as
the temporal flow of rapid response followed by slower
adaptation. The networks are incompatible, however,
as the nodes are different in each (reflecting the alter-
nate perspectives of the two research efforts) and are
even at different levels of abstraction within the same
network. The two networks contain nodes representing
individual molecular species (PI3K, PLD, etc., in Fig-
ure 4; ABA in Figure 5), as well as gene expression, an
immensely complex process involving many genes and
molecular mechanisms for transcription. It should also
be noted that the kind of relationship represented
varies from node to node and arc to arc.

In developing a representation for these networks,
it is essential to utilize the lessons learned from these
and similar networks in the biological literature. Nodes
must be of multiple types and at multiple levels of ab-
straction. Arcs must be capable of representing mul-
tiple types of relationships between nodes. Moreover,
our networks must be able to include arcs represent-
ing many-to-many relationships; this is seen in Fig-

ure 4 through the potential of multiple osmosensors
to influence multiple signal transducers. Of course, fu-
ture experiments may associate particular osmosensors
with particular signal transducers. Operations on net-
works must support refinement of networks to reduce a
many-to-many relationship to, for example, numerous
one-to-one relationships. As different networks repre-
senting related phenomena are typically incompatible
(as discussed above), a combination of two or more net-
works is partial, in the sense that there will be only
some nodes and arcs in common and the same process
may be represented redundantly in the combination,
though in alternate ways.

7. Multimodal Networks: General, Flex-
ible, Extensible Models

Expresso will use networks (directed graphs or hy-
pergraphs) as its underlying models for represent-
ing the topological and dynamic aspects of molecular
transformation and transportation within the plant cell
in response to stress imposition. While networks are
capable of representing time, topology, and causality
in natural ways, the richness of information available
in cell and molecular biology requires more than just
a network. As a result, the network model will be re-
fined and extended to represent such information as hi-
erarchical structure, and uncertainty. These extended
networks are multimodal, as they incorporate diverse
forms of information in a single framework.

Network Models. In the biological literature, mod-
els of cell metabolism or signal transduction are typ-
ically expressed visually as pathways or networks.
Nodes in such a network can represent chemical reac-
tions involving one or more chemical inputs and zero or
more enzymes, producing one or more reaction prod-
ucts, while arcs represent the reaction products flowing
from one reaction to another. Alternately, a node can
represent a metabolite and an incoming arc can repre-
sent the required precursors and enzymes for the pro-
duction of the metabolite. (See Polle [38] for a typical
example. Also, see [16, 17].)

A first network model is a formalization of a biolog-
ical pathway as a network that expresses the depen-
dencies among the components in the pathway, much
like Figures 4 and 5. The important work is to extend
this initial model to carefully address some additional
aspects of the plant cell and of the nature of biological
knowledge.

Hierarchical Organization. Plant cells are hierar-
chically organized, with each cell containing organelles
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and finer levels of structure occurring within organelles.
Significant details of the hierarchical organization can
be derived from the biological literature and repre-
sented in multimodal networks, utilizing hierarchical
connections among network nodes at different levels of
cellular organization.

Temporal Information. Many reactions within the
cell occur constantly and in parallel with other re-
actions. Other reactions occur in response to cer-
tain internal or external conditions but still in paral-
lel with other reactions. Finally, there are reactions
that can occur only after other reactions have produced
the needed precursors or an information transfer has
brought the needed precursors into spatial proximity.
The dependence or independence of reaction sequenc-
ing can be represented implicitly or explicitly within
an augmented network model.

Uncertainty. Probabilities, reflecting uncertainty,
are naturally attached to the arcs in a multimodal
network to yield a probabilistic, constrained network.
Such a network generalizes such concepts as relia-
bility in communication networks [10] and Markov
chains [15], and can be analyzed using extensions of
stochastic techniques to be developed as part of the
mathematical theory of multimodal networks.

8. Some Future Prospects

Numerous biological phenomena that should be
present in models of stress response offer research chal-
lenges for computer scientists. Some of these phenom-
ena are:

• Compartmentalization of genomic information
and cellular processes among the nucleus, or-
ganelles, the cell wall, and the cytosol.

• Alternative pathways that promote redun-
dancy and fault-tolerance in the function of a cell.

• Metabolic pathways involved in essential cell
processes such as bioenergetics.

• Signaling pathways and attendant down-
stream events responding to environmental
changes.

Research topics specific to multimodal network
models include:

• Developing a mathematical theory of the space
of multimodal networks and operations on that
space.

• Creating a library of computational models —
based on multimodal networks — for cell and
molecular biology phenomena.

• Providing computational mechanisms for manipu-
lating the library, including creation, combination,
and evaluation of multimodal models.

• Developing predictive multimodal models for
drought stress responses in plants.

Intriguing developments exist in the more distant
future of biology and bioinformatics. These may lead
to products and processes such as the following.

Biological and Micromanipulator Systems.
Multimodal models can be applied in the context of
a mixed biological/micromanipulator system accom-
plishing mechanical tasks via MEMS that are con-
trolled by a “sea” of single-celled organisms. These
organisms will be selected for survival under extreme
environmental conditions and will be programmed for
the cell-to-cell and cell-to-micromanipulator interac-
tions necessary to allow the MEMS to achieve a de-
sign goal such as optimizing the drag on an airplane
wing. Models for these organisms, for the micromanip-
ulators, and for the drag on a wing can be simulated.
This mixed biological/micromanipulator system will be
a theoretical construct used to identify the informa-
tional, biological, and engineering challenges present
in such a mixed biological/micromanipulator system.

Complex Environmental Sensors. Biological
cells are capable of detecting a range of environmental
conditions, including light levels, temperature, mois-
ture levels, lack of nutrients, and chemical “attacks”
and of adjusting their internal functioning in response
to changes in these conditions. Conceptually, a change
raises a signal within the cell that is then processed by
one or more pathways. Using boolean combinations of
signals available in a programming model, it is possible
to have a cell detect complicated environmental con-
ditions (e.g., dark, hot, and wet). With application of
current biotechnology, it is then possible to “program”
a cell that can glow at a particular frequency when
those environmental conditions are detected. The
multimodal modeling approach can potentially sup-
port the design of complex environmental sensors that
could be used in, for example, potentially hazardous
environments.
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