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LAYING OUT GRAPHS USING QUEUES*
LENWOOD S. HEATHt AND APNOLD L. IOSENBEIGt

Abstract. The problem of laying out the edges of a graph using queues is studied. In a k-queue layout,
vertices of the graph are placed in some linear order and each edge is assigned to exactly one of the k queues
so that the edges assigned to each queue obey a first-in/first-out discipline. This layout problem abstracts a

design problem of fault-tolerant processor arrays, a problem of sorting with parallel queues, and a problem of
scheduling parallel processors. A number of basic results about queue layouts of graphs arc established, and
these results are contrasted with their analogues for stack layouts of graphs (the book-embedding problem).
The 1-queue graphs (they arc almost leveled-planar graphs) are characterized. It is proved that the problem
of recognizing 1-queue graphs is NP-complete. Queue layouts for some specific classes of graphs are given.
Relationships between the qucuenumbcr of a graph and its bandwidth and separator size arc presented. An
apparent tradcoff between the qucucwidth and the number of queues allowed in layouts of complete binary
trees is indicated.

Key words, queue layout, stack layout, book embedding, graph embedding, bandwidth, separators, NP-
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1. Introduction.

1.1. The problem. We study the use of queues to compute linear layouts of graphs,
in the following sense. A k-queue layout of an undirected graph G (V, E) has two
aspects. The first aspect is a linear order ofV (which we think of as being on a horizontal
line). The second aspect is an assignment of each edge in E to one of k queues in such
a way that the set of edges assigned to each queue obeys a first-in/first-out discipline.
Think of scanning the vertices in order from left to right. When the left endpoint of
an edge is encountered, the edge enters its assigned queue (at the back of the queue).
When the right endpoint ofan edge is encountered, the edge exits its assigned queue (and
must, therefore, be at the front of the queue). If a queue is examined at any instant, the
edges in the queue are in the order of their right endpoints, with the leftmost of those
right endpoints belonging to edges at the head of the queue. The freedom to choose
the order of V and the assignment of E so as to optimize some measure of the resulting
layout constitutes the essence of the queue layout problem.

More formally, a k-queue layout QL of an n-vertex undirected graph G (V, E)
consists of a linear order of V, denoted cr 1,-.., n, and an assignment of each edge in
E to exactly one of k queues, ql,- , qk. Each queue qj operates as follows. The vertices
of V are scanned in left-to-right (ascending) order. When vertex i is encountered, any
edges assigned to q that have vertex i as their right endpoint must be at the front of
that queue; they are removed (dequeued). Any edges assigned to qj that have vertex i
as left endpoint are placed on the back of that queue (enqueued), in ascending order
of their right endpoints, k is the queuenurnber of the layout. The queuenumber of G,
QN(G), is the smallest k such that G has a k-queue layout; G is said to be a k-queue
graph. Let w(i, q) be the number of edges in q just before vertex i is encountered.
Then the queuewidth of q is QW(q) maxiev w(i, qj). The maximum queuewidth
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Of the layout is QW(QL) maxj QW(qj). The cumulative queuewidth of the layout is
CQW(QL) - QW(qj).

As an example of a 1-queue layout, consider the graph G in Fig. 1.1. A 1-queue
layout of G is shown in Fig. 1.2. The linear order of V is a, f, b, e, c, d. The order in
which edges pass through the single queue is

(a, f), (a, b), (f, b), (f, e), (b, e), (b, c), (b, d), (e, d), (c, d).

Note that edges having the same left endpoint enter the queue in an order determined by
their right endpoints. For example, edge (a, f) must enter the queue before edge (a, b)
since f is to the left of b.

FIG. 1.1. Example graph G.

FIG. 1.2. 1-queue layout.

Dually, a k-stack layout of graph G also has two aspects. The first aspect is again
a linear order of V. The second aspect is an assignment of each edge in E to one of k
stacks in such a way that the set of edges assigned to each stack obeys a last-in/first-out
discipline. Unlike a queue layout, edges do not exit a stack in the same order in which
they enter it.

More formally, a k-stack layout SL of an undirected graph consists of a linear order
of V and an assignment of each edge in E to exactly one of k stacks, Sl,..., sk. Each
stack s operates as follows. The vertices of V are scanned in left-to-right (ascending)
order. When vertex i is encountered, any edges assigned to s that have vertex i as their
right endpoint must be on the top of that stack; they are removed (popped). Any edges
assigned to sj that have i as left endpoint are placed on the top of the stack (pushed),
in descending order of their right endpoints, k is the stacknumber of the layout. The
stacknumber of G, SN(G), is the smallest k such that G has a k-stack layout; G is said
to be a k-stack graph. Let w(i, s) be the number of edges in s just before vertex is
encountered. Then the stackwidth of sy is SW(sy) maxiev w(i, sj). The maximum
stackwidth of the layout is SW(SL) maxy SW(sy). The cumulative stackwidth of the
layout is CSW(SL) -y SW(sy).
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As an example, Fig. 1.3 shows a 1-stack layout of the graph G in Fig. 1.1. The linear
order of V is a, b, c, d, e, f. The order in which edges enter the stack is

(a, f), (a, b), (b, f), (b, e), (b, d), (b, c), (c, d), (d, e), (e, f).

The order in which edges exit the stack is

(a, b), (b, c), (c, d), (b, d), (d, e), (b, e), (e, f), (b, f), (a, f).

FG. 1.3. 1-stack layout.

The queue (respectively, stack) layout problem generalizes the problem of permut-
ing a sequence using parallel queues (respectively, stacks) that was studied by Even and
Itai [7] and Tarjan [26]. Let 7r be a permutation defined on {1,..., n}. Define the bipar-
tite graph G by

V {al,’’’, an, b,..., b,},
E- {(a,b) 1 _< i _< n};

G is a perfect matching on 2n vertices. Then realizing 7r by k parallel queues (respec-
tively, stacks) is equivalent to laying G out using k queues (respectively, stacks) when V
is ordered al,..., an, b(1),..., b(,).

1.2. Motivation. Our study and the particular questions we focus on have a tripar-
tite motivation.

Comparing queues and stacks. Queues and stacks are, intuitively, dual in "power"
as computing mechanisms, in that queues epitomize a first-in-first-out discipline while
stacks epitomize a last-in-first-out discipline. This intuition is strengthened formally
when queues and stacks are used to compute fixed permutations (Tarjan [26]), largely
as a consequence of the 1936 theorem of Erd6s and Szekeres [6] about monotonic se-
quences in permutations. However, the intuition is called into doubt when queues and
stacks are used as worktapes for Turing machines, because a single queue endows a Tur-
ing machine with universal computing power, whereas two stacks are needed to achieve
comparable power. Here, we compare the powers of queues and stacks as devices for
linearizing graphs: one "loads an edge" into the linearization device when its left end is
laid out, and one "unloads" it when its right end is laid out. We find this comparison of
the powers of queues and stacks to be much more complicated than the other two. To
wit,
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1. Stacks appear to be simpler than queues, in that the task of recognizing 1-stack
graphs is computationally easy (in fact, linear time), while the analogous task
for 1-queue graphs is NP-complete;

2. Queues appear to be simpler than stacks, in that, when the linearization of the
vertices is preordained, the task of determining the queuenumber of the graph
is computationally easy (almost linear time), while the task of determining the
stacknumber is NP-complete;

3. Queues appear to be dual in power to stacks, in that a tradeoff inequality of
the Erd6s-Szekeres type holds for the queuenumber and stacknumber require-
ments of a graph when the linearization of its vertices is fixed [16];

4. Queues appear to be more powerful than stacks, in that there exist graphs whose
minimum queuenumbers are exponentially smaller than their minimum stack-
numbers.

These comparisons are a central theme in this paper. Note that stack layouts have
been studied extensively, under the aegis of the problem of embedding graphs in books
[2], [5], while ours is the first major study of queue layouts.

The DIOGENES design methodology. In DIOGENES [24], an array of communi-
cating processors is implemented in a conceptual line, and some number of hardware
queues and/or stacks pass over the entire line. The queues and/or stacks implement the
communication links among processors in such a way that faulty processors are ignored,
and all good processors are utilized. If the processors and their connections are repre-
sented by an undirected graph, then the DIOGENES layout problem is equivalent to a
graph layout problem, where edges are assigned to conceptual queues and/or stacks. The
variant of DIOGENES in which only stacks are used is one motivation for the studies
of the book embedding problem: Bernhart and Kainen [2]; Buss and Shor [4]; Chung,
Leighton, and Rosenberg [5]; Games [8]; Heath [11], [12], [13]; Heath and Istrail [14],
[15]; Obreni6 [21]; and Yannakakis [27]. Note that only Rosenberg [24] has considered
queues before. The present research intends to investigate the same issues for queues
that [5] does for stacks. In particular, we find significant instances of divergence between
queue and stack layouts.

Scheduling parallel processors. Consider the following simple model of schedul-
ing parallel computations in an architecture-independent fashion; cf. [22]. We represent
the computation to be scheduled as a directed acyclic graph (dag) whose nodes repre-
sent the processes to be executed and whose arcs indicate computational dependencies:
a process-node cannot be executed until all of its predecessors in the dag have been exe-
cuted. Processes are queued up in a FIFO Processor Queue (PQ) as they become eligible
for execution; each idle processor "grabs" the process at the head of the PQ. Our study
focuses on the management of data in this scenario: where will the inputs to process P
be when P is "grabbed"by a processor? Our solution is to have the PQ be coordinated
with a Data Manager (DM), which itself is a collection of FIFO queues: When a process
terminates, it places its "outputs" on the queues of the DM in such a way that when pro-
cess P is "grabbed" by a processor, all inputs to P are at the heads of the DM queues.
Our queue-based graph linearization problem idealizes this approach to the scheduling
problem: The computation dag is the graph to be linearized; the linearization process
implicitly specifies the loading of the PQ; the queues that control the linearization com-
prise the DM. In this abstract we idealize the problem even a step further by replacing
the computation dag by an ordinary (undirected) graph. In subsequent work, we plan to
study a more faithful version of the scheduling problem.
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1.3. Results. Investigating queues at this level of generality has proved a fruitful
enterprise. The harvest comprises a number of fundamental results for queue layouts as
well as some surprising contrasts with stack layouts.

We summarize the highlights that are included in this paper and in the companion
paper [16]. A new class of planar graphs, arched leveled-planar graphs, is shown to be
a characterization of the 1-queue graphs. While 1-stack (outerplanar) graphs are easy
to recognize (in fact, can be recognized in linear time), the recognition problem for 1-
queue graphs is NP-complete. On the other hand, the number of queues in afixed-order
layout of an arbitrary graph is easily minimized in polynomial time, while the same prob-
lem for stacks is NP-complete [10]. Any 1-queue graph can be laid out with 2 stacks, and
any 1-stack graph can be laid out with 2 queues 16]. An obvious generalization of these
results fails: there is a class of graphs, the ternary hypercubes, that require exponentially
more stacks than queues [16]. We investigate the queuenumber of some specific fami-
lies of graphs and compare these to known stacknumber results. We show relationships
between the queuenumber of a graph G and both the bandwidth and separator size of
G. Finally, we expose an apparent tradeoff between queuenumber and queuewidth for
layouts of complete binary trees.

The paper is organized as follows. Section 2 contains results on fixed-order layouts,
including our polynomial-time algorithm for determining the queuenumber ofsuch a lay-
out. Section 3 characterizes 1-queue graphs and proves that recognizing 1-queue graphs
is NP-complete; none of the later results depends on the NP-completeness proof. In
4, we investigate queue layouts for a number of familiar classes of graphs. In 5, we
show relationships between the queuenumber of a graph and its bandwidth and separa-
tor size. Section 6 indicates an apparent tradeoffbetween queuenumber and queuewidth
for complete binary trees. In the final section, we conclude with some open problems and
a table comparing queuenumber and stacknumber for some specific classes of graphs.

2. Fixed-order layouts. In this section, we fix an order a 1, 2,..., n of V and
examine the difficulty ofminimizing the number ofqueues or stacks required to complete
cr to a layout. Results include an optimal and efficient algorithm for fixed-order queue
layouts. We contrast the existence of this efficient algorithm with the NP-completeness
of the analogous problem for stack layouts.

We concentrate on sets of edges that are obstacles to minimizing the number of
stacks or queues. A k-rainbow is a set of k edges

{e-- (a,b), 1 < < k}

such that

al < a2 <’" < ak-1 < ak < bk < bk-1 <"" < b2 < bl;

in other words, a rainbow is a nested matching. A k-twist is a set of k edges

{e (a,b), 1 _< i < k}

such that

al < a2 <... < ak-1 < ak < bl < b2 <"" < bk-1 < bk;

in other words, a twist is a fully intersecting matching.
A rainbow is an obstacle for a queue layout because no two nested edges can be

assigned to the same queue.
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PROPOSITION 2.1. Assume that tr has a k-rainbow. Then every queue layout of cr uses
at least k queues. There exists a stack layout of r in which all edges of the k-rainbow are
assigned to the same stack.

A twist is an obstacle for a stack layout because no two intersecting edges can be
assigned to the same stack.

PROPOSITION 2.2. Assume that cr has a k-twist. Then every stack layout of cr uses at
least k stacks. There exists a queue layout of tr in which all edges ofthe k-twist are assigned
to the same queue.

The largest rainbow in tr determines the smallest number of queues needed in a
queue layout of r.

THEOREM 2.3. Ifor has no rainbow ofmore than k edges, then there is a k-queue layout
for r. Such a layout can befound in time O([E[ log log r).

Proof. We describe an algorithm for assigning the edges of G to k queues, denoted
q, q,..., q. The algorithm uses an (n+ 1)-position array R[0..n]; initially, R[0] n+ 1,
and all other R[i] 0. At each step of the algorithm, each array position R[i], for
1 < i < n, contains the larger of 0 and the name of the rightmost vertex of any edge that
has been assigned to queue q to that point; the assignment R[0] n + I simplifies the
algorithm, by creating the fiction that there is an edge in fictitious queue q0 connecting
fictitious vertices 0 and n/ 1. The algorithm maintains the invariant that nonzero entries
in R are in strictly decreasing order: if R[i 1] > 0, then R[i 1] >/[i]. Clearly, the
initial assignment to R satisfies this condition.

We actually maintain the array R in the balanced search tree data structure of John-
son [18]. The specific purpose of his data structure is to maintain a subset of a bounded
set of integers { 1, 2,..-, m}. It does so with O(log log m) worst-case time for insertions,
deletions, and accesses. As the entries in R are between 0 and r + 1, the O(log r) time
to perform a traditional binary search in R is reduced to O(log log n).

Process the vertices in order, left to right. At each vertex s, scan the edges having
s as left endpoint twice. When edge (s, t), s < t, is reached in the first scan, perform a
binary search in R to find the queue q such that

R[i- 1] > t >_ R[i].

Assign edge (s, t) to queue qi. In the second scan of edges leaving s, update R to reflect
the assignment of edges to queues. Clearly the algorithm maintains the conditions on
R, and the edge assignment yields a queue layout.

It remains to show that, if some edge is assigned to queue qk, then a has a k-rainbow.
Suppose (s, t) is assigned to queue qk. Since R[k 1] > t when vertex s is processed,
edge (s, t) must nest inside some edge (v, R[k 1]) in queue qk-1. Since t is assigned
to queue k in the first scan, while R[k 1] is updated in the second scan, the two scans
at vertex s guarantee that v < s. By an easy induction, this observation extends to show
that there are k nested edges, i.e., a k-rainbow.

The time complexity follows from the O(log log n) search time for each edge. ]

We might expect the dual result for stacks to hold; that is, if the largest twist in cr is a
k-twist, then the stacknumber of a is k, and a k-stack layout can be found in polynomial
time. However, this is far from being true. For the fixed order a, assigning edges to
stacks is equivalent to coloring circle graphs [7]. While it is possible to determine the
largest twist size for a in polynomial time (Hsu [17]), minimizing the number of stacks
cannot be done in polynomial time unless P NP because coloring circle graphs is NP-
complete (Garey, Johnson, Miller, and Papadimitriou [10]). To summarize, we have the
following.
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PROPOSITION 2.4 (see [7], [10]). The problem of minimizing the number of stacks
required by a fixed order tr is NP-complete.

In this minimization sense, fixed-order queue layouts are easier than fixed-order
stack layouts.

3. One-queue graphs. This section studies the class of 1-queue graphs, with the fol-
lowing results. Just as the 1-stack graphs admit a complete characterization as a class
of planar graphs, so do the 1-queue graphs. However, whereas the 1-stack characteri-
zation is in terms of a known strengthening of the property of planarity (namely, outer-
planarity), the 1-queue characterization employs a new strengthening (namely, arched-
leveled planarity). Neither of these subclasses of the planar graphs includes the other.
Whereas the 1-stack graphs can be recognized in linear time, we show that the recogni-
tion problem for 1-queue graphs is NP-complete. Thus, the recognition problem con-
trasts with the fixed-order layout problem, in that it points out a sense in which queues
are more complicated than stacks.

3.1. Characterizing 1-queue graphs. Bernhart and Kainen [2] give the following
characterization of 1-stack graphs.

PROPOSITION 3.1 (see [2]). G is a 1-stack graph ifand only if G is outerplanar.
(An outerplanar graph is a planar graph having a planar embedding in which all ver-

tices appear on a common face.) We show that the 1-queue graphs that have a particular
kind of planar embedding are also planar graphs.

Consider the normal cartesian (z, y) coordinate system for the plane. For i an inte-
ger, let e be the vertical line defined by { (i, t) It E Reals}. A graph G (V, E) is
leveled-planar if V can be partitioned into levels V1, V2, , V, in such a way that

G has a planar embedding in which all vertices of V are on the line g;
Each edge in E is embedded as a straight-line segment wholly between and
+1 for some i.

Such a planar embedding is called a leveled-planar embedding. Figure 3.1 shows a
leveled-planar graph having 3 levels. Henceforth, we assume that a valid (but arbitrary)
leveled-planar embedding is given along with a leveled-planar graph.

FIG. 3.1. A leveled-planargraph.

A leveled-planar embedding induces an order (the induced order) on V as follows.
As i takes the values 1, 2,-.., m, scan line from bottom to top. Label the vertices
1, 2,..., n as they are encountered. For 1 _< i _< m, let bi be the (bottom) first vertex in
level i, and let t be the (top) last. Let s be the first vertex in level that is adjacent to
some vertex in level i + 1, or, if there are no edges between levels i and i + 1, let s t.
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Consider augmenting G with new edges. A level-i arch for G is an edge connecting vertex
ti with vertex j, where bi < j < min(ti 1, si). A leveled-planar graph G, augmented by
any number of arches, can be embedded in the plane by drawing the arches around level
1; because of the leveling, the arches do not cross. See Fig. 3.2 where (3, 5) and (6, 8) are
arches. A leveled-planar graph augmented by (zero or more) arches is called an arched
leveled-planar graph. The edges that are not arches are called leveled edges. An arched
leveled-planar graph that cannot be augmented with further arches or leveled edges is
maximal. See Fig. 3.3 for an example. The above definitions for bi, si, and ti will be used
throughout the paper to refer to vertices in arched leveled-planar graphs.

FIG. 3.2. Drawing arches.

FIG. 3.3. A maximal arched leveled-planargraph.

We can now state the characterization of 1-queue graphs.
THEOREM 3.2. A graph G is a 1-queuegraph ifand only ifG is an arched leveled-planar

graph.
We develop the proof of the theorem through three lemmas.
LEMMA 3.3. Every leveled-planar graph is a 1-queue graph. The induced order ofver-

tices yields a 1-queue layout.
Proof. Given a leveled-planar graph G (V, E) with m levels V1, V2,- , V,,, order

V in the induced order 1,..., n. We claim that this order yields a 1-queue embedding of
G. It suffices to show that no two edges nest. If two edges have a vertex in common, then
the edges cannot nest. So consider two edges (u, v) and (u, vg.) such that u < v,
u2 < , ul < u, and . If u and u are in the same level V, then and 2 are
in the same level V+, and vl < v because the edges do not intersect in the leveled-
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planar embedding. Ifu and u are in different levels, g and m > g, respectively, then
and v are in different levels, g + 1 and m + 1, respectively, and again v < v. In either
case, the two edges do not nest. Hence, the given layout is a 1-queue layout of G.

LEMMA 3.4. Every arched leveled-planargraph is a 1-queue graph. The induced order
ofvertices yields a 1-queue layout.

Proof. Let G (V, E) be an arched leveled-planar graph. By the previous lemma,
it suffices to show that no arch nests with another edge.

Let (Ul, ti) and (u2, tj) be two arches. If ti tj, then the arches do not nest since
they have a vertex in common. If t t, say t < t, then u < t < u2 < t, and the
arches do not nest.

Now say that (u3, v3), u3 < v3, is a leveled edge between levels k and k + 1. Since
every arch is between two vertices on the same level, no leveled edge can nest inside an
arch. Conversely, for the arch (u, h) to nest inside (ua, va), we must have ua < Ul <
t < v3. There are two cases:

1. If u3 is on the same level as the arch, then ul < u3, a contradiction to u3 <
2. If v3 is on the same level as the arch, then v3 < ti, a contradiction to t <

Thus, (ul, t) and (u3, v3) do not nest. We conclude that we have a 1-queue layout
for G.

LEMMA 3.5. Every 1-queue graph is an arched leveled-planar graph.
Proof. Let G (V, E) be an arbitrary 1-queue graph, and let a 1, 2,..., n be the

order of a 1-queue layout of G. It suffices to describe an arched leveled-planar embed-
ding of G. Without loss of generality, we may assume that G is connected.

Partition V into levels, as follows. Level V1 is the singleton {1 }, so that bl s
t 1. For i > 1, until each vertex is placed in some level, set

bi t-I + 1;
ti equal to the rightmost vertex incident to some vertex in V_1;

Vi {bi,’",ti};
s equal to the leftmost vertex in V that is adjacent to some vertex to the right
of ti; si ti if ti n.

Let the resulting partition be V1, V2,..., Vm. This partition breaks the sequence
into m contiguous subsequences that end at 1 tl, t2,..., tm n, respectively. By
the construction of V, it is clear that no edge connects a vertex in V with a vertex in
Vj if li Jl > 2. Let Ee be the subset of E consisting of edges that connect vertices at
consecutive levels; that is,

Ee {(u, v) for some i, u e Vi, v e V/+I}.

Construct a leveled-planar embedding of Ge (V, Ee). Place the vertices of V on
line g in the order b, b + 1,..., t from bottom to top. Draw the edges in Ee as line
segments. We must show that this is indeed a leveled-planar embedding of Ge. It suffices
to show that any two distinct edges, (Ul, Vl), Ul ( Vl, and (u2, v2), u2 < v2, do not cross
in the embedding. Without loss of generality, say that U ’//;2. If ul u2, then the
edges do not cross because they share an endpoint. So say that U <
are embedded on different lines, then the edges cannot intersect because all edges go
between adjacent lines. If U and u2 are on the same line, say line gi, then the queuing
discipline guarantees that ’0,1 < U2 < Vl

_
V2 and that Vl and v2 are both embedded on

line gi+l. Therefore, edges (Ul, Vl) and (u, v2) do not cross.
It remains to show that E Ee contains only arches for Ge. Let

where u3, v3 V/, u3 < v3. Clearly, u3 _< min(ti 1, si) since otherwise there is an edge
from s to some vertex in V+I that nests over (ua, va). Since t is adjacent to some vertex



936 LENWOOD S. HEATHAND ARNOLD L. ROSENBERG

Z V/_l, we must have va ti, for otherwise (z, t) and (ua, va) nest. We conclude that
(ua, va) is an arch for Ge. Since that edge was arbitrary, it follows that E Ee contains
only arches, so we have constructed an arched leveled-planar embedding of G. [3

Theorem 3.2 follows from Lemmas 3.4 and 3.5.
The structural result of Theorem 3.2 allows us to determine the maximum number

of edges in a 1-queue graph. It is well known that a maximal outerplanar graph on n
vertices contains 2n- 3 edges. A similar result is now shown for maximal arched leveled-
planar graphs. These bound are useful for establishing lower bounds on queuenumber
or stacknumber; cf. Proposition 4.11.

THEOREM 3.6. Let G (V, E) be a 1-queue graph having a maximal arched leveled-
planar embedding of m levels. Assume that A of the levels V1,..., Vm-1 are singletons.
Then G has exactly

2lVl- 1 -lEvi- A < 2lVl- 3

edges.
Proof. Partition E into levels E,..., Em, where an edge is in level E if its left

endpoint is in V. Then all level-/arches are in Ei, and E, contains only arches. For
convenience, let to 0.

First we count the arches in the given embedding. By maximality of the embedding,
E contains s t_ arches if s t and s t_ 1 arches if s t;
If bi ti (i.e., if [VI > 1), then there is a leveled edge connecting ti 1 to level
i + 1, so that s t.

Thus Ei contains si ti_ 1 0 arches only when V is a singleton.
Now we count the leveled edges in the embedding. Each leveled edge in E, 1 <

i < m 1, has one endpoint among t s + 1 vertices in level and one endpoint
among t+x t vertices in level i / 1. By planarity, there is a bottom-to-top order on
the set of leveled edges in E. Scanning these edges in order, the first edge connects two
vertices, and each subsequent edge connects a new vertex to a previously encountered
vertex (because of maximality). Thus, the number of leveled edges in Ei is

(t+ t) + (ti- si + 1) 1 ti+l si.

Combining the counts of the preceding two paragraphs, for 1 < < m 1,

ti+l ti_ 1 if IV l 1.

By analogous reasoning,

IE.l=t.-t._-l.

The cardinality of E is, therefore,
m

IEI- IE,
i=1

m--1

t, t,_ 1 A + (ti+x ti-1)
i=1

=tm tin-- 1 A + t. + tin-1 t

2t. 1 t A
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2IV[- 1 -[V[- A

Thus the greatest number of edges that can be assigned to a single queue is 2IV[ 3.
This value immediately yields a lower bound on the queuenumber of a graph.

CO OLL Y 3.7. QN( ) > [IEI/(2IVI 3) 3.
3.2. Recognizing 1-queue graphs. The 1-stack graphs are exactly the outerplanar

graphs and, therefore, can be recognized in linear time (Syslo and Iri [25]). In contrast,
we show that the problem of recognizing 1-queue graphs is NP-complete (see Garey
and Johnson [9]). Formally, the recognition problem for 1-queue graphs is the following
decision problem.

ARCHED LEVELED-PLANAR.
Instance. A graph G (V, E), represented by adjacency lists.
Question. Does G have an arched leveled-planar embedding?
Rather than prove the NP-completeness of ARCHED LEVELED-PLANAR di-

rectly, we introduce a seemingly simpler decision problem.
LEVELED-PLANAR.
Instance. A graph G (V, E), represented by adjacency lists.
Question. Does G have a leveled-planar embedding?
Notice that it is not immediate that either of these problems reduces to the other.

Using a rather elaborate reduction, we show that LEVELED-PLANAR is NP-complete.
At the end of the section, we indicate how the reduction should be modified to show that
ARCHED LEVELED-PLANAR is NP-complete.

We now present the known NP-complete problem which, via reduction, establishes
the NP-completeness of LEVELED-PLANAR and, thereby, ofARCHED LEVELED-
PLANAR. An instance of 3-SAT [9] is a boolean formula in conjunctive normal form
such that each clause contains at most 3 literals. Let {vl, v2,..., v, } be the variables of, and let {cl, c2,..., Cm) be the clauses. Each cj is a set containing at most 3 literals,
where each literal is either a variable v or the complement of a variable; call a clause
containing exactly k literals a k-clause. The graph of , G() (V(), E()) has vertex
set

V() {cjll < j _< m} v {vll _< i _< n}
and edge set E() E1 LA E2, where

E1 ( (cj, vi) [vi e cj or - e cj},

11 < i < n- 1}

The edges of E2 form a cycle called the ratable cycle. The graph in Fig. 3.4 represents
the graph ofthe formula having clauses Cl {Vl, v-, v5 }, c2 {KS, v-, v5 }, c3 {i-, v2 },
c4 {v2, v3, v4 }, and cs {v2, v4, -}.

Lichtenstein [19] shows that the following restricted version of3-SAT is NP-complete.
PLANAR 3-SAT (P3SAT).
Instance. An instance of 3-SAT such that G() is planar.
Question. Is satisfiable?
It always suffices to consider only instances such that each clause contains either

two or three literals. From Lemma 1 of [19], we may assume that G() has a planar
embedding such that, for each v, all clauses containing the literal v are on one side of
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FIG. 3.4. Example ofPLANAR 3-SAT.

the variable cycle, and all clauses containing the literal are on the other side. Call this
property of the planar embedding of G(b) consistency. The planar embedding of Fig. 3.4
is consistent.

While LEVELED-PLANAR is as simple a recognition problem as we could formu-
late for queue layouts, we show that it is NP-complete in the next theorem. The proof
is a long reduction from P3SAT to LEVELED-PLANAR. At the end of the subsection,
the NP-completeness of ARCHED LEVELED-PLANAR is resolved by a slight modi-
fication of this reduction.

THEOREM 3.8. LEVELED-PLANAR is NP-complete.
Proof. We reduce P3SAT to LEVELED-PLANAR. As LEVELED-PLANAR is

easily in NP, this suffices to prove the theorem.
Let V {vl,..., v,} and C’ {cl,..., c,} be an instance of P3SAT. Fix a planar

embedding of G(b) that is consistent. We will construct an instance H of LEVELED-
PLANAR, which is a biconnected planar graph.

Here is an overview of our reduction strategy. We start with a consistent planar
embedding of G(b) in which the vertices in the variable cycle are in order on a vertical
line (e.g., as in Fig. 3.4). Our strategy is to replace all vertices and edges in G(b) by
gadgets that have restricted leveled-planar embeddings. The graph H resulting from
these replacements is "rigid" in the sense that in any leveled-planar embedding ofH the
relative levels of any two clause gadgets are fixed. A variable gadget has the flexibility
of being in one of two different levels to represent true and false values of the variable.
The gadget for an edge (called a rod) is "rigid" in the sense that the number of levels
between its two ends is constant. Rods are used both to make H rigid and to transmit
the truth value of a variable from the variable gadget to the gadgets of the clauses that
use the variable.

As an example, consider Fig. 3.5, the rigid version of the graph from Fig. 3.4. New
vertices uo, , u5 have been interspersed among v, , vs. New vertices c0 and c6 have
also been added as dummy clauses. All vertices and edges in Fig. 3.5 represent gadgets
used in the construction of H. The construction is such that the subgraph represented
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by the cycle Co, uo, c6, us, co is a fixed framework that has essentially only one leveled-
planar embedding (assuming the co gadget occupies earlier levels than the c6 gadget).
The subgraphs representing u0,..., u5 must all appear in the same 3 adjacent levels.
The subgraphs representing variables v,..., v5 have the freedomto be in 2 different
positions in a leveled-planar embedding depending on their truth values. The edges that
go generally left to right are replaced by rods of appropriate lengths. This is done in a
way that fixes the levels occupied by the gadget of any clause. The clause gadgets have
the ability to evaluate a boolean OR, in the sense that any clause gadget can successfully
be placed in a leveled-planar layout if and only if at least one of its corresponding literals
is assigned true. H has the property that it has a leveled-planar embedding if and only
if b has a satisfying assignment. The truth values in a truth assignment for 4 specify a
leveled-planar embedding for the variable cycle that can be extended to a leveled-planar
embedding for H in the case that the assignment is a satisfying assignment.

FIG. 3.5. Rigid PLANAR 3-SAT.

We begin the proof with some useful building blocks. Consider the copy of K2,a in
Fig. 3.6. Suppose this copy is in a leveled-planar embedding. Then a and a2 are exactly
two levels apart, and b, b2, and b3 are all on the level in between. Further, only two
of b, b2, and ba can have any additional edges incident to them. In a leveled-planar
embedding, the leveling of any copy of K2,a is forced. If b, b2, and ba are thought of as
a single vertex, then K2,a is thought of as a path of length 2. In a leveled embedding,
K2,a differs from a path of length 2 in the sense that it cannot "bend" in the middle in
order to bring the ends together; its two endpoints must appear two levels apart. We
think of K2,a as a rigid path of length 2. By joining k 1 copies of K2, in the manner
illustrated in Fig. 3.7 for k 3, rigid paths of any length k can be obtained. In general,
we call a rigid path of length k a k-rod. (A 1-rod is an edge.) We draw a k-rod as a thick
hollow line with intermediate vertices as needed (Fig. 3.8). Note that what appears to
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be a single intermediate vertex is actually two different vertices, one on the top and one
on the bottom of the rod (the third vertex is inaccessible, hence ignored).

FIG. 3.6. A 2-rod.

FIG. 3.7. A 3-rod.

FIG. 3.8. Representation ofa k-rod, k 4.

A second building block is called a semi-rod. It consists of a 3-rod and a 2-rod con-
nected by 2 edges. See Figs. 3.9 and 3.10. A semi-rod has one degree of flexibility that
a 5-rod does not have: if z is in level t and y in level t 1, then z is either in level t 5
(Fig. 3.9, where the semi-rod is extended to its greatest length) or t 3 (Fig. 3.10, where
the semi-rod is compressed); note that z is always at a lower level than y. We draw a
semirod as a 5-rod with a textured interior (Fig. 3.11).

In the construction of H, some vertices will be called fixed. If z is a fixed vertex, we
intend that, in any leveled-planar embedding of H, the level containing z is always the
same (given that a particular vertex, to be specified later, is on the first level). The level
in which z should appear is its preferred level E(z). If we fix the two ends of a rod, then
the intermediate vertices of the rod are also fixed, with preferred levels derived in the
obvious way. During the construction, we designate certain vertices z as fixed and give
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FIG. 3.9. A semi-rod extended.

FIG. 3.10. A semi-rod compressed.

FIG. 3.11. Representation ofa semi-rod.
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a value to (z). We show later that there is a leveled-planar embedding ofH if and only
if there is such an embedding where each fixed z indeed appears on level Z(z).

To begin the construction for formula b, we represent each variable vi by a 2-rod
VROD[i] having left and right endpoints S[i] and T[i]. (In other words, think of S[i] ap-
pearing in an earlier level than T[i].) Represent the edge (vi, vi+l) of G(b), 1 < i < n- 1,
by a 2-rod EROD[i] having left endpoint V[i] and right endpoint W[i], as shown in Fig.
3.12. Partially represent the edge (v,, vl) by a 2-rod EROD[O] connected to VROD[1]
and by a 2-rod EROD[n] connected to VROD[n] (the representation of the edge will
be completed later). Call the graph constructed so far P. P may be thought of as a path
of thickness 3 from EROD[O] to EROD[n]. The vertices of each EROD are fixed, and
the vertices of each VROD are not fixed. Note that, in any leveled-planar embedding
containing P, the levels of T[i] and of W[i] differ by exactly one level. Further, if W[0] is
to the right of V[0], then each W[i] is to the right of V[i], and vice versa. By symmetry, we
may assume that any leveled-planar embedding of P has each W[i] to the right of V[i],
and, therefore, each (V[i]) =/(W[i]) 2, 0 < < n. The intention of the construc-
tion (not yet realized) is that all W[i]’s appear on the same level, namely, A Z(W[0]).
For the time being, we use the level A as a relative reference for other/ values. Call the
property of all W[i]’s appearing on level A line up.

S[i] T[i]

v[] w[]

S[i+l] T[i+l]

FIG. 3.12. Representing the variablepath.

Because the embedding of G(b) is planar, the variable cycle partitions the clause set
C into two subsets, C and C2, in such a way that the clauses in Ct nest and the clauses in
C2 nest. We will place the clauses in C to the left of P and the clauses in C to the right.
(In Fig. 3.4, C {cl, c} and C {c3, c4, c5}. Clause c is nested under clause c, and
clause ca is nested under clause c5.) A clause cj E C2 is associated with the 2 or 3 T[i]’s
that correspond to its variables. (Similarly, a clause in C1 is associated with 2 or 3 S[i]’s.)
Because the embedding of G(b) is consistent, each T[i] can be associated consistently
with either vi or vS (the corresponding S[i] is associated with the complementary literal).
If the W[i]’s line up (on level A), then each T[i] appears either on level A + 1 or A 1.
If T[i] is on level A 1, then we say that T[i] is intruded and S[i] is extruded; otherwise
(i.e., T[i] is on level A + 1), T[i] is extruded and S[i] is intruded. We interpret the literal
associated with each T[i] (or S[i]) as true orfalse, respectively, according as whether T[i]
(or S[i]) is intruded or not.

We need gadgets for each clause in C. By mirror-image symmetry in P, we consider
only clauses in C and place their gadgets to the right of P. Construct the gadgets for
the clauses in C in any order that obeys the nesting of clauses, taking the more deeply
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nested clauses earlier. (In Fig. 3.4, construct the gadget for ca before the gadget for
c5; the gadget for ca is unconstrained.) Figure 3.13 shows the gadget for a clause. The
gadget contains two semirods that share an edge. U[j], X[j], and Y[j] (among others)
are fixed vertices. X[j] and Y[j] must appear in the same level, which is 4 levels before
the level of U[j]. Q[j, 1], Q[j, 2], and Q[j, 3] are connected to the literals in the clause by
rods. They may be either 3 or 5 levels before U[j], depending on the truth value of the
corresponding literal.

Q[I,1]

Q[I,2]

011,31

FIG. 3.13. The gadgetfor a 3-clause.

We first assume that cy C2 is a 3-clause. Let cy be associated with T[i], T[i2],
and T[i3] in order from top to bottom. By the construction regimen, the gadgets for any
clauses nested inside cy have already been constructed. The gadget for each c C2 con-
tains a fixed vertex U[s] that is visible on the right side of the gadget. If no clauses nest
under cy, then/:(U[j]) A+6. If there are one or more clauses nested under cy, let c be
one that maximizes Z;(U[s]). Put/2(U[j]) =/2(U[s])+6. Let k L;(U[j])-A-4. Place a
k-rod on each of T[i], T[i2], T[i3], and connect them to Q[j, 1], Q[j, 2], Q[j, 3], as shown
by the k-rods on the left in Fig. 3.13. Q[j, a] is intruded (extruded) exactly when T[ia] is
intruded (extruded). X[j] and Y[j] are fixed with L:(X[j]) L:(Y[j]) /::(U[j]) 4.
There will be U[s]’s or W[i]’s visible under X[j] (or Y[j]). Connect a rod of the appro-
priate length from X[j] (or Y[j]) to each visible U[s] and W[i]. For example, between
X[j] and U[s], connect a (L:(X[j]) L:(V[s]))’rod.

In the case that cj is a 2-clause, the gadget is the same. There are only two vertices,
T[il] and T[i2], associated with cj. Connect T[il] to Q[j, 1] and T[i2] to Q[j, 3] with rods
as before. There will be at least one fixed vertex visible under X[j], Y[j], and Q[j, 2]
(that is, some U[s] or W[i]). Connect rods of appropriate lengths between one such
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fixed vertex and X[j], Y[j], and Q[j, 2], so that Q[j, 2] is always extruded. Then cj is
represented by the gadget in the same manner as a 3-clause in which the second literal
is always false. This allows us to treat every clause as though it were a 3-clause.

Once gadgets have been constructed for each clause to the right of P, cap the right
end of H with a path around the right end, in the following sense. Let c8 E C2 have
maximum level (U[s]). (If C 0, by abuse of notation, take (U[s]) A.) Let
k (U[s]) A + 3. Place a k-rod at each of W[0] and W[n]; identify their free ends
(Fig. 3.14). Notice that two edges, one from each rod, are also identified as the edge
(X[m + 1], Z[right]). X[m + 1] is a fixed vertex with E(X[m + 1]) A + k- 1. Some
U[s]’s or W[i]’s will be visible from X[m + 1]. Connect X[m + 1] to each of them with a
rod of appropriate length. The cap around the right end may be thought of as a dummy
clause containing no literals whose purpose is to provide a rod for any U[s]’s and W[i]’s
that have yet to be connected to a rod.

v[o] w[o]

Z[left]

x[o] X[m+l]

Z[right]

V[n] W[n]
FIG. 3.14. Capping the left and right ends.

After the gadgets for the clauses to the left of P are constructed, cap the left end by
two rods from V[0] to X[0] and from V[n] to X[0] in a manner similar to the preceding
paragraph. This completes the construction of H.

So far, all the/: values have been relative to A I:(W[0]). Now fix (Z[left]) 1,
so that

A C(W[0]) C(Z[Z yt])+

Remaining Z: values are adjusted according to the value of A.
Clearly, the construction can be accomplished in polynomial time. Also, H is a

planar graph with a planar embedding that is essentially unique except for some incon-
sequential freedom in embedding the intermediate vertices in k-rods.

Every V[i], W[i], and U[j] in H has a rod connecting it to either an X[j] or a Y[j].
If H has a leveled-planar embedding, then it has a leveled-planar embedding in which
(1) Z[left] is in level 1; (2) every vertex in the capping cycle

Z[left],..., V[0],..., W[0],..., Z[right],..., Win],..., V[n],..., Z[left]

is in its preferred level; (3) W[0] is above W[n] in level A. Because the capping cycle
has only one leveled-planar embedding satisfying these constraints, all other vertices are



LAYING OUT GRAPHS USING QUEUES 945

forced to be inside the capping cycle. In such an embedding, we want each fixed vertex
to be in its preferred level. We show in the following two claims that this must be the
case. In Claim 1, we assume that, for a particular clause cj E C2, U[j] is in level t, X[j]
and YL’] are in level t 4, the rod connected to U[j] goes right, and the rods connected
to Q[j, 1], X[j], Q[j, 2], r[j], Q[j, a] go left.

CLAIM 1. The gadget for cj has such a leveled-planar embedding if and only if at
least one of QIi, 1], Q[i, 2], Q[i, 3] is intruded.

Proof. If Q[j, 1], Q[j, 2], and Q[j, 3] are all intruded, Fig. 3.13 shows such an em-
bedding. If only Q[j, 2] is intruded, Fig. 3.15 shows such an embedding. If only Q[j, 1]
(or, by symmetry, only Q[j, 3]) is intruded, Fig. 3.16 shows such an embedding. If two
of Q[j, 11, Q J, 2], and Q[j, 3] are intruded, moving an appropriate Q J, a] in one of these
figures easily gives an embedding. From these three figures, it is clear that there is no
leveled-planar embedding of the gadget if all three vertices Q[j, 1], Q[j, 2], and Q[j, 3] are
extruded.

Q[I,1]

O[I,2]

O[I,3]

FIG. 3.15. Q[j, 2] intruded.

CLAIM 2. If H has a leveled-planar embedding such that each vertex in the capped
cycle is in its preferred level, then each fixed vertex of H is in its preferred level.

Proof. Say that there is a fixed vertex not in its preferred level. If there is such a
vertex in an EROD, let i be a smallest index for which EROD[i] contains such a vertex.
By left-right symmetry, it suffices to consider the case that W[i] is in a level t > A.
Because i is minimum, t A + 2. W[i] is connected by a rod to either an X[j] or a Y[j].
Without loss of generality, say that the rod is to X[j]. The rod forces X[j] to be in level
(X[j]) / 2 (U[j]) 2. We claim that U[j] is in a level higher than (U[j]).

Suppose U[j] is in level (U[j]). The semi-rod to Q[j, 1] forces Q[j, 1] to be in level
(U[j]) 3. (Otherwise, W[i] could not be in level A / 2.) The rods of X[j] and Q[j, 1]
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011,11

Q[I

Q[I,3I

FIG. 3.16. Q[j, 1] intruded.

force Q[j, 1] to be above X[j]. Therefore, it is not possible to embed the paths from
Q[j, 1] to U[j] properly in levels.

We conclude that U[j] is in level > I(U[j]) + 2. The above argument repeats with
the rod from U[j] connecting to some X[j’] or Y[j’], shifting U[j’] to a level higher than
(U[j’]). Repetition of the argument ends at X[m+ 1], which must be in level (X[m+
1]), not higher. This contradiction proves that each W[i] is in level A.

A similar argument shows that any fixed vertex that is not a W[i] must also be in its
preferred level.

We need to show that b is satisfiable if and only ifH has a leveled-planar embedding.
Assume that b is satisfiable. Choose a satisfying assignment for b. Embed P first.

Place all fixed vertices of P on their assigned levels. If vi is true, let whichever of S[i]
and T[i] corresponds to the literal vi be intruded. If vi is false, let whichever of S[i] and
T[i] corresponds to the literal be intruded. Then each u[j] has at least one intruded
Q[i, j] and can be level embedded by Claim 1. Thus H has a leveled-planar embedding.

Now assume that H has a leveled-planar embedding. By Claim 2, we may assume
that each fixed vertex F is on level Z(F). Let Z[i] be whichever of S[i] and T[i] corre-
sponds to the literal vi. If Z[i] is intruded, assign vi the value true; otherwise, assign
the value false. By Claim 1, every U[j] has an intruded Q[i, j]. Therefore, each clause
c contains a literal that is true under this assignment. This truth assignment satisfies
that is, b is satisfiable.

Thus P3SAT reduces to LEVELED-PLANAR. As P3SAT is NP-complete, we con-
clude that LEVELED-PLANAR is NP-complete.

It appears that the graph H is arched leveled-planar if and only if it is leveled-planar.
To be certain of this, we modify the construction slightly by adding an arched cap on the
left and right ends of H. The cap on the right end is shown in Fig. 3.17. The rightmost
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edge of the right cap and the leftmost edge of the left cap must be arches, and no other
edges may be arches. With this change to H, H is an arched leveled-planar graph if and
only if is satisfiable. This proves the following corollary.

X[m+l] Z[right]

FIG. 3.17. An arched cap.

COROLLARY 3.9. ARCHED LEVELED-PLANAR is NP-complete. Thus, theprob-
lem ofrecognizing 1-queue graphs is NP-complete.

4. Layouts for specific graphs. In this section, we present queue layouts having
small queuenumber for a variety of specific families of graphs. We make contrasts with
the corresponding stack layouts. The intuition that an easily leveled graph has a good
queue layout is supported by most of these families. Some details are left to the reader.

4.1. Trees and meshes. We begin with trees and meshes, two natural leveled-planar
families of graphs.

A tree T is a connected graph that has no cycles. Choose an arbitrary vertex r to
be the root of T. Each vertex in T has a well-defined depth, i.e., distance from r. Let
DEPTH(i), i >_ 0, consist of all vertices at depth i.

PROPOSITION 4.1. Every tree T is a leveled-planar, hence 1-queue, graph. T has a 1-
queue layout such that thefirst level is {r} and the queuewidth ofthe layout is the cardinality
ofthe largest DEPTH(i), i > 0.

Proof. Lay T out breadth-first starting from the root r. The result is a 1-queue layout
of the tree with the stated properties. [3

An m n mesh is a graph with vertices

{vj 1 < < m, 1 <j < n}

and edges

{(vii, vi,j+l) ll <_ j <_ n- 1} W {(v/j, Vi+l,j) 1 _< i < m 1}.

PROPOSITION 4.2. An m x n mesh is a leveled-planar, hence 1-queue, graph. There is
a 1-queue layout QL ofthe mesh having queuewidth QW(QL) < min{m, n}.
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Proof. An rn x n mesh has a natural embedding in the plane with vertices in m rows
and n columns. If this embedding is rotated 45, vertices line up on m + n 1 vertical
lines. The result is a leveled-planar embedding with the stated queuewidth.

For m > 2, n > 2, an m n mesh is not an outerplanar graph and, in fact, has
stacknumber 2 [5]. Thus, the mesh provides an example of a 1-queue graph that fails to
be a 1-stack graph.

4.2. Unicyclic graphs. A unicyclic graph is an undirected graph in which each con-
nected component contains at most one cycle. The family of unicyclic graphs includes
trees, forests, and cycles of all lengths.

PROPOSITION 4.3. A unicyclic graph is an arched leveled-planar, hence 1-queue, graph.
Each connected component contributes at most one arch.

Proof. Let G (V, E) be a unicyclic graph. We may assume that G is connected. By
Proposition 4.1, we need only treat the case that G contains a cycle. Let

C Ul z/,2

bc that cycle. If k is even, level C into + 1 levels

a leveled-planar embedding of C results. If k is odd, level C into - levels

U1 {1, lzk}, U2 {u2, Ztk-1},’’’, Vi {ui, k-i+l},""", V(k+l)/2

an arched leveled-planar embedding of C results, with the single arch (Ul, uk).
Let G be G without the edges of C. G contains one connected component for each

ui; this connected component is a tree Ti, which we root at ui. We convert the (arched)
leveled-planar embedding of C into one for G by expanding Ti from ui in a breadth-first
manner, as prescribed in Proposition 4.1.

4.3. X-trees. The depth-d complete binary tree CBT(d) has vertex set

{1,2,...,2d+- 1}

and edge set

{(a, 2a), (c, 2a + 1) 11 _< a _< 2a- 1}.

The root of CBT(d) is 1, and CBT(d) has d+ 1 levels in the leveling starting at the root.
The depth-d X-tree X(d) is the supergraph of CBT(d) that has edges added across each
of the levels from left to right. See Fig. 4.1.

Every X(d) is a 2-stack graph; when d < 2, X(d) is a 1-stack graph [5]. In contrast,
even small X-trees require two queues.

PROPOSITION 4.4. For d > 1, X(d) admits a 2-queue layout with queuewidths 2d and
1. For d > 2, X d) is not a 1-queue graph.

Proof. For the upper bound, choose the order a 1, 2,..-, 2d+l 1. The edges
of CBT(d) are assigned to one queue and the edges across each level are assigned to a
second queue.

For the lower bound, since X(2) is a subgraph of X(d), d _> 2, it suffices to show
that X(2) is not a 1-queue graph.
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FIG. 4.1. X-tree X(3).

We exploit an alternate means of constructing X(2). Given any graph G and any
edge (z, y) in G, define the operation of hatting (z, y) as adding a new vertex (thepeak)
z and new edges (z, z) and (y, z). Start with a cycle of length 4:

C Ul ?2 u3 ?4 Ul.

Choose any three of the four edges of C. Hat each of the chosen edges. The resulting
graph is isomorphic to X(2).

To obtain a contradiction, suppose that X(2) has a 1-queue layout. Let a be the
order of the vertices. Without loss of generality, assume that ul is the leftmost vertex of
C in a. Neither u nor u4 can be the rightmost vertex of C in a, for then two edges of
C would nest. By symmetry we may assume that the order of the vertices of C in a is
ul, u2, u4, u3. Three of the four edges of C must be hatted. In particular, either ul or
ua has both of its incident edges hatted. By symmetry, we may assume that (u, u4) and
(Ul, U2) are hatted. Let w be the peak of (Ul, U4).

There are five possible placements of w within the order u, u, u4, u3. Only place-
ment ofw between u and u fails to yield two nested edges. But, with w between u and
u, there is no placement of the peak of (Ul, u) that does not yield two nested edges.
This is a contradiction to a giving a 1-queue layout of X(2).

Since X(2) is outerplanar, we have the following corollary.
COROLLARY 4.5. X(2) is a 1-stack graph that is not a 1-queue graph.

4.4. DeBruijn graphs. The order-d deBruijn graph DB(d) has vertex set

{0, 1,...,2a- 1}

and edges connecting each vertex z with vertices 2z mod 2a and 2z + 1 mod 2a. See Fig.
4.2. Note that multiple edges and loops are discarded.

PROPOSITION 4.6. DB(d) admits a 2-queue layout with queuewidths 2a-x. DB(d),
d >_ 4, does not admit a 1-queue layout. DB(3) does admit a 1-queue layout.

Proof. The edges of DB(d) of the forms (x, 2x) and (x, 2x+ 1), x {1, 2,..., 2d-1

1}, are the edges of a depth-(d- 1) complete binary tree rooted at vertex 1 and containing
all vertices except O. Similarly, the edges ofthe forms (2a- +x, 2z) and (2a- +x, 2x+1),
x {0, 1,..., 2a-1 2}, are the edges of a depth-(d 1) complete binary tree rooted
at vertex 2a- 2 and containing all vertices except 2a-1 1. Choose the order a
O, 1,. , 2a 1. Assign edges of the forms (x, 2x) and (x, 2x + 1) to one queue and edges
of the forms (2a- + x, 2z) and (2a-1 + x, 2z + 1) to a second queue. (When edges are
assigned to both queues, break ties arbitrarily.)
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FIG. 4.2. The deBmijn graph DB(3).

DB(d), d > 4, is not planar, hence not a 1-queue graph. The order

a 1, 0, 2, 3, 4, 5, 7, 6

yields a 1-queue layout of DB(3).
4.5. Complete graphs. The completegraph K, has a vertex set of size n and an edge

connecting every pair of vertices.
PROPOSITION 4.7. QN(K,)=
Proof. Every vertex order for K, is symmetric, so fix any order a 1, 2,..., n. The

maximum size of a set of nesting edges is exactly In/2J. By Proposition 2.1 and Theorem
2.3, the result follows.

An explicit assignment of edges of K, to queues is easily described. In the fixed
order a, every edge (i, j) has length li Jl- There are edges of every length from 1 to
n 1. For i E {1, 2,..., [n/2J }, assign all edges of lengths 2i 1 and 2i to queue qi. No
two edges having the same length or having lengths differing by 1 can nest.

4.6. Complete bipartite graphs. The complete bipartite graph K,,, has m + n ver-
tices, partitioned into two sets:

{a, a2,..., am} t2 {bl, b2, bn };

its edges connect every a vertex with every b vertex.
PROPOSITION 4.8. QN(Km,n) min([m/2], n/2]).
Proof. Without loss of generality, assume that m < n. We need to show that

QN(K,,,) [m/2].

Upper bound. Choose the layout order

O" 41,42,-.., a[m/2q, b, , bn, a[m/2+l,’’’, am.

Partition the edges of K,,n into [m/2] sets, each of which will be assigned to a dis-
tinct queue. The ith set, 1 < i < [m/2], comprises all edges of the form (ai, by) and
(a,+1_, bj), for 1 < j < n. Since none of the edges in the ith set nest, they can all be
assigned to a single queue, whence [m/2] queues suffice.

Lower bound. Let a be an order of the vertices in a QN(Km,,)-queue layout of
Km,. By symmetry, we may assume that the ai’s appear in the order 41,42,..., a, in a
and that the bj’s appear in the order bn, b_,..., bl in a. Because we may reverse a and
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still have a QN(K,,i)-queue layout, we may assume that br,.,.,/: appears after ar,.,,./: in
or. Then the set of edges

{(o,, b) Il < i < rm/:-I}

nest. By Proposition 2.1, QN(K,,,) > [m/2].
This straightforward determination of QN(K,,,) contrasts with the current status

of SN(K,,,) as reported in [20]. Even after much effort, the exact stacknumber of
or even of K,,,, has not been determined, though Muder, Weaver, and West [20] have
obtained nontrivial bounds.

4.7. FFT and Benel networks. We now consider two related families of graphs that
have importance as computational networks. The FFT network represents the data de-
pendencies of the Fast Fourier Transform algorithm. The Beneg rearrangeable permuta-
tion network is a switching network capable of realizing at its n outputs any permutation
of its n inputs (Benel [1]).

The n-input Bene network B(n), n 2", is defined inductively as follows.
1. B(2) is the complete bipartite graph K2, on the two input vertices I[1, 1] and

I[1, 2] and the two output vertices O[1, 1] and O[1, 2].
2. B(n) is obtained from two copies of B(nl2), together with n new input vertices

I[m, 1], I[m, 2],..., I[m, n] and n new output vertices O[m, 1], O[m, 2],. ., O[m, hi. In
the second copy of B(n/2), each vertex l[k, i] is relabeled I[k, i + n/2], and each vertex
O[k, i] is relabeled O[k, i + n/2]; all vertices then have distinct labels. For 1 < i < n, add
edges to create a copy of Kz,z on vertices I[m, i] and I[m, i +n/2] and vertices I[m- 1, i]
and I[m- 1, i + n/2]; also, add edges to create a copy of K2,z on vertices O[m, i] and
O[m, i + hi2] and vertices O[m 1, i] and O[m 1, i + n/2].

As shown in Fig. 4.3, the Benel network has a natural level structure with 2m levels.
The n-input FFT network is the graph consisting of the first m + 1 levels of B(n).

FIG. 4.3. The Beneg network B(4).

As B(n), n > 2, is not planar, its queuenumber is at least 2. The level structure (of
either network) provides a straightforward 3-queue layout: order the vertices level by
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level, going up each level; one queue for the "cross" edges, one queue for the "upward"
edges, and one queue for the "downward" edges suffices. A more complicated 2-queue
layout of B(n) is due to Reibman [23].

PROPOSITION 4.9 (see [23]). The Beneg network B(n) admits a 2-queue layout with
each queue of width r The layout is optimal in queuenumber and within a factor of 2 of
optimal in queuewidth.

Proof. The layout of B(n) follows its inductive definition. The inductive hypothesis
is that B(n) has a 2-queue layout which respects the leveling of B(n); that is, all level
i vertices appear before any level i / 1 vertices, though no restriction is placed on the
relative order of vertices within each level.

1. The vertex order for/3(2) is I[1, 1], I[1, 2], O[1, 1], O[1, 2]. The two edges incident
to I[1, 1] are assigned to one queue and the two edges incident to I[1, 2] are assigned to
the second queue. The layout satisfies the inductive hypothesis.

2. We assume that B(n/2) has a 2-queue layout satisfying the inductive hypothesis.
Let B1 and B2 be two copies of/3(n/2). Lay each out in the 2-queue order that is
guaranteed by the induction. Merge the two layouts level by level so that the level-/
vertices of/32 always appear immediately to the right of the level-/vertices of B1. In
particular, I[k, i + n/2] (respectively, O[k, i + n/2]) is always n/2 vertices to the right of
I[k, i] (respectively, of O[k, i]). Because the leveling of B(n) is honored in the layout,
each level-/edge of B1 crosses every level-/edge of B2, and vice versa, so no nesting
results from the merging; hence, a 2-queue layout of the "sum" of B1 and B2 results.
Add n new input vertices to the left and n new output vertices to the right of the entire
layout. View the n new inputs as consisting of n/2 consecutive pairs of vertices. Add
edges from the first pair to the first vertices of Bx and Bz to form a copy of K,z. In
general, add edges from the ith pair to the ith vertices of B1 and B2. Assign the added
edges incident to B1 (which form a twist) to the first queue and the added edges incident
to Bz (which also form a twist) to the second queue. Similarly, connect the n new outputs
to the last vertices of B1 and B2. The result is a 2-queue layout of B(n).

Because the FFT network is a subgraph of the Bene network, it also has a 2-queue
layout. This compares favorably with the stacknumber optimal 3-stack layouts of the
Bene and FFT networks in Games [8]. The natural leveling of these networks is a defi-
nite advantage in constructing queue layouts that are good, at least in the sense of queue-
number.

4.8. l-lypercube. The d-dimensional hypercube Q(d) has vertex set {0, 1}a, the set of
all bit strings of length d; its edges connect every pair ofvertices that differ in exactly one
bit position. View the vertex set of Q(d) as the set of integers {0, 1,..., 2a 1} by iden-
tifying a d-bit string with the corresponding integer in binary notation. The hypercube
admits a very regular layout strategy.

PROPOSITION 4.10. For d > 2, Q(d) admits a (d 1)-queue layout with queuewidths

2d-1 2d-2,... 22 21

Proof. We lay out Q(d) inductively. The order a 0, 1, 2, 3 gives a 1-queue layout
of Q(2) with queuewidth 2. To obtain a layout for Q(d), d > 2, inductively lay out two
adjacent copies ofQ(d- 1), similarly ordered. By induction, each ofthe copies ofQ(d- 1)
uses d 2 queues with queuewidths

2d-2 2d-3 22 21I**
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hence, their disjoint sum does also. The 2a-1 edges connecting one copy of Q(d 1)
to the other form a 2a-l-twist; hence they require only one additional queue of width
2d-1.

The queuenumber of the preceding layout is optimal to within a constant factor.
PROPOSITION 4.11. QN(Q(d)) f(d).
Proofi Q(d) has d2d-1 edges. By Corollary 3.7, therefore,

d2a-1 ]QN(Q(d)) >_
24+1_3 fl(d).

5. Queuenumber and graph structure. We now explore two structural properties
of graphs that provide bounds on queuenumber. These properties are bandwidth and
separator size.

5.1. Bandwidth. Let a 1, 2,..., n be any order of the vertices of G. The band-
width of a is the length of the longest edge; that is,

BW(a) max li- Jl.
(,.i)eE

The bandwidth of G is the minimum bandwidth of any a; that is,

BW(G) minBW(a).

Assume that n > B + 1. The maximal bandwidth-B graph on n vertices M(B, n) has
vertex-set { 1, 2, , n}; its edges form a copy ofthe complete graph KB+I on each subset
of vertices

{i,i+l,...,i+B}, l<_i<_n-B.

See Fig. 5.1.

FIG. 5.1. Maximal bandwidth-B graph M(3, 8).

The following theorem establishes a relationship between bandwidth and queue-
number.

THEOREM 5.1. QN(M(B, n)) VB/2]. Hence, if BW(G) B, then QN(G) <

Proof.
Upper bound. Choose the order a 1, 2,..., n for the vertices of M(B, n). There

are edges of every length from 1 to/3. Assign all edges of lengths 2i 1, 2i, 1 < i <
[B/2], to queue qi. No two edges having the same length or having lengths differing by
1 can nest. A /3/2]-queue layout of M(B, n) results.

Lower bound. M(/3, n) contains complete graphs on B + 1 vertices. By Proposition
4.7,
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Since every bandwidth-B graph G is a subgraph of some maximal bandwidth-B
graph M(B, n), QN(G) < [B/2]. U

5.2. Separator size. Let S(z) be a nondecreasing integer function. A graph G
1 )-vertex-separator of size S(z) (or just separator of size S(x)) if either(V, E) has a (,

IVI < 3 or if there is a subset of cardinality at most s(IVI) whose removal leaves con-
nected components of cardinality less than or equal to IvI, each having a separator of
size S(z).

Suppose G has maximum degree d and has a separator of size S(x). Let R be the
following function of S:

R(x) (d + 1) S(x/2).

A bucket treefor G is a complete binary tree whose level-j buckets (vertices) have bucket
capacity

C(j) cdR(IVI/2Y),

where c is a constant. Bhatt et al. [3] demonstrate the following.
LEMMA 5.2 (see [3]). IfG (V, E) is a graph ofmaximum degree d that has a sepa-

rator ofsize S(z), then V can be mapped onto the bucket tree for G in such a way that
1. At most C(j vertices are mapped to each level-j vertex ofthe bucket tree;
2. Iftwo vertices that are adjacent in G are mapped to two distinct buckets, then these

two buckets are at most distance d apart in the bucket tree, and one ofthe buckets
is an ancestor ofthe other

The following relates the separator size of a graph to its queuenumber and stack-
number.

THEOREM 5.3. IfG (V, E) is a graph ofmaximum degree d that has a separator of
size S(x), then G has queuenumber and stacknumber O(d2R([VI)).

Proof.
Queuenumber. Construct a queue layout of G in two steps. First, use Lemma 5.2 to

map V onto the bucket tree for G, and lay out the bucket tree in a breadth-first order.
Second, use this 1-queue layout of the bucket tree to obtain a queue layout of G; replace
each bucket B by the contents of B placed contiguously in any order. We analyze the
number of queues needed in this layout of G. The two endpoints of any edge of G are
mapped to a pair of buckets B1 and B2 such that B is an ancestor of B2, and B1 and
B2 are at most distance d apart in the bucket tree; call an edge an i-edge, 0 <_ <_ d,
if i is the distance between B1 and B2 in the bucket tree. If the endpoints of two i-
edges are mapped to different pairs of buckets, then the two edges cannot nest. Fix i,
0 < i < d. Since each bucket contains O(dR(IV[)) vertices, O(dR([VI)) queues suffice
for all/-edges. Since has d/ 1 possible values, the queue layout for G has queuenumber
O(dR(IVl)).

Stacknumber. A similar construction that begins by laying out the bucket tree in
preorder suffices to show the bound on stacknumber.

We remark that Theorem 4.5 of Chung, Leighton, and Rosenberg [5] gives an up-
per bound on the stacknumber of a graph as a function of its bifurcator, rather than
separator, size.

6. A queuenumber/queuewidth tradeoff. In this section, we provide evidence of an
apparent tradeoffbetween queuenumber and queuewidth for queue layouts of complete
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binary trees. Then we relate the queuewidth of a graph G to the diameter of (7, i.e., the
greatest distance between any pair of vertices of (7.

By Proposition 4.1, a depth-d complete binary tree has a 1-queue layout with queue-
width 2a. This queuewidth is exponentially greater than the O(d) stackwidth of a 1-stack
layout of a complete binary tree [5]. We consider the question ofwhether a larger num-
ber of queues can be traded off for a smaller (cumulative) queuewidth. The following
theorem suggests an apparent tradeoff.

THEOREM 6.1. A depth-d complete binary tree T with n 2a leaves has a k-queue
layout QL with CQW(QL) O(knl/a).

Proof. We give the proof for k 2. To simplify the construction, we assume that
d 2d’ is even. Let n’ 2’ x/. Let T* be the upper d’ + 1 levels of T, and let
1, 2,..., n’ be the leaves of T* in canonical order. Each leaf i is the root of a subtree Ti
of depth d. Order the vertices of T* in breadth-first order from the root, so that vertices
1,..., n’ appear rightmost in the order. For each i, 1 <_ i <_ n’, place the vertices of Ti in
breadth-first order immediately to the right of its root i. Assign the edges of T* to one
queue and the edges of T, T:,..., T,, to a second queue. Each queue has queuewidth
n’ x/. The cumulative queuewidth of the 2-queue layout is 2n O(2n/u).

For general k, 2 < k < d, cut T every [d/k] levels, and use one queue for the edges
in each of the produced "meta-levels." Details are left to the reader. [3

To show that the apparent tradeoff is a real one, we need lower bound techniques
for queuewidth. The next theorem provides a lower bound on queuewidth as a function
of diameter for arbitrary 1-queue graphs.

THEOREM 6.2. Suppose G (V, E) is a connected 1-queue graph having diameter D.
Let QL be a 1-queue layout of G. Then,

IEIQW(QL) _>
2D + 1

Proof. By Theorem 3.2, layout QL yields an arched leveled-planar embedding of G;
denote the induced levels by V1, V2, , V,. Since each edge of G connects vertices that
are either in the same or adjacent levels, it is immediate that D > m 1. Consider now
the following 2m 1 < 2D / I cuts of layout QL:

CUT(t1 1), CUT(t),..., CUT(ti 1), CUT(ti),..., CUT(tm 1).

Since every edge of G either has some ti as its right endpoint or passes over some ti, the
enumerated set of cuts collectively exhausts E. The proof is completed by appealing to
two facts:

The queuewidth of the layout QL is (clearly) as big as the biggest cut.
The biggest cut contains no fewer edges than the average cut. [3

For a depth-d complete binary tree T, there are n 2a leaves, IVI 2n 1,
IEI 2n 2 and D 2d 2 log n. We have this corollary.

COROLLARY 6.3. Any 1-queue layout ofa depth-d complete binary tree has queuewidth
at least (2n 2)/(4d + 1) ft(n/log n).

The breadth-first layout ofT starting at the root has queuewidth n. The lower bound
on queuewidth in the corollary is close to this upper bound. We do not know how to
achieve this lower bound and doing so appears difficult. The higher width of queue

1CUT(i), the cut at vertex i, is the set of all edges whose left endpoint is less than or equal to and whose
right endpoint is greater than i.
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layouts over stack layouts suggests that stack layouts of trees are preferable to queue
layouts.

We do not yet have a lower bound on cumulative queuewidth for arbitrary k-queue
layouts of T, along the lines of Theorem 6.2 for the case k 1. Thus, we do not know
whether there is a real tradeoffbetween queuenumber and queuewidth here, butwe con-
jecture that there is. We further conjecture that the cumulative queuewidth announced
in Theorem 6.1 is within a factor of O(d) of optimal.

7. Future directions. In Table 7.1, we summarize our queuenumber results for spe-
cific graphs alongside the corresponding stacknumber results. Further comparison of
the relative merits of queues and stacks is warranted. In particular, queues appear to
be more appropriate than stacks for graphs with a leveled structure; can this insight be
formalized? Chung, Leighton, and Rosenberg [5], and Heath [13] show that there are
tradeoffs between stacknumber and stackwidth in the sense that, for certain graphs, de-
voting more stacks to a layout decreases the cumulative stackwidth. We expect analogous
tradeoffs between queuenumber and queuewidth. We conjecture the following.

CONJECTURE 1. There are graphs that exhibit a tradeoffbetween queuenumber and
queuewidth, and Theorem 6.1 exposes such a tradeoff.

TABLE 7.1
Queuenumbers ofspecific graphs.

Graph Class Queuenumber Stacknumber

Trees

X-trees

DeBruijn Graph

Complete Graph Kn
Complete Bipartite Graph Km,n

FFT Network

Bene Network

Boolean n-cube

Ternary n-cube

1

2

2

/,/1

1 [5]
2 [5]

_< 5 [21]

Ln/J [5]

Planar Graphs

min(r /Zl,
(Exact)

2

2

<n-1

<2n--2
[161

Unknown
(Conjecture
bounded)

_< F(, +
[2o]

[8]

[81
_<n--1 [5]

(), < t/9
[16]

4 [27]

Often, good queue layouts seem easier to obtain than good stack layouts. Planar
graphs maybe an exception to this. However, in harmonywith the fact that planar graphs
can be laid out in a bounded number of stacks (Yannakakis [27]), we conjecture the
following.

CONJECTURE 2. Planar graphs can be laid out in a bounded number of queues.
The notions of stack and queue layouts may be generalized in several directions.

One approach is to define layouts that simultaneously utilize queues and stacks. We
conjecture the following.

CONJECTURE 3. Each planar graph admits a 1-stack, 1-queue layout.
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Another approach is to utilize deques or more general permutation mechanisms. In
the realm of such generality, it becomes necessary to consider relative cost measures for
the various mechanisms.

Note added in proof. The interested reader should be aware of the Ph.D. thesis of
Sriram V. Pemmaraju (Exploring the Powers of Stacks and Queues via Graph Layouts,
Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA, 1992). It contains further results in the theory of queue and stack lay-
outs. The thesis develops a number of new tools for studying such layouts. It also initi-
ates the study (promised in 1.2) of queue and stack layouts ofdags. Copies are available
from the first author.
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