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Abstract—A multimodal network (MMN) is a novel graph-theoretic formalism designed to capture the structure of biological networks

and to represent relationships derived from multiple biological databases. MMNs generalize the standard notions of graphs and

hypergraphs, which are the bases of current diagrammatic representations of biological phenomena and incorporate the concept of

mode. Each vertex of an MMN is a biological entity, a biot, while each modal hyperedge is a typed relationship, where the type is given

by the mode of the hyperedge. The current paper defines MMNs and concentrates on the structural aspects of MMNs. A companion

paper develops MMNs as a representation of the semantics of biological networks and discusses applications of the MMNs in

managing complex biological data. The MMN model has been implemented in a database system containing multiple kinds of

biological networks.

Index Terms—Multimodal network, graph, hypergraph, biological networks, mode, biot.

Ç

1 INTRODUCTION

GRAPHS and hypergraphs are often employed, formally,
or informally, to model biological phenomena. The

semantics of biological networks are added to these graph-
theoretic constructs by labeling vertices, edges, or hyper-
edges. For example, Pirson et al. [1] propose a methodology
to graphically depict biological regulatory information as
networks, while Fukuda and Takagi [2] present a method to
represent signal transduction pathways using compound
graphs.

However, the mere application of a graphical notation
for a biological phenomena is only partially effective in
representing complex biological information. Biological
network models are typically developed from the integra-
tion of results from multiple sources in the scientific
literature. For example, by integrating various published
results, Xanthoudakis and Nicholson [3] formulated a
model of an apoptosis pathway mediated by heat-shock
proteins. In addition to information integration, it can also
be advantageous to select subnetworks of a biological
network for detailed analysis. For example, Holme et al. [4]
and Schuster et al. [5] decompose biochemical networks
into subnetworks to facilitate analyses of metabolic path-
ways. Another desirable manipulation of complex biologi-
cal networks is projection, a mapping of, say, a hypergraph
to a graph before further analysis. For example, Ma and
Zeng [6] project the directed hypergraph structure of
metabolic networks found in various organisms to simple
graphs to analyze their global structure. Using algebraic set
operations such as union, intersection, and difference, Forst
et al. [7] compare structures of metabolic networks to derive
phylogenetic inference. These examples suggest the im-
portance of not only representing complex biological

networks but also of providing graph-theoretic operations
for their manipulation.

Multimodal networks (MMNs) [8], [9] provide a structu-
rally rich and extensible graph-theoretic formalism that
subsumes the structure of graphs and hypergraphs, both
undirected and directed. This paper defines the MMN
formalism and the mathematical operations that can be
performed on MMNs. The application of MMNs in
modeling biological networks is briefly discussed. A
companion paper develops MMNs as a representation of
the semantics of biological networks and discusses the
applications of MMNs in managing complex biological data
[10]. Sioson [11] implements the MMN model within a
PostgreSQL [12] database system that integrates multiple
kinds of biological networks. The term “MMN” is used in
different contexts by other researchers. In transportation
research, the term has been used to describe transportation
networks, where the focus of study is how travelers choose
among varied modes of transportation [13] and how to
model multimodal transportation network routes [14]. In
computing systems research, Abrach et al. [15] used the
term to describe a multithreaded operating system with an
environment suited for flexible and rapid prototyping of
wireless sensor networks. That prototyping environment
provides all-virtual, all-physical, and hybrid modes of
testing diverse applications across heterogeneous plat-
forms, justifying the use of the word multimodal.

2 GRAPHS, HYPERGRAPHS, AND MULTIMODAL

NETWORKS

An undirected graph (or, simply, a graph) is a pair of finite
sets ðV ;EÞ, where the elements of V are called vertices, and
the elements of E are unordered pairs of vertices, called
edges. An edge between vertices u and v is written
e ¼ ðu; vÞ ¼ ðv; uÞ; we require that u 6¼ v. The universal set
for undirected graphs is UG, the set of all undirected graphs. A
directed graph is a pair of finite sets ðV ;EÞ, where V is a set of
vertices as before, and the elements of E are ordered pairs of
vertices, called directed edges. A directed edge from vertex u
to vertex v is written e ¼ hu; vi; for e, its tail and head,
respectively, are u and v, respectively. We require that
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u 6¼ v. The universal set for directed graphs is DG, the set of all
directed graphs. In a drawing of a graph, vertices are dots
and edges are curves connecting dots; if the edge is
directed, then an arrowhead points to the head of the edge.

An undirected hypergraph is a pair of finite sets ðV ;EÞ,
where V is a set of vertices as before and the elements of E
are nonempty subsets of V , called hyperedges (see Berge [16]
for more details). A hyperedge is normally written in set
notation such as fu; v; wg or fxg. The universal set for
undirected hypergraphs is UH, the set of all undirected
hypergraphs. A directed hypergraph is a pair of finite sets
ðV ;EÞ, where V is a set of vertices as before, and the
elements of E are pairs of disjoint subsets of V , called
directed hyperedges (see Gallo et al. [17] for more details and
applications). A directed hyperedge is written as e ¼ hT;Hi,
where T � V is the tail of e, and H � V is the head of e. We
require that T \H ¼ ; and that T [H 6¼ ;. The universal set
for directed hypergraphs is DH, the set of all directed
hypergraphs. A hyperedge with more than two vertices is
drawn as a closed curve enclosing its vertices. A directed
hyperedge is drawn as a merger of a set of arrows
connecting each tail vertex to each head vertex. For
illustration, see the drawings in Fig. 1.

Undirected and directed hypergraphs are general con-
structs to model relationships among unrestricted numbers
of entities. However, there are representational needs for
which neither undirected hypergraphs nor directed hyper-
graphs are sufficient. First, consider a biochemical example,
where a reaction r involving two substrates a and b, in the
presence of an enzyme x, results in a product c. In a
representation of r, it makes sense to direct edges or
hyperedges from a and b (tails) to c (head); however, while
x mediates r, it is not a tail; the role of x in r is an association.
None of the prior representations can cleanly account for
these undirected associations, while also accounting for the

clearly directed relationships among entities. To address
this need, we bundle heads, tails, and associated entities
into a new kind of hyperedge (see below). In the biological
literature, most graph-theoretic representations are ad hoc
and result in the introduction of one or a small number of
mathematical relations tailored to the need at hand.
Examples arise in descriptions of biochemical reactions
and networks, cellular components, evolution, and implica-
tions derived from the experimental literature. To be
definite, we use the term biot for each of the biological
entities that is represented by a vertex in a graph or
hypergraph. The combination of multiple relations that
involve some common biots results in edges or hyperedges
that can be partitioned according to the semantics of the
original relations. These relations are modes and provide a
means of representing both semantics and structure
associated with different kinds of biological relations.

An MMN is a 3-tuple ðV ; E;MÞ of finite sets, where V
is a set of vertices as before, each element of E is a 4-tuple
from 2V � 2V � 2V �M, called a modal hyperedge, and M is
a nonempty set of modes. A modal hyperedge e ¼
ðT;H;A;mÞ consists of the tail T � V , the head H � V ,
the associate set A � V , and a mode m 2M. The empty
MMN is � ¼ ð;; ;; ;Þ. The universal set for MMNs is M, the
set of all MMNs. When there is no chance of confusion,
we simply write hyperedge rather than modal hyperedge
(see Fig. 2 for an example of an MMN N ¼ ðV ;E;MÞ
with vertex set V ¼ V ðNÞ ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g,
modal hyperedge set E ¼ EðNÞ ¼ fa; b; c; d; e; fg, and
mode set M ¼MðNÞ ¼ f�; �g. Table 1 lists the six
hyperedges).

An MMN is drawn in the same manner as a directed
hypergraph with the exception that any associate vertices in
a (modal) hyperedge are connected to the merged arrows
from tail to head vertices with a dashed curve. In Fig. 2, the
hyperedge a has tail f1; 2g, head f4g, and associate set f3g;
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Fig. 1. Drawings of two graph and two hypergraph examples. For all
four of these examples, the vertex set is f1; 2; 3; 4; 5; 6; 7g. G1 is an
undirected graph with edge set fð1; 3Þ; ð2; 4Þ; ð3; 4Þ; ð3; 7Þ; ð5; 7Þ; ð6; 7Þg,
while G2 is a directed graph with edge set fh1; 3i; h2; 4i; h3; 4i;
h3; 7i; h5; 7i; h6; 7ig. G3 is an undirected hypergraph having hyperedge
set ff1; 3g; f2; 3; 4g; f3; 5; 6; 7gg (there are three undirected hyper-
edges), while G4 is a directed hypergraph having hyperedge set
fðf1g; f3gÞ; ðf2; 3g; f4gÞ; ðf3; 5; 6g; f7gÞg (there are three directed
hyperedges).

Fig. 2. An example of a MMN N.

TABLE 1
The Six Hyperedges of the MMN in Fig. 2
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hence, there is direction from 1 and 2 to 4, with a dashed
curve from 3. Hyperedge a has mode �, while the
remaining hyperedges have mode �; this is indicated at
the top of the drawing. Hyperedges b and d are drawn in a
similar fashion; note that the head vertex of b is the associate
vertex of d. Hyperedges c, e, and f are drawn just as
directed edges.

Fix an MMN N , and let e 2 EðNÞ. For simplicity in
discussing the components of e, we write T ðeÞ for its tail set,
HðeÞ for its head set, AðeÞ for its associate set, MðeÞ for its
mode, and V ðeÞ ¼ T ðeÞ [HðeÞ [AðeÞ for the set of all of its
vertices. For hyperedge a in Fig. 2, we have T ðaÞ ¼ f1; 2g,
HðaÞ ¼ f4g, AðaÞ ¼ f3g. MðaÞ ¼ �, and V ðaÞ ¼ f1; 2; 3; 4g.

MMNs constitute a more flexible representational regime
for biological networks than previous graph-theoretic
formalisms. In addition, the absence of restrictions found
in earlier formalisms makes MMNs more mathematically
tractable. Here, we list some of the possibilities that the
definition of MMNs allows:

1. Two hyperedges in an MMN may have the same tail,
head, and associate sets but different modes. For
example, the tuple ðf8; 9g; f11g; f6g; �Þ is not iden-
tical to the hyperedge d in Fig. 2 and hence could be
added to that MMN to obtain an MMN with eight
hyperedges.

2. For a hyperedge e, it is possible that T ðeÞ \HðeÞ 6¼ ;,
in which case, some arrowheads represent loops at a
vertex in T ðeÞ \HðeÞ (see Fig. 3a).

3. For a hyperedge e, it is possible that

T ðeÞ \HðeÞ \AðeÞ 6¼ ;:

An example of drawing the hyperedge

ðf1g; f1g; f1g; �Þ

is found in Fig. 3b.
4. For a hyperedge e, it is possible that two of the three

sets T ðeÞ, HðeÞ, and AðeÞ are empty, while the third
is not. For example drawings illustrating this, see
Fig. 3c, where e ¼ ðf1g; ;; ;; �Þ; Fig. 3d, where
e ¼ ð;; f1g; ;; �Þ; and Fig. 3e, where e ¼ ð;; ;; f1g; �Þ.

5. For a hyperedge e, it is possible that

T ðeÞ ¼ HðeÞ ¼ AðeÞ ¼ ;;

for example, e ¼ ð;; ;; ;; �Þ. Such hyperedges are not
drawn.

Figs. 3a and 3b allows direct modeling of biological
networks with special substructures such as feedback

mechanisms. For example, Fig. 3a is useful in modeling
the biological relationship where a biot, say, gene g, induces
the expression of another biot while repressing the
expression of itself. A negative feedback regulation me-
chanism found in E. coli illustrates this: the trp operon, a set
of genes that encode enzymes involved in tryptophan
production, is repressed by high quantities of tryptophan
[18], [19]. Figs. 3c, 3d, and 3e are useful structures in
modeling relationships, where some biots are still unknown
or still unidentified.

There are several ways to extend to MMNs those
traditional graph-theoretic concepts related to connectivity.
The primary issues are the contributions of associated
vertices and modes to connectivity. For simplicity and
flexibility, we treat each associated vertex of a hyperedge as
being available before and after traversing that hyperedge,
and we treat modes as not contributing in any way to
connectivity (see West [20] for the graph-theoretic terminol-
ogy that the following is based on).

Let N be an MMN, and let s, t 2 V ðNÞ. A walk W in N
from s to t of length k is an alternating sequence of vertices
and hyperedges:

v0; e1; v1; . . . ; ek; vk;

where s ¼ v0, t ¼ vk, and for each j with 1 � j � k, we have
vj�1 2 T ðejÞ [AðejÞ, and vj 2 HðejÞ [AðejÞ. Vertices s and t
are the source and target, respectively, ofW. As an example,
for the MMN of that in Fig. 2, the sequence 8, d, 11, e, 10, c,
7, b, 5, b, 6, d, 11 is a walk with source 8, target 11, and
length 6. WalkW is closed if s ¼ t. WalkW is a trail if it has
no repeated hyperedge and is a cycle if it is a closed trail
such that vertex s ¼ t is the only repeated vertex. WalkW is
a path if it has no repeated vertex. Note that a path of length
at least 1 is not closed and, hence, is not a cycle. If there
exists a path in N with source s and target t, then we say
that the path goes from s to t and that s is connected to t.

The previous example walk 8, d, 11, e, 10, c, 7, b, 5, b, 6, d,
11 in the MMN of that in Fig. 2 is not closed and is not a
trail, cycle, or path. The walk 1, a, 4, b, 6, d, 11, f , 12 is a trail
since it has no repeated hyperedge and is also a path since it
has no repeated vertex. The trail 7, b, 6, d, 11, e, 10, c, 7 is a
cycle since it is closed (its source and target are both 7) and
has no repeated vertex other than 7.

Let

v0; e1; v1; . . . ; ek; vk;

be a walk in N , and let M 0 �MðNÞ be any nonempty subset
of the modes of N . W is an M 0-walk in N if, whenever
1 � i � k, we have MðeiÞ 2M 0. Again using Fig. 2 for
examples, the walk ð1; a; 4; b; 6; d; 11; f; 12Þ is an f�; �g-walk,
while the cycle ð7; b; 6; d; 11; e; 10; c; 7Þ is both an f�; �g-walk
and a f�g-walk.

3 MATHEMATICAL OPERATIONS ON MMNS

Let N1 ¼ ðV1; E1;M1Þ and N2 ¼ ðV2; E2;M2Þ be MMNs. The
union of N1 and N2 is

N1 [N2 ¼ ðV1 [ V2; E1 [ E2; M1 [M2Þ;

while their intersection is

N1 \N2 ¼ ðV1 \ V2; E1 \ E2; M1 \M2Þ:
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Fig. 3. Five variants on modal hyperedges.
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Conceptually, the union operation combines the structure

and semantics of two MMNs, while the intersection

operation isolates their commonalities.
For concreteness, we provide the following example. Let

N1 ¼ ðf1; 2; 3; 4; 5; 8; 9; 10g; fa; b; c; dg; f�; �gÞ

and

N2 ¼ ðf2; 3; 6; 7; 8; 9; 10; 11; 12g; fd; e; f; g; hg; f�; �gÞ

be MMNs, where the hyperedges are given in Table 2.

Drawings of N1 and N2 can be found in Figs. 4a and 4b. By

definition,

N1 [N2 ¼ðf1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12g;
fa; b; c; d; e; f; g; hg; f�; �; �gÞ;

and

N1 \N2 ¼ ðf2; 3; 8; 9; 10g; fdg; f�gÞ:

See Figs. 4c and 4d.
Let N ¼ ðV ;E;MÞ be an MMN, let e 2 E, and let u be a

new vertex. In particular, u 62 V . For f 2 E, the contraction of

f by e with u is the hyperedge g ¼ f � ½e; u�, where

T ðgÞ ¼
T ðfÞ [ fug n V ðeÞ if T ðfÞ \ V ðeÞ 6¼ ;;
T ðfÞ otherwise;

�

HðgÞ ¼
HðfÞ [ fug n V ðeÞ if HðfÞ \ V ðeÞ 6¼ ;;
HðfÞ otherwise;

�

AðgÞ ¼
AðfÞ [ fug n V ðeÞ if AðfÞ \ V ðeÞ 6¼ ;;
AðfÞ otherwise;

�

MðgÞ ¼MðfÞ:
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TABLE 2
The Hyperedges of the MMNs N1 and N2

Fig. 4. MMNs N1 and N2 and MMN operations. (a) MMN N1. (b) MMN N2. (c) Their union. (d) Their intersection. (e) The contraction N1 [N2 � ½c; 13�.
(f) The subnetwork of N1 [N2 induced by V 0 ¼ f2; 3; 4; 5; 6; 7; 8; 9; 10g.
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The contraction N � ½e; u� of e to u in N is

N � ½e; u� ¼ðV [ fug n V ðeÞ; ff � ½e; u� j f 2 E n fegg;
fMðf � ½e; u�Þ j f 2 E n feggÞ:

In words, the contraction of e replaces e by the single vertex

u and adjusts all remaining hyperedges appropriately.

Fig. 4e illustrates the contraction of hyperedge c to new

vertex 13 in N1 [N2. This contraction ðN1 [N2Þ � ½c; 13�
removes hyperedge c and replaces a number of the

remaining hyperedges with new hyperedges, as detailed

in Table 3.

Theorem 1. LetN be an MMN, let e and f be modal hyperedges of

N , and let x and y be new vertices. Then, contractions of e and f

commute. Precisely, we have that the two double contractions

Nef ¼ðN � ½e; x�Þ � ½f � ½e; x�; y�;
Nfe ¼ðN � ½f; y�Þ � ½e � ½f; y�; x�

are isomorphic and, in fact, identical outside the possibility

that x is identified with y in an isomorphism.

Proof. There are two cases, depending on whether V ðeÞ \
V ðfÞ ¼ ; or V ðeÞ \ V ðfÞ 6¼ ;.

Case 1. V ðeÞ \ V ðfÞ ¼ ;. In both Nef and Nfe, we

have that each vertex in V ðeÞ maps to x, each vertex in

V ðfÞ maps to y, and each vertex in V ðNÞ n ðV ðeÞ [
V ðfÞÞ maps to itself, because V ðeÞ \ V ðfÞ ¼ ;. Hence,

V ðNefÞ ¼ V ðNfeÞ.
Let c 2 EðNÞ and consider various possibilities

for V ðcÞ. First, assume that V ðcÞ \ V ðeÞ ¼ ; and

V ðcÞ \ V ðfÞ ¼ ;. Then, by definition of hyperedge

contraction, we have that

ðc � ½e; x�Þ � ½f � ½e; x�; y� ¼ ðc � ½f; y�Þ � ½e � ½f; y�; x� ¼ c:

H e n c e f o r t h , a s s u m e t h a t V ðcÞ \ V ðeÞ 6¼ ; o r

V ðcÞ \ V ðfÞ 6¼ ;; without loss of generality, we may

assume that V ðcÞ \ V ðeÞ 6¼ ;. Consider first the possibi-

lity that V ðcÞ \ V ðfÞ ¼ ;. Then, by definition of hyper-

edge contraction, we have that

ðc � ½e; x�Þ � ½f � ½e; x�; y� ¼ ðc � ½f; y�Þ � ½e � ½f; y�; x� ¼ c � ½e; x�:

Finally, consider the possibility that V ðcÞ \ V ðfÞ 6¼ ;. Let

a ¼ ðc � ½e; x�Þ � ½f � ½e; x�; y� and b ¼ ðc � ½f; y�Þ � ½e � ½f; y�; x�.
Clearly, MðaÞ ¼MðbÞ ¼MðcÞ. Let B ambiguously be T ,

H, or A. Then, we have

BðaÞ ¼
ðBðcÞ [ fx; ygÞ n ðV ðeÞ [ V ðfÞÞ if BðcÞ \ V ðeÞ 6¼ ;

and BðcÞ \ V ðfÞ 6¼ ;;
BðcÞ [ fxg n V ðeÞ if BðcÞ \ V ðeÞ 6¼ ;

and BðcÞ \ V ðfÞ ¼ ;;
BðcÞ [ fyg n V ðfÞ if BðcÞ \ V ðeÞ ¼ ;

and BðcÞ \ V ðfÞ 6¼ ;;
BðcÞ otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:
¼ BðbÞ:

We conclude that a ¼ b.
Hence, every hyperedge of N maps to the same

hyperedge in both Nef and Nfe. We conclude that

MðNefÞ ¼MðNfeÞ and, indeed, Nef ¼ Nfe, which estab-

lishes the conclusion of the theorem in this case.

Case 2. V ðeÞ \ V ðfÞ 6¼ ;. In both Nef and Nfe, we have

that each vertex in V ðNÞ n ðV ðeÞ [ V ðfÞÞ maps to itself.

Since V ðeÞ \ V ðfÞ 6¼ ;, each vertex in V ðeÞ \ V ðfÞ maps

to x in Nef and to y in Nfe. Hence, V ðNefÞ n V ðNfeÞ ¼ fxg
and V ðNfeÞ n V ðNefÞ ¼ fyg. In an isomorphism of Nef

and Nfe, we will identify every vertex in V ðNÞ n ðV ðeÞ [
V ðfÞÞ with itself and will identify x and y.

Let c 2 EðNÞ, and consider various possibilities for

V ðcÞ, as in Case 1. The possibilities are identical to those

in Case 1, except for the possibility that V ðcÞ \ V ðeÞ 6¼ ;
and V ðcÞ \ V ðfÞ 6¼ ;. Again, let a ¼ ðc � ½e; x�Þ � ½f � ½e; x�; y�
and b ¼ ðc � ½f; y�Þ � ½e � ½f; y�; x�, and let B ambiguously be

T , H, or A. Again, MðaÞ ¼MðbÞ ¼MðcÞ. Then, we have

BðaÞ ¼
ðBðcÞ [ fygÞ n ðV ðeÞ [ V ðfÞÞ if BðcÞ \ ðV ðeÞ

[ V ðfÞÞ 6¼ ;;
BðcÞ otherwise;

8><
>:

BðbÞ ¼
ðBðcÞ [ fxgÞ n ðV ðeÞ [ V ðfÞÞ if BðcÞ \ ðV ðeÞ

[ V ðfÞÞ 6¼ ;;
BðcÞ otherwise:

8><
>:

We conclude that an isomorphism that identifies x and y

also identifies a and b.
Finally, we observe that MðNefÞ ¼MðNfeÞ, and

hence, we conclude that Nef ¼ Nfe, which establishes
the conclusion of the theorem in this case.

The theorem follows. tu

Let N ¼ ðV ; E;MÞ be an MMN, let E0 � E, and let

V 0 � V . The subnetwork induced from N by E0 is the MMN

N½E0� ¼ ðV ðE0Þ; E0;MðE0ÞÞ, where
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Hyperedge Replacements in Fig. 4
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V ðE0Þ ¼
[
e2E0

V ðeÞ

MðE0Þ ¼
[
e2E0
fMðeÞg:

For e 2 E satisfying V ðeÞ \ V 0 6¼ ;, the hyperedge induced
from e by V 0 is

e½V 0� ¼ ðT ðeÞ \ V 0; HðeÞ \ V 0; AðeÞ \ V 0;MðeÞÞ:

The subnetwork induced from N by V 0 is the MMN:

N ½V 0� ¼ V 0;
[
e2E

V ðeÞ\V 0 6¼;

e½V 0�f g;
[
e2E

V ðeÞ\V 0 6¼;

MðeÞf g

0
B@

1
CA:

The subnetwork N ½E0�, respectively, N ½V 0�, is a subnet-
work of N selected by E0, respectively, V 0. Fig. 4f illustrates
the selection of a subnetwork of N1 [N2 by vertex set
V 0 ¼ f2; 3; 4; 5; 6; 7; 8; 9; 10g. This example demonstrates that
the hyperedges in a subnetwork may differ from hyper-
edges in the original network. Note that a00 ¼ a½V 0� ¼
ð;; f2g; ;; �Þ replaces a, while g00 ¼ g½V 0� ¼ ðf10g; ;; ;; �Þ
replaces g. Moreover, the hyperedge h ¼ ðf11g; f12g; ;; �Þ
does not contribute to ðN1 [N2Þ½V 0� because V 0 \ V ðhÞ ¼ ;.
Theorem 2. For arbitrary N , P , and Q 2 M, the following

properties hold:

1. � \N ¼ �,
2. � [N ¼ N ,
3. N \ P ¼ P \N ,
4. N [ P ¼ P [N ,
5. N \ ðP \QÞ ¼ ðN \ P Þ \Q,
6. N [ ðP [QÞ ¼ ðN [ P Þ [Q,
7. N \ ðP [QÞ ¼ ðN \ P Þ [ ðN \QÞ, and
8. N [ ðP \QÞ ¼ ðN [ P Þ \ ðN [QÞ.

Proof. Using the properties of set union and intersection
operations, the proof is straightforward. tu
By Theorem 2, both ðM;\Þ and ðM;[Þ are abelian

semigroups, that is, both algebraic operations on M are
commutative and associative. Furthermore, ðM;[Þ is an
abelian monoid, as � is an identity element for [.

4 PROJECTIONS

In this section, we relate the capabilities of different graph-
theoretic formalisms using projections. Recall thatM is the
set of all MMNs; UG is the set of all undirected graphs; DG is
the set of all directed graphs; UH is the set of all undirected
hypergraphs; and DH is the set of all directed hypergraphs.

Undirected graph projection. �M!UG :M! UG is the
function that takes an MMN N ¼ ðV ;E;MÞ to the undir-
ected graph �M!UGðNÞ ¼ ðV ;E0Þ, where

E0 ¼
[
e2E

u;v2V ðeÞ
u 6¼v

ðu; vÞf g:

In words, each hyperedge e in N is replaced in �M!UGðNÞ
by the complete subgraph on V ðeÞ. However, information
about direction and modes in hyperedges is lost.

Directed graph projection. �M!DG :M!DG is the func-
tion that takes an MMN N ¼ ðV ;E;MÞ to the directed
graph �M!DGðNÞ ¼ ðV ;E0Þ, where

E0 ¼
[
e2E

��
ðT ðeÞ [AðeÞÞ � V ðeÞ

�

[
�
V ðeÞ � ðAðeÞ [HðeÞÞ

��
n

[
v2V ðeÞ

fhv; vig

0
@

1
A:

In words, each hyperedge e in N maps to a set of directed
edges, without self-loops, that have tail vertices of e as tails,
head vertices of e as heads, and associate vertices of e as
both tails and heads; mode information is lost.

Theorem 3. Let N be an MMN. Let NU ¼ �M!UGðNÞ, and let
ND ¼ �M!DGðNÞ. Then, the cardinality of EðNUÞ satisfies
the bound:

jEðNUÞj �
1

2

X
e2EðNÞ

jV ðeÞj2 � jV ðeÞj;

while the cardinality of EðNDÞ satisfies the bound,

jEðNDÞj �
X

e2EðNÞ
jV ðeÞj2 � jV ðeÞj
� �

:

Proof. Each hyperedge e 2 EðNÞ maps to the set of
undirected edges Se � Eð�M!UGðNÞÞ given by

Se ¼
[

u;v2V ðeÞ
u 6¼v

ðu; vÞf g:

Hence,

jSej ¼
jV ðeÞj

2

� �

¼ jV ðeÞj
2 � jV ðeÞj

2
:

Since EðNUÞ ¼ [e2ESe, we have

jEðNUÞj �
X

e2EðNÞ
jSej

¼ 1

2

X
e2EðNÞ

jV ðeÞj2 � jV ðeÞj;

as desired.
Each hyperedge e 2 EðNÞ maps to the set of directed

edges Se � Eð�M!UGðNÞÞ given by

Se ¼
��
ðT ðeÞ [AðeÞÞ � V ðeÞ

�
[
�
V ðeÞ � ðAðeÞ [HðeÞÞ

��

n
[

v2V ðeÞ
hv; vif g

0
@

1
A � V ðeÞ � V ðeÞ n

[
v2V ðeÞ

hv; vif g

0
@

1
A:

Hence,

jSej � jV ðeÞj2 � jV ðeÞj:

Since EðNDÞ ¼
[
e2E

Se, we have

jEðNDÞj �
X

e2EðNÞ
jSej

¼
X

e2EðNÞ
jV ðeÞj2 � jV ðeÞj;

as desired. tu
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Undirected hypergraph projection. �M!UH :M! UH is the
function that takes an MMN N ¼ ðV ;E;MÞ to the undir-
ected hypergraph �M!UHðNÞ ¼ ðV ;E0Þ, where

E0 ¼ fV ðeÞ j e 2 Eg:

In words, each hyperedge e inN is replaced in �M!UHðNÞ by
the undirected hyperedge V ðeÞ, its set of vertices. Informa-
tion about direction and modes in hyperedges is lost.

Directed hypergraph projection. �M!DH :M!DH is the
function that takes an MMN N ¼ ðV ;E;MÞ to the directed
hypergraph �M!DHðNÞ ¼ ðV ;E0Þ, where

E0 ¼ T ðeÞ [AðeÞ; HðeÞ n T ðeÞ [AðeÞð Þh i j e 2 Ef g:

In words, each hyperedge e in N is replaced in
�M!DHðNÞ by the directed hyperedge from T ðeÞ [AðeÞ
to HðeÞ n ðT ðeÞ [AðeÞÞ. This bit of finesse is required as
the head and tail of a directed hyperedge must be disjoint
sets. Information about direction is mostly preserved, but
the modes in hyperedges are lost.

Theorem 4. Let N be an MMN. Let NU ¼ �M!UHðNÞ and

ND ¼ �M!DHðNÞ be projections of N . Then, the cardinalities

of the hyperedge sets satisfy these bounds:

EðNUÞj j � EðNÞj j;
EðNDÞj j � EðNÞj j;

with the possibility that either inequality is strict.

Proof. Each modal hyperedge e 2 EðNÞ maps to exactly
one undirected hyperedge in EðNUÞ and to exactly
one directed hyperedge in EðNDÞ. Neither hyperedge
map is necessarily injective. Hence, the bounds
jEðNUÞj � jEðNÞj and jEðNDÞj � jEðNÞj hold, along
with the possibilities that jEðNUÞj < jEðNÞj and
jEðNDÞj < jEðNÞj. tu
Projection of a directed hypergraph to an undirected hyper-

graph. �DH!UH : DH ! UH is the function that takes a
directed hypergraph X ¼ ðV ;EÞ to the undirected hyper-
graph �DH!UHðXÞ ¼ ðV ;E0Þ, where

E0 ¼ T ðeÞ [HðeÞ j e 2 Ef g:

In words, each hyperedge e in X is replaced in �DH!UHðXÞ
by the undirected hyperedge T ðeÞ [HðeÞ, its set of vertices.

Information about direction in hyperedges is lost.
Projection of an undirected hypergraph to an undirected

graph. �UH!UG : UH ! UG is the function that takes an

undirected hypergraph X ¼ ðV ;EÞ to the undirected

graph �UH!UGðXÞ ¼ ðV ;E0Þ, where

E0 ¼
[
e2E
ðu; vÞ j u; v 2 V ðeÞ and u 6¼ vf g:

In words, each hyperedge e in X is replaced in �UH!UGðXÞ
by a clique on V ðeÞ, its set of vertices.

Projection of a directed hypergraph to an undirected graph.

�DH!UG : DH ! UG is the function that takes an undir-

ected hypergraph X ¼ ðV ;EÞ to the undirected graph

�DH!UGðXÞ ¼ ðV ;E0Þ, where

E0 ¼
[
e2E
fðu; vÞ j u; v 2 T ðeÞ [HðeÞ and u 6¼ vg:

In words, each hyperedge e in X is replaced in �DH!UGðXÞ
by a clique on T ðeÞ [HðeÞ, its set of vertices. The direction

of hyperedges is lost.
Projection of a directed graph to an undirected graph. �DG!UG :

DG ! UG is the function that takes a directed graph G ¼
ðV ;EÞ to the undirected graph �DG!UGðGÞ ¼ ðV ;E0Þ, where

E0 ¼
[
hu;vi2E
u6¼v

ðu; vÞf g:

In words, each directed edge e in G is replaced in

�DG!UGðGÞ by an undirected edge between its head and

tail. Edge direction is lost.
Fig. 5 illustrates the projections we have defined. Let QM

be the MMN with

V ðQMÞ ¼ f1; 2; 3; 4g; EðQMÞ
¼ fðf2g; f3g; f1g; �Þ; ðf3g; f4g; ;; �Þ; ðf4g; f2g; ;; �Þg;
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and MðQMÞ ¼ f�g. By definition, projections from QM
yield these four edge sets:

Eð�M!UHðQMÞÞ ¼EðQUHÞ
¼ f1; 2; 3g; f3; 4g; f4; 2gf g

Eð�M!DHðQMÞÞ ¼EðQDHÞ
¼ f1; 2g; f3gh i; f3g; f4gh i; f4g; f2gh if g

Eð�M!DGðQMÞÞ ¼EðQDGÞ
¼ h2; 3i; h2; 1i; h1; 2i; h3; 1i;f
h1; 3i; h3; 4i; h4; 2ig

Eð�M!UGðQMÞÞ ¼EðQUGÞ
¼ ð2; 3Þ; ð2; 1Þ; ð3; 1Þ; ð3; 4Þ; ð4; 2Þf g:

In addition, projection from QDH yields the same results as
the direct projections from QM:

�DH!UHðQDHÞ ¼QUH;
�DH!UGðQDHÞ ¼QUG:

We also have that

�DG!UGðQDGÞ ¼QUG;
�UH!UGðQUHÞ ¼QUG:

Hence, the diagram in Fig. 5 is commutative [21].
The following theorem generalizes the observations

about the example.

Theorem 5. The following diagram of projections is commutative.

Proof. To prove that the diagram is commutative, it suffices
to show these four equalities:

�M!UG ¼�DG!UG � �M!DG;

�M!UG ¼�DH!UG � �M!DH;

�M!UH ¼�DH!UH � �M!DH;

�DH!UG ¼�UH!UG � �DH!UH:

Demonstration that �M!UG ¼ �DG!UG � �M!DG. Let
N ¼ ðV ;E;MÞ 2 M. By definition of the undirected
graph projection of an MMN, �M!UGðNÞ ¼ ðV ;E0Þ,
where

E0 ¼
[
e2E

u;v2V ðeÞ
u 6¼v

ðu; vÞf g:

By definition of the directed graph projection of an
MMN, �M!DGðNÞ ¼ ðV ;E00Þ, where

E00 ¼
[
e2E

T ðeÞ [AðeÞð Þ � V ðeÞð Þ [ V ðeÞ � ðAðeÞ [HðeÞÞð Þð Þ

n
[

v2V ðeÞ
fhv; vig

0
@

1
A:

By definition of projection of a directed graph to an
undirected graph, �DG!UGðV ;E00Þ has edge set

E000 ¼
[
hu;vi2E00
u 6¼v

ðu; vÞf g

¼
[
e2E

[
u2T ðeÞ[AðeÞ

v2V ðeÞ
u 6¼v

ðu; vÞf g

0
BBB@

1
CCCA
[ [

u2V ðeÞ
v2AðeÞ[HðeÞ

u 6¼v

fðu; vÞg

0
BBB@

1
CCCA

¼
[
e2E

u;v2V ðeÞ
u 6¼v

fðu; vÞg

¼E0:

Hence, �DG!UGð�M!DGðNÞÞ ¼ �M!UGðNÞ, as desired.
Demonstration that �M!UG ¼ �DH!UG � �M!DH. Let

N ¼ ðV ;E;MÞ 2 M. A s b e f o r e , w e h a v e t h a t
�M!UGðNÞ ¼ ðV ;E0Þ, where

E0 ¼
[
e2E

u;v2V ðeÞ
u6¼v

ðu; vÞf g:

By definition of the directed hypergraph projection of an
MMN, �M!DHðNÞ ¼ ðV ;E00Þ, where

E00 ¼ T ðeÞ [AðeÞ; HðeÞ n T ðeÞ [AðeÞð Þh i j e 2 Ef g:

By definition of projection of a directed hypergraph to an
undirected graph, the edge set of �DH!UGðV ;E00Þ is

E000 ¼
[
e2E00

u;v2T ðeÞ[HðeÞ
u6¼v

fðu; vÞg

¼
[
e2E

[
u2T ðeÞ[AðeÞ

v2HðeÞnðT ðeÞ[AðeÞÞ
u 6¼v

fðu; vÞg

0
BBB@

1
CCCA

¼
[
e2E

u;v2V ðeÞ
u 6¼v

ðu; vÞf g

¼E0:

Hence, �DH!UGð�M!DHðNÞÞ ¼ �M!UGðNÞ, as desired.
Demonstration that �M!UH ¼ �DH!UH � �M!DH. Let

N ¼ ðV ;E;MÞ 2 M. By definition of the undirected
hypergraph projection of an MMN, we have that
�M!UHðNÞ ¼ ðV ;E0Þ, where

E0 ¼ fV ðeÞ j e 2 Eg:

By definition of the directed hypergraph projection of an
MMN, �M!DHðNÞ ¼ ðV ;E00Þ, where

E00 ¼ fh T ðeÞ [AðeÞ; HðeÞð Þ n T ðeÞ [AðeÞð Þð Þi j e 2 Eg:
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By definition of projection of a directed hypergraph to an

undirected hypergraph, the edge set of �DH!UHðV ;E00Þ is

E000 ¼ T ðe0Þ [Hðe0Þ j e0 2 E00f g
¼ ðT ðeÞ [AðeÞf Þ [ HðeÞ n T ðeÞ [AðeÞð Þ j e 2 Eð g
¼ V ðeÞ j e 2 Ef g
¼E0:

Hence, �DH!UHð�M!DHðNÞÞ ¼ �M!UHðNÞ, as desired.
Demonstration that �DH!UG ¼ �UH!UG � �DH!UH. Let

X ¼ ðV ;EÞ 2 DH. By definition of the projection of a
directed hypergraph to an undirected graph, we have
that �DH!UGðXÞ ¼ ðV ;E0Þ, where

E0 ¼
[
e2E
ðu; vÞ j u; v 2 T ðeÞ [HðeÞ and u 6¼ vf g:

By definition of projection of a directed hypergraph to an

undirected hypergraph, the edge set of �DH!UHðV ;E0Þ is

E00 ¼ T ðeÞ [HðeÞ j e 2 Ef g:

By definition of projection of an undirected hypergraph

to an undirected graph, the edge set of �UH!UGðV ;E00Þ is

E000 ¼
[
e2E00

ðu; vÞ j u; v 2 V ðeÞ and u 6¼ vf g

¼
[
e2E
ðu; vÞ j u; v 2 T ðeÞ [HðeÞ and u 6¼ vf g

¼
[
e2E
ðu; vÞ j u; v 2 T ðeÞ [HðeÞ and u 6¼ vf g

¼E0:

Hence, �UH!UGð�DH!UHðNÞÞ ¼ �DH!UGðNÞ, as desired.tu

Theorem 5 suggest that projections preserve some

structure as we transform one graph-theoretic formalism

into another. A more detailed indication of structure

preservation is the path preservation demonstrated in the

next theorem.

Theorem 6. Let N be an MMN, and let P ¼ v0; e1; v1; . . . ; ek; vk

be a path of length k in N . Then, the following statements hold:

1. There is a path in �M!UGðNÞ from v0 to vk whose
vertex sequence is v0; v1; . . . ; vk.

2. There is a path in �M!DGðNÞ from v0 to vk whose
vertex sequence is v0; v1; . . . ; vk.

3. There is a path in �M!UHðNÞ from v0 to vk whose
vertex sequence is v0; v1; . . . ; vk.

Proof. Since P is a walk, for each j with 1 � j � k, we have

vj�1 2 T ðejÞ [AðejÞ, and vj 2 HðejÞ [AðejÞ. Since P is a

path, it has no repeated vertices:

1. Consider an edge ej in P, which implies that
vj�1, vj 2 V ðNÞ, and vj�1 6¼ vj. By definition of
�M!UGðNÞ, e0j ¼ ðvj�1; vjÞ is in the edge set of
�M!UGðNÞ. Hence, v0; e

0
1; v1; e

0
2; v2; . . . ; e0k; vk is a

path in the undirected graph �M!UGðNÞ, as
desired.

2. By definition of the directed graph projection of
an MMN, �M!DGðNÞ ¼ ðV ðNÞ; E0Þ, where

E0 ¼
[

e2EðNÞ
T ðeÞ [AðeÞð Þ � V ðeÞð Þ

[ V ðeÞ;� AðeÞ [HðeÞð Þð Þ n
[

v2V ðeÞ
hv; vif g

0
@

1
A:

Consider an edge ej in P. Since vj�1 2 T ðejÞ
[AðejÞ, vj 2 V ðejÞ, and vj�1 6¼ vj, we have

e0j ¼ hvj�1; vji 2 E0. Hence,

v0; e
0
1; v1; e

0
2; v2; . . . ; e0k; vk

is a path in the directed graph �M!DGðNÞ, as

desired.
3. By definition of the undirected hypergraph

projection of an MMN, �M!UHðNÞ ¼ ðV ;E0Þ,
where

E0 ¼ V ðeÞ j e 2 EðNÞf g:

Consider an edge ej inP. By the definition, we have

V ðejÞ 2 E0. Since vj�1, vj 2 V ðejÞ and vj�1 6¼ vj, we

conclude that v0; e
0
1; v1; e

0
2; v2; . . . ; e0k; vk is a path in

the undirected hypergraph �M!UHðNÞ, as desired.

tu

In contrast to the conclusions of Theorem 6, the existence

of a path P from s to t in an MMN N does not guarantee the

existence of a path from s to t in the directed hypergraph

�M!DHðNÞ. As a simple example, let

N ¼ f1; 2; 3; 4g; f1; 2g; f3g; f4g; �ð Þf g; f�gð Þ:

Then,

�M!DHðNÞ ¼ f1; 2; 3; 4g; f1; 2; 4g; f3gh if g; f�gð Þ:

There is a path 1; ðf1; 2g; f3g; f4g; �Þ; 4 from 1 to 4 in N , but

there is no path from 1 to 4 in �M!DHðNÞ.
MMN N is connected if, for every pair of vertices s,

t 2 V ðNÞ, there is a path from s to t in �M!UGðNÞ. MMN N

is strongly connected if, for every pair of vertices s, t 2 V ðNÞ,
there exists a path from s to t in N . Undirected graph G is

connected if, for every pair of vertices s, t 2 V ðGÞ, there

exists a path from s to t in G. Directed graph G is strongly

connected if, for every pair of vertices s, t 2 V ðGÞ, there

exists a path from s to t in G. Undirected hypergraph X is

connected if for every pair of vertices s, t 2 V ðXÞ, there exists

a path from s to t in X. Directed hypergraph X is strongly

connected if for every pair of vertices s, t 2 V ðXÞ, there exists

a path P from s to t in X.

Theorem 7. Let N be a connected MMN. Then, both �M!UGðNÞ
and �M!UHðNÞ are connected.

Proof. Let s, t 2 V ðNÞ. Since N is connected, there exists a

path from s to t in N . By Theorem 6, there exists a path

from s to t in �M!UGðNÞ. As s and t are arbitrary, it

follows that �M!UGðNÞ is connected.
By an analogous argument, we obtain that �M!UHðNÞ

is connected. tu
Theorem 8. Let N be a strongly connected MMN. Then,

�M!DGðNÞ is strongly connected.
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Proof. Since MMN N is strongly connected, then for every
pair of vertices s, t 2 V ðNÞ, there exists a path P from s
to t in N . By Theorem 6, to every path P from s to t in N ,
there corresponds a path P0 from s to t in �M!DGðNÞ.
Since V ðNÞ ¼ V ð�M!DGðNÞÞ, it follows that every pair of
vertices s; t 2 V ð�M!DGðNÞÞ, there exists a path P0 from
s to t in �M!DGðNÞ. Hence, �M!DGðNÞ is strongly
connected. tu

In contrast to the conclusion of Theorem 8, the fact that
an MMN N is strongly connected does not guarantee that
the directed hypergraph �M!DHðNÞ is also strongly
connected. In Fig. 5, take MMN QM and QDH ¼
�M!DHðQMÞ as an example. The collection of paths
documented in Table 4 demonstrates that MMN QM is
strongly connected. However, QDH is not strongly con-
nected, as it contains no paths from 2 to 1, 3 to 1, or 4 to 1.

5 MODELING BIOLOGICAL NETWORKS

The representation of a biological phenomenon is often
given as a network exhibiting multiple types of relation-
ships or interactions of biots (biological entities), drawn in a
single diagram. A particular relationship among biots may
or may not be binary, while the role of a biot may differ
from one relationship to another. This structural richness of
biological networks is not readily represented with tradi-
tional graph-theoretic formalisms but can be readily
represented with the MMN formalism. In an MMN, the
vertices are the biots, while the relationships or interactions
are modal hyperedges. Different modal hyperedges that
uses a particular biot may have different modes, typically
representing the different role the biot has in different
contexts. Most conveniently, we associate each mode with
exactly one type of biological relationship or interaction.

With biological networks represented as MMNs, the
union operation can integrate these separate biological
networks into a larger MMN. The intersection operation on
the other hand allows identification of common interaction
structures between two distinct MMNs. An application
would be the identification of a common structure of
pathways (perhaps conserved structures) between the

biological network models of different organisms, say,
Arabidopsis thaliana and Saccharomyces cerevisiae. The subnet-
work selection operation is useful in studying a small part
of a biological MMN.

The hyperedge contraction is often employed in biolo-
gical literature and biological databases when representing
biological relationships as a single concept. For example, a
metabolic pathway is represented as a single biot when
discussing its relationship to another pathway. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolic
pathway database uses a biot to represent the Citrate cycle
in its graphical overview of the Glycolysis metabolic
pathway, though further detail of the Citrate cycle is
available elsewhere in the KEGG pathway database (see
the KEGG Web site [22]). Various graph and hypergraph
projections of a MMN are applicable if we wish to employ a
computational tool that requires a different graph-theoretic
formalism as input. For example, while in-silico metabolic
networks data from KEGG have directed hypergraph
structure, projecting directed graphs from it allowed Ma
and Zeng [6] to use standard graph algorithms such as
breadth-first search to analyze the global structure of
metabolic networks of various organisms.

Fig. 6 is a biological network model based on a pathway
proposed by Xanthoudakis and Nicholson [3] to account for
the modulation of apoptosis by heat shock proteins. This
network model has the structure of MMN N1 [N2 in
Fig. 4c. One result they incorporate in their model comes
from Bruey et al. [23], who demonstrate that hsp27
negatively regulates cell death through interaction with
cytochrome c. Fig. 6 shows that cytochrome c released from
mitochondria can either be bound to hsp27 or Apaf-1. Here,
hsp27, as an associate, affects negatively the formation of
apoptosome (i.e., modal hyperedge e3). Similarly, Apaf-1
can either bind with hsp70 or with cytochrome c. Hsp70 has
been suggested to negatively affect the formation of
apoptosome [24], [25]. The apoptosome when bound with
caspase-9 causes caspase-3 activation, which then leads to
apoptosis. In this MMN model formed by doing a union of
inferences modeled as modal hyperedges, hsp70 and hsp27
are shown to modulate cell death.

6 CONCLUSION

This paper covers the structure and operations on MMNs.
When modes are chosen to have biological meaning, it
provides a way to understand the semantics of the overall
model represented by an MMN. However, the semantics
each mode provides is limited to the general structure of a
hyperedge. In a related work on MMNs, we use denota-
tional semantics to incorporate computational meaning on
the interaction among vertices of each hyperedge. A
language that allows specification and simulation of
computational semantics on each hyperedge is developed
to support this work. Furthermore, we implemented a
database prototype that demonstrates how the available
biological data such as metabolic pathway data from KEGG
[22], [26], [27] and microarray expression data from the
Expresso project [28], [29] at the Virginia Polytechnic
Institute and State University (Virginia Tech) are modeled
as MMNs. We used the PostgreSQL database management
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system [12] to define the structure of MMNs. In the

prototype, the MMN operations and projections are

implemented as PostgreSQL database functions using the

PL/PgSQL language (see Sioson [11] for details on the

implemented MMN prototype).
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