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Abstract. The stacknumber (queuenumber) of a poset is defined as the stacknumber (queue-
number) of its Hasse diagram viewed as a directed acyclic graph. Upper bounds on the queuenumber
of a poset are derived in terms of its jumpnumber, its length, its width, and the queuenumber of its
covering graph. A lower bound of Ω(

√
n) is shown for the queuenumber of the class of n-element

planar posets. The queuenumber of a planar poset is shown to be within a small constant factor of
its width. The stacknumber of n-element posets with planar covering graphs is shown to be Θ(n).
These results exhibit sharp differences between the stacknumber and queuenumber of posets as well
as between the stacknumber (queuenumber) of a poset and the stacknumber (queuenumber) of its
covering graph.
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1. Introduction. Stack and queue layouts of undirected graphs appear in a vari-
ety of contexts such as VLSI, fault-tolerant processing, parallel processing, and sorting
networks (Pemmaraju [16]). In a new context, Heath, Pemmaraju, and Ribbens [10]
use queue layouts as the basis of an efficient scheme to perform matrix computations
on a data driven network. Bernhart and Kainen [1] introduce the concept of a stack
layout, which they call book embedding. Chung, Leighton, and Rosenberg [3] study
stack layouts of undirected graphs and provide optimal stack layouts for a variety
of classes of graphs. Heath and Rosenberg [13] develop the notion of queue layouts
and provide optimal queue layouts for many classes of undirected graphs. Heath,
Leighton, and Rosenberg [8] study relationships between queue and stack layouts of
undirected graphs. In some applications of stack and queue layouts, it is more realistic
to model the application domain with directed acyclic graphs (dags) or with posets,
rather than with undirected graphs. Various questions that have been asked about
stack and queue layouts of undirected graphs acquire a new flavor when there are
directed edges (arcs). This is because the direction of the arcs imposes restrictions
on the node orders that can be considered. Heath and Pemmaraju [9] and Heath,
Pemmaraju, and Trenk [11, 12] initiate the study of stack and queue layouts of dags
and provide optimal stack and queue layouts for several classes of dags.

In this paper, we focus on stack and queue layouts of posets. Posets are ubiquitous
mathematical objects, and various measures of their structure have been defined.
Some of these measures are bumpnumber, jumpnumber, length, width, dimension,
and thickness [2, 7]. Nowakowski and Parker [15] define the stacknumber of a poset
as the stacknumber of its Hasse diagram viewed as a dag. They derive a general lower
bound on the stacknumber of a planar poset and an upper bound on the stacknumber
of a lattice. Nowakowski and Parker [15] conclude by asking whether the stacknumber
of the class of planar posets is unbounded. Hung [14] shows that there exists a planar
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600 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

poset with stacknumber 4; moreover, no planar poset with stacknumber 5 is known.
Sys lo [17] provides a lower bound on the stacknumber of a poset in terms of its
bumpnumber. He also shows that, while posets with jumpnumber 1 have stacknumber
at most 2, posets with jumpnumber 2 can have an arbitrarily large stacknumber.

The organization of this paper is as follows. Section 2 contains definitions. In
section 3, we derive upper bounds on the queuenumber of a poset in terms of its
jumpnumber, its length, its width, and the queuenumber of its covering graph. In
section 4, we show that the queuenumber of the class of planar posets is unbounded.
In a complementary upper bound result, we show that the queuenumber of a planar
poset is within a small constant factor of its width. In section 5, we show that the
stacknumber of the class of n-element posets with planar covering graphs is Θ(n). In
section 6, the decision problem of recognizing a 4-queue poset is defined; Heath and
Pemmaraju [9] and Heath, Pemmaraju, and Trenk [11] show that the problem is NP-
complete. In section 7, we present several open questions and conjectures concerning
stack and queue layouts of posets.

2. Definitions. This section contains the definitions of stack and queue layouts
of undirected graphs, dags, and posets. Other measures of the structure of posets are
also defined.

Let G = (V,E) be an undirected graph without multiple edges or loops. A k-stack
layout of G consists of a total order σ on V along with an assignment of each edge in
E to one of k stacks, s1, s2, . . . , sk. Each stack sj operates as follows. The vertices
of V are scanned in left-to-right (ascending) order according to σ. When a vertex v
is encountered, any edges assigned to sj that have v as their right endpoint must be
at the top of the stack and are popped. Any edges that are assigned to sj and have
left endpoint v are pushed onto sj in descending order (according to σ) of their right
endpoints. The stacknumber SN(G) of G is the smallest k such that G has a k-stack
layout. G is said to be a k-stack graph if SN(G) = k. The stacknumber of a class of
graphs C, denoted by SNC(n), is the function of the natural numbers that equals the
least upper bound of the stacknumber of all graphs in C with at most n vertices. We
are interested in the asymptotic behavior of SNC(n) or in whether SNC(n) is bounded
above by a constant.

A k-queue layout of G consists of a total order σ on V along with an assignment
of each edge in E to one of k queues, q1, q2, . . . , qk. Each queue qj operates as follows.
The vertices of V are scanned in left-to-right (ascending) order according to σ. When
a vertex v is encountered, any edges assigned to qj that have v as their right endpoint
must be at the front of the queue and are dequeued. Any edges that are assigned
to qj and have left endpoint v are enqueued into qj in ascending order (according to
σ) of their right endpoints. The queuenumber QN(G) of G is the smallest k such
that G has a k-queue layout. The queuenumber of a class of graphs C, denoted by
QNC(n), is the function of the natural numbers that equals the least upper bound
of the queuenumber of all graphs in C with at most n vertices. We are interested
in the asymptotic behavior of QNC(n) or in whether QNC(n) is bounded above by a
constant.

For a fixed order σ on V , we identify sets of edges that are obstacles to minimizing
the number of stacks or queues. A k-rainbow is a set of k edges {(ai, bi) | 1 ≤ i ≤ k}
such that

a1 <σ a2 <σ · · · <σ ak−1 <σ ak <σ bk <σ bk−1 <σ · · · <σ b2 <σ b1;

i.e., a rainbow is a nested matching. Any two edges in a rainbow are said to nest.
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STACK AND QUEUE LAYOUTS OF POSETS 601

A k-twist is a set of k edges {(ai, bi) | 1 ≤ i ≤ k} such that

a1 <σ a2 <σ · · · <σ ak−1 <σ ak <σ b1 <σ b2 <σ · · · <σ bk−1 <σ bk,

i.e., a twist is a fully crossing matching. Any two edges in a twist are said to cross.
A rainbow is an obstacle for a queue layout because no two edges that nest can

be assigned to the same queue, while a twist is an obstacle for a stack layout because
no two edges that cross can be assigned to the same stack. Intuitively, we can think
of a stack layout or a queue layout of a graph as a drawing of the graph in which the
vertices are laid out on a horizontal line and the edges appear as arcs above the line.
In a stack layout no two edges that intersect can be assigned to the same stack, while
in a queue layout no two edges that nest can be assigned to the same queue. Clearly,
the size of the largest twist (rainbow) in a layout is a lower bound on the number
of stacks (queues) required for that layout. Heath and Rosenberg [13] show that the
size of the largest rainbow in a layout equals the minimum queue requirement of the
layout.

Proposition 2.1 (Heath and Rosenberg, [Theorem 2.3, 13]). Suppose G =
(V,E) is an undirected graph, and σ is a fixed total order on V . If G has no rainbow
of more than k edges with respect to σ, then G has a k-queue layout with respect
to σ.

In contrast, the size of the largest twist in a layout may be strictly less than the
minimum stack requirement of the layout (see [13, Proposition 2.4]).

The definitions of stack and queue layouts are now extended to dags by requiring
that the layout order be a topological order. Following a common distinction, we
use vertices and edges for undirected graphs, but nodes and arcs for directed graphs.
Suppose that G = (V,E) is an undirected graph and that ~G = (V, ~E) is a dag whose

arc set ~E is obtained by directing the edges in E. A topological order of ~G is a total
order σ on V such that (u, v) ∈ ~E implies u <σ v. A k-stack (k-queue) layout of the

dag ~G = (V, ~E) is a k-stack (k-queue) layout of the graph G such that the total order

is a topological order of ~G. As before, SN(~G) is the smallest k such that ~G has a

k-stack layout, and QN(~G) is the smallest k such that ~G has a k-queue layout.
A partial order is a reflexive, transitive, antisymmetric binary relation. A poset

P = (V,≤) is a set V with a partial order ≤ (see Birkhoff [2] or Davey and Priestly [4]).
The cardinality |P | of a poset P equals |V |. We only consider posets with finite
cardinality in this paper. We write u < v if u ≤ v and u 6= v. The Hasse diagram
~H(P ) = (V, ~E) of a poset P = (V,≤) is a dag with arc set

~E = {(u, v) | u < v and there is no w such that u < w < v}
(see Davey and Priestly [4]). A Hasse diagram is a minimal representation of a poset
because it contains none of the arcs implied by transitivity of ≤. The stacknumber
SN(P ) of a poset P is SN( ~H(P )), the stacknumber of its Hasse diagram. Similarly,

the queuenumber QN(P ) of a poset P is QN( ~H(P )), the queuenumber of its Hasse
diagram. Figure 2.1 gives an example of a 2-stack poset, while Fig. 2.2 gives an
example of a 2-queue poset. The underlying undirected graph, H(P ), of ~H(P ) is
called the covering graph of P . Clearly, for any poset P , we have

SN(H(P )) ≤ SN(P )

and

QN(H(P )) ≤ QN(P ).
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602 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU
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Fig. 2.1. A 2-stack poset.
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Fig. 2.2. A 2-queue poset.

The stacknumber and the queuenumber of the covering graphs of the posets in both
Fig. 2.1 and Fig. 2.2 are 1. A poset P is planar if its Hasse diagram ~H(P ) has a
planar embedding in which all arcs are drawn as straight line segments with the tail
of each arc strictly below its head with respect to a Cartesian coordinate system; call
such an embedding of any dag an upwards embedding. Without loss of generality,
we may always assume that no two nodes of ~H(P ) are on the same horizontal line.
(If two nodes are on the same horizontal line, a slight vertical perturbation of either
of them yields another upwards embedding with the nodes on different horizontal
lines.) Given an upwards embedding of a dag, the y coordinates of the nodes give
a topological order on the nodes from lowest to highest called the vertical order.
Note that the covering graph H(P ) may be planar even though the poset P is not.
Figure 2.3 shows an example of a nonplanar poset whose covering graph is planar.

Let γ be a fixed topological order on ~H(P ). Two elements u and v are adjacent

in γ if there is no w such that u <γ w <γ v or v <γ w <γ u. A spine arc in ~H(P )

with respect to γ is an arc (u, v) in ~H(P ) such that u and v are adjacent in γ. A break

in ~H(P ) with respect to γ is a pair (u, v) of adjacent elements such that u <γ v and

(u, v) is not an arc in ~H(P ). A connection C in ~H(P ) with respect to γ is a maximal
sequence of elements u1 <γ u2 <γ · · · <γ uk such that (ui, ui+1) is a spine arc for all
i, 1 ≤ i < k; in other words a connection is a maximal path of spine arcs without a
break. Since ~H(P ) contains no transitive arcs, there can be no nonspine arcs between

nodes in a connection. The breaknumber BN(γ, P ) of a topological order γ of ~H(P )
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Fig. 2.3. A nonplanar poset whose covering graph is planar.

is the number of breaks in ~H(P ) with respect to γ. The jumpnumber of P , denoted

by JN(P ), is the minimum of BN(γ, P ) over all topological orders γ on ~H(P ).
A chain in a poset P is a set of elements {u1, u2, . . . , uk} such that u1 < u2 <

· · · < uk. The length L(P ) of a poset P is the maximum cardinality of any chain in P .
An antichain in a poset P is a subset of elements of S that does not contain a chain
of size 2. The width W (P ) of a poset P is the maximum cardinality of any antichain
in P .

3. Upper bounds on queuenumber. In this section we derive upper bounds
on the queuenumber of a poset in terms of its jumpnumber, its length, its width, and
the queuenumber of its covering graph.

3.1. Jumpnumber and queuenumber. Sys lo [17] proves the following rela-
tionship between the jumpnumber and the stacknumber of posets.

Proposition 3.1 (Sys lo [17]). For any poset P with JN(P ) = 1, we have
SN(P ) ≤ 2. If J2 is the infinite class of posets having jumpnumber 2, then SNJ2

(n) =
Ω(n).

In contrast, we show that, for any poset P , the queuenumber of P is at most the
jumpnumber of P plus 1. Moreover, we show that this bound is tight within a small
constant factor.

Theorem 3.2. For any poset P , QN(P ) ≤ JN(P ) + 1. For every n ≥ 2, there
exists a poset P such that |P | = 2n and JN(P )/2 < QN(P ).

Proof. For the upper bound on queuenumber, suppose that P is any poset and
that JN(P ) = k. Let γ be a topological order on ~H(P ) that has exactly k breaks

and k + 1 connections. Lay out ~H(P ) according to γ and label these connections
C0, C1, . . . , Ck from left to right. Let (u1, v1) and (u2, v2) be any two nonspine arcs
such that u1 and u2 are in Ci and v1 and v2 are in Cj , where 1 ≤ i < j ≤ k. If (u1, v1)
and (u2, v2) nest, then one of (u1, v1) and (u2, v2) (the arc that nests over the other
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604 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

arc) is a transitive arc. Since ~H(P ) contains no transitive arcs, (u1, v1) and (u2, v2)
do not nest. This suggests the following assignment of arcs to queues: Assign all
nonspine arcs between pairs of connections Ci and Cj , where |i− j| = `, 1 ≤ ` ≤ k, to
queue q`. Assign all the spine arcs to a queue q0. Hence, we use k queues for nonspine
arcs and one queue for spine arcs, for a total of k + 1 queues.

For the lower bound on queuenumber, construct the Hasse diagram of a poset
P from the complete bipartite graph Kn,n = (V1, V2, E) by directing all the edges

from vertices in V1 to vertices in V2. All topological orders on ~H(P ) yield isomorphic
layouts. Hence, JN(P ) = 2(n− 1), QN(P ) = n, and

QN(P ) =
n

2(n− 1)
JN(P ).

The lower bound follows.
Proposition 3.1 and Theorem 3.2 lead to the following corollary.
Corollary 3.3. There exists a class of posets P for which the ratio

SNP(n)

QNP(n)
= Ω(n).

Looking ahead, Theorem 4.2 shows the existence of a class of posets P for which
the reciprocal ratio QNP(n)/SNP(n) is unbounded.

3.2. Length and queuenumber. To prove the next theorem, we need the
following lemma that gives a bound on the queuenumber of a layout of a graph whose
vertices have been rearranged in a limited fashion.

Lemma 3.4 (Pemmaraju [16]). Suppose that σ is an order on the vertices of an
m-partite graph G = (V1, V2, . . . , Vm, E) that yields a k-queue layout of G. Let σ′ be
an order on the vertices of G in which the vertices in each set Vi, 1 ≤ i ≤ m, appear
consecutively and in the same order as in σ. Then σ′ yields a layout of G in 2(m−1)k
queues.

Theorem 3.5, the main result of this section, gives an upper bound on the queue-
number of a poset in terms of its length and the queuenumber of its covering graph.

Theorem 3.5. For any poset P ,

QN(P ) ≤ 2 · (L(P )− 1) ·QN(H(P )).

There exists an infinite class of posets P such that LP(n) = 2 and, for all P ∈ P,
⌈
QN(P )

2

⌉
= (L(P )− 1) ·QN(H(P )).

Proof. Suppose P is any poset, ~H(P ) = (V, ~E), and QN(H(P )) = k. Let σ be

a total order on V that yields a k-queue layout of H(P ). The nodes of ~H(P ) can be
labeled by a function l : V → {1, . . . , L(P )} such that l(u) < l(v) if u < v in P , as

follows. Let ~H0 = ~H(P ). Label all the nodes with indegree 0 in ~H0 with the label

1. Delete all the labeled nodes in ~H0 to obtain ~H1. In general, label the nodes with
indegree 0 in ~Hi with the label i+ 1. Delete the labeled nodes in ~Hi to obtain ~Hi+1.
By an inductive proof, it can be checked that the labeling so obtained satisfies the
required conditions. Let Vi = {u ∈ V | l(u) = i}. For any arc (u, v) ∈ ~E, if u ∈ Vi
and v ∈ Vj , then i < j. Therefore ~H(P ) = (V1, V2, . . . , VL(P ), ~E) is an L(P )-partite

dag. Define the total order γ on the nodes of ~H(P ) by the following:
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STACK AND QUEUE LAYOUTS OF POSETS 605

1. The elements in each set Vi, 1 ≤ i ≤ L(P ), occur contiguously and in the
order prescribed by σ.

2. The elements in Vi occur before the elements in Vi+1 for all i, 1 ≤ i < L(P ).

Since every arc in ~H(P ) is from a node in Vi to a node in Vj , 1 ≤ i < j ≤ L(P ), γ is

a topological order on ~H(P ). By Lemma 3.4 γ yields a layout that requires no more
than 2 · (L(P )− 1) · k queues.

We now prove the second part of the theorem. For each n ≥ 2, let p = bn/2 c and
q = dn/2 e. Let the complete bipartite graph Kp,q = (V1, V2, E) be such that |V1| = p
and |V2| = q. We get the Hasse diagram of a poset P of size n by directing the edges
in Kp,q from V1 to V2. Clearly, L(P ) = 2 and QN(P ) = p. Heath and Rosenberg [13]
and Pemmaraju [16] present different proofs of the following formula that gives the
precise queuenumber of an arbitrary complete bipartite graph:

QN(Kr,s) = min(d r/2 e, d s/2 e).
Since p ≤ q, QN(Kp,q) = d p/2 e. Therefore,

⌈
QN(P )

2

⌉
= (L(P )− 1) ·QN(H(P )).

Let P be the class of all posets constructed in the manner described above. The
second part of the theorem follows.

Note that Theorem 3.5 holds for dags as well as for posets as its proof does not
rely on the absence of transitive arcs. Theorem 3.5 leads to the following corollary.

Corollary 3.6. For any poset P ,

QN(H(P )) ≤ QN(P ) ≤ 2 · (L(P )− 1) ·QN(H(P )).

Suppose P is a class of posets such that there exists a constant K with L(P ) ≤ K,
for all P ∈ P. Then QNP(n) = Θ(QNH(P)(n)).

We conjecture, but have been unable to show, that the upper bound in Theorem
3.5 is tight, within constant factors, for larger values of L(P ) also.

3.3. Width and queuenumber. In this section, we establish an upper bound
on the queuenumber of a poset in terms of its width. We need the following result of
Dilworth.

Lemma 3.7 (Dilworth [5]). Let P = (V,≤) be a poset. Then V can be partitioned
into W (P ) chains.

For a poset P = (V,≤), let Z1, Z2, . . . , ZW (P ) be a partition of V into W (P )

chains. Define an i-chain arc as an arc in ~H(P ), both of whose end points belong to
chain Zi, 1 ≤ i ≤ W (P ). An (i, j)-cross arc, i 6= j, is an arc whose tail belongs to
chain Zi and whose head belongs to chain Zj .

Theorem 3.8. The largest rainbow in any layout of a poset P is of size no greater
than W (P )2. Hence, the queuenumber of any layout of P is at most W (P )2.

Proof. Fix an arbitrary topological order of ~H(P ). Let Z1, Z2, . . . , ZW (P ) be a

partition of V into W (P ) chains. For any i, no two i-chain arcs nest, since ~H(P )
contains no transitive arcs. Therefore, the largest rainbow of chain arcs has size no
greater than W (P ). If i 6= j then no two (i, j)-cross arcs can nest without one of
them being a transitive arc. Therefore, the largest rainbow of cross arcs has size no
greater than W (P )(W (P ) − 1). The size of the largest rainbow is at most W (P ) +

W (P )(W (P )− 1) = W (P )
2
. By Proposition 2.1, the theorem follows.
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606 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

The bound established in the above theorem is not known to be tight. In fact, we
believe that the queuenumber of a poset is bounded above by its width (see Conjecture
1 in Section 7).

4. The queuenumber of planar posets. In this section, we first show that
the queuenumber of the class of planar posets is unbounded. We then establish an
upper bound on the queuenumber of a planar poset in terms of its width.

4.1. A lower bound on the queuenumber of planar posets. We construct
a sequence of planar posets Pn with |Pn| = 3n + 3 and QN(Pn) = Θ(

√
n). In fact,

we determine the queuenumber of Pn almost exactly. To prove the theorem, we need
the following result of Erdös and Szekeres.

Lemma 4.1 (Erdös and Szekeres [6]). Let (xi)
n
i=1 be a sequence of distinct el-

ements from a set X. Let δ be a total order on X. Then (xi)
n
i=1 either contains

a monotonically increasing subsequence of size d√n e or a monotonically decreasing
subsequence of size d√n e with respect to δ.

The proof of Theorem 4.2 constructs the desired sequence of posets.
Theorem 4.2. For each n ≥ 1, there exists a planar poset Pn with 3n + 3

elements such that

⌈√
n + 1

⌉ ≤ QN(Pn) ≤ ⌈√
n
⌉

+ 1.

Proof. Suppose n ≥ 1. Define three disjoint sets U, V , and W as follows:

U = {ui | 0 ≤ i ≤ n},
V = {vi | 0 ≤ i ≤ n},
W = {wi | 0 ≤ i ≤ n}.

Let S = U ∪ V ∪W . The planar poset Pn = (S,≤) is given by

ui < ui−1,

vi−1 < vi,

for 1 ≤ i ≤ n, and

ui < wi < vi,

for 0 ≤ i ≤ n. Figure 4.1 shows the Hasse diagram of P4. Let σ be an arbitrary
order on the elements of S. The elements of U ∪ V ∪ {w0} appear in the order
un, un−1, . . . , u0, w0, v0, v1, . . . , vn in σ, and all elements of W appear between un and
vn. Define a total order δ on the elements of W by wi <δ wj if i < j. Suppose that

wi1 , wi2 , . . . , wik

is an increasing sequence of nodes in W with respect to δ. Since wi1 appears after ui1
in any topological order of ~H(Pn), the following sequence of nodes is a subsequence
of σ:

uik , uik−1
, . . . , ui1 , wi1 , wi2 , . . . , wik .

Therefore, the set {(uij , wij ) | 1 ≤ j ≤ k} is a k-rainbow in σ. Similarly, if

wi1 , wi2 , . . . , wik
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Fig. 4.1. The planar poset P4.

is a decreasing sequence of nodes in W with respect to δ, then the set {(wij , vij ) | 1 ≤
j ≤ k} is a k-rainbow in σ. By Lemma 4.1, in σ, there is an increasing subsequence of
size

⌈√
n + 1

⌉
or a decreasing subsequence of size

⌈√
n + 1

⌉
with respect to δ. Thus

there is a rainbow of size
⌈√

n + 1
⌉

in any topological order on ~H(Pn). Therefore,

QN(Pn) ≥ ⌈√
n + 1

⌉
. This is the desired lower bound.

To prove the upper bound, we give a layout of Pn in d√n e + 1 queues. Let
s = d√n e, and let t = dn/se ≤ d√n e. Partition W − {w0} into s nearly equal-sized
subsets

W1,W2, . . . ,Ws

as follows:

Wi =

{ {wj | (i− 1)t + 1 ≤ j ≤ it}, 1 ≤ i ≤ s− 1,
{wj | (s− 1)t + 1 ≤ j ≤ n}, i = s.
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& %& %& %& %

�� $' $' $'

U Ws+1 VWs W1••••

Fig. 4.2. Schematic layout of planar poset Pn.

Construct an order σ on the elements of S by first placing the elements in U ∪
V ∪ {w0} in the order

un, un−1, . . . , u0, w0, v0, v1, . . . , vn.

Now place the elements of W − {w0} between u0 and v0 such that the elements
belonging to each set Wi appear contiguously and the sets themselves appear in the
order

Ws,Ws−1, . . . ,W1.

Within each set Wi, 1 ≤ i ≤ s, place the elements in increasing order with respect
to δ. Figure 4.2 schematically represents the constructed order. The arcs from U to
W form s mutually intersecting rainbows each of size at most t. Therefore, t queues
suffice for these arcs. The arcs from W to V form s nested twists each of size at most
t. Therefore s queues suffice for these arcs. Since no two arcs, one from U to W and
the other from W to V nest, they can all be assigned to the same set of s queues. An
additional queue is required for the remaining arcs. This is a layout of Pn in d√n e+1
queues. Therefore, QN(Pn) ≤ d√n e+ 1, as desired.

We believe that the upper bound in the above proof can be tightened to exactly
match the lower bound. In fact, we have been able to show that for m2 ≤ n ≤
m(m + 1), QN(Pn) = m + 1 =

⌈√
n + 1

⌉
.

The situation for stacknumber of planar posets is somewhat different in that there
is no known example of a sequence of planar posets with unbounded stacknumber.
Two observations about the sequence Pn in Theorem 4.2 are in order. The first
observation is that SN(Pn) = 2. A 2-stack layout of ~H(P4) is shown in Fig. 4.3. The
second observation is that the stacknumber and the queuenumber of H(Pn) is 2. A
2-queue layout of H(P4) is shown in Fig. 4.4. Theorem 4.2 and the above observations
imply the following corollaries.

Corollary 4.3. There exists a class P of planar posets such that

QNP(n)

SNP(n)
= Ω

(√
n
)
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Fig. 4.3. A 2-stack layout of the planar poset P4.
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Fig. 4.4. A 2-queue layout of the covering graph of P4.

Corollary 4.4. There exists a class P of planar posets such that

QNP(n)

QNH(P)(n)
= Ω

(√
n
)
.

While Theorem 4.2 establishes a lower bound of Ω(
√
n) on the queuenumber

of the class of n-element planar posets, a matching upper bound is not known (see
Conjecture 2 in section 7).

4.2. An upper bound on the queuenumber of planar posets. In this
section, we show that the queuenumber of a planar poset is bounded above by a small
constant multiple of its width. The bound is a consequence of the following theorem,
the proof of which occupies the remainder of the section.

Theorem 4.5. For any planar poset P where ~H(P ) contains at least one arc and

for any upward embedding of ~H(P ), the layout of ~H(P ) given by the vertical order σ
has queuenumber less than 4W (P ).

Before the proof of Theorem 4.5, we present some definitions, some observations,
and a series of three lemmas. First, we fix notation and terminology to use throughout
the section. Suppose that P = (V,≤P ) is a planar poset with a given upwards

embedding of ~H(P ). Let σ be the vertical order on V . Now suppose that the size

of a largest rainbow in the vertical order of ~H(P ) is k ≥ 1. By Proposition 2.1, the
queuenumber of this layout is k. Focus on a particular k-rainbow whose arcs are
(a1, b1), (a2, b2), . . . , (ak, bk). Call these arcs the rainbow arcs; in particular, the arc
(ai, bi) is the rainbow arc of ai and of bi. The nodes in the set A = {a1, a2, . . . , ak}
are bottom nodes, and the nodes in the set B = {b1, b2, . . . , bk} are top nodes. Let y(v)
denote the y-coordinate of a node v in the upwards embedding. Suppose that (ai, bi)
and (aj , bj) are distinct rainbow arcs. Since these arcs nest in the vertical order σ,
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Fig. 4.5. An example of rainbow arcs.

we know that max{y(ai), y(aj)} < min{y(bi), y(bj)}. More generally,

y1 = max
1≤i≤k

y(ai) < min
1≤i≤k

y(bi) = y2.

The horizontal line defined by the equation y = (y1 +y2)/2 intersects every (ai, bi). In
moving along this line from left to right, we encounter these intersections in a definite
order. By re-indexing the rainbow arcs, we may assume that these intersections are
encountered in the order (a1, b1), (a2, b2), . . . , (ak, bk); call this the left-to-right order
of the rainbow arcs. Figure 4.5 illustrates an upwards embedding of a Hasse diagram
with k = 6. The arcs are indexed in left-to-right order.

Define the left-to-right total order ≤LR on A (respectively, B) by ai ≤LR aj
(respectively, bi ≤LR bj) if i ≤ j. If ai ≤LR aj , we say that ai is to the left of aj and
that aj is to the right of ai. These notions of left and right do not always correspond
to our normal understanding of these notions when looking at an upwards embedding.
For example, in Fig. 4.5, the x-coordinate of a1 is greater than that of a2, though
a1 <LR a2 and hence a1 is to the left of a2. We consistently use left and right with
respect to the order ≤LR.

A bottom chain is any chain of bottom nodes, and a top chain is any chain of top
nodes. In Fig. 4.5, the set {a1, a3, a4} is a bottom chain, while the set {a2, a3, a5} is
not. If C is a chain of P and u, v ∈ V , then the closed interval from u to v is the
subchain C[u, v] = {w ∈ C | u ≤P w ≤P v}, and the open interval from u to v is
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STACK AND QUEUE LAYOUTS OF POSETS 611

the subchain C(u, v) = {w ∈ C | u <P w <P v}. Subchains C(u, v] and C[u, v), the
corresponding half-open intervals, are defined analogously. For any bottom chain C,
the extent of C is

〈C〉 =

(
max
ai∈C

i

)
−
(

min
aj∈C

j

)
;

that is, the extent is the distance from the leftmost node in C to the rightmost node
in C, measured in rainbow arcs. The extent of a top chain is defined analogously.
Suppose C is any chain. We say that C covers the nodes it contains. If D is a path
in ~H(P ) that contains every node of C, then D covers C. Note that there must be

at least one path in ~H(P ) that covers C.
In what follows, we show that more than k/4 chains are required to cover the set

A∪B. Since W (P ) is the minimum number of chains required to cover all the nodes
in the poset, it follows that k/4 < W (P ) and therefore QN(P ) < 4W (P ). As the
proof is long and tedious, we give here an informal overview. Start with a partition
CA of A into bottom chains and a partition CB of B into top chains. Because each
element of CA ∪ CB is a chain, there is a path in ~H(P ) covering it. Thinking of
each such path as a vertex, we construct a graph G that contains an edge connecting
a pair of vertices if the corresponding paths in ~H(P ) are connected by a rainbow

arc. It is easy to see that G is planar if the paths in ~H(P ) covering the chains in
CA ∪ AB are pairwise nonintersecting. The construction of a collection of pairwise
nonintersecting paths that cover the chains of CA ∪ CB is not always possible. This
leads us to the weaker notion of a crossing of two chains and to the construction of
G from chains rather than paths. Since the final step of the proof requires G to be
planar, we first show (Lemmas 4.7 and 4.8) that all crossings between pairs of chains
can be eliminated. Applying Euler’s formula to the resulting planar G finally yields
the bound in Theorem 4.5.

At this point, we restrict our argument to bottom nodes, as the corresponding
argument for top nodes is similar. If C is any bottom chain, the order in which its
elements appear with respect to ≤P is constrained by the rainbow arcs. In particular,
we make the following observation.

Observation 1. Suppose that C is a bottom chain whose nodes occur in the
following order with respect to ≤P :

c1 ≤P c2 ≤P · · · ≤P ct.

For any i with 1 ≤ i ≤ t−1, if ci <LR ci+1, then ci <LR cj for all j ≥ i+1. Similarly,
for any i with 1 ≤ i ≤ t− 1, if ci >LR ci+1, then ci >LR cj for all j ≥ i + 1.

Intuitively, if the chain starts going to the right after ci, then the remainder of
the chain must be to the right of the rainbow arc of ci. The rainbow arc of ci is a
barrier to the chain reaching a bottom node to the left of ci. For example, in Fig. 4.5,
the rainbow arc (a5, b5) is a barrier to any path originating at a6. Since a5 <P a6 and
a5 <LR a6, no bottom chain containing both a5 and a6 has a node ai >P a6 to the
left of a5.

By Lemma 3.7, there is a partition of A into at most W (P ) chains. Let CA be
such a partition. Let C1 ∈ CA have the order

c1 ≤P c2 ≤P · · · ≤P cm,

and let C2 ∈ CA, C1 6= C2, have the order

d1 ≤P d2 ≤P · · · ≤P dn.
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Fig. 4.6. The region R.

These two bottom chains cross if there exist cp, cq ∈ C1 and dr, ds ∈ C2 such that
cp <LR dr <LR cq <LR ds or cp >LR dr >LR cq >LR ds; in such a case, the 4-tuple
(cp, cq, dr, ds) is a crossing of C1 and C2. Since cp and cq are related by ≤P , there is

a directed path D1 in ~H(P ) between cp and cq that covers C1[cp, cq]. Similarly, there

is a directed path D2 in ~H(P ) between dr and ds that covers C2[dr, ds].
Lemma 4.6. D1 and D2 have at least one node in common.
Proof. Without loss of generality, assume that cp <LR dr <LR cq <LR ds. Con-

sider the polygonal path consisting of the horizontal ray from cp to −∞, followed by
the line segments (cp, dr), (dr, cq), and (cq, ds), and completed by the horizontal ray
from ds to ∞. Let R be the region of the plane consisting of this polygonal path
and all points below it. (Figure 4.6 illustrates the region R derived from Fig. 4.5
with crossing (a1, a4, a2, a5).) Topologically, R is a 2-dimensional ball with a single
boundary point removed. Topologically, D1 and D2 are paths in the plane with end-
points on the boundary of R. By Observation 1, neither path can cross either of
the two infinite rays. Also, neither path can pass above the rainbow arc of cq or dr,
because every top node is higher than any bottom nodes in the upwards embedding
of ~H(P ). Hence, if either path crosses one of the three line segments of the polygonal
path and proceeds outside of R, then that path must return to the polygonal path
at a higher point on the same line segment. In essence, we can disregard any excur-
sions outside of R and assume, from a topological viewpoint, that both paths remain
within R. The nodes of D1 and D2 alternate along the polygonal path. Hence, these
paths must intersect topologically, and D1 and D2 must have at least one node in
common.

A node that D1 and D2 have in common is an intersection of C1 and C2. Note
that an intersection need not be a bottom node. In Fig. 4.5, the chains {a1, a3, a4}
and {a5, a2} cross and have the intersection v, which is not a bottom node.

Observation 2. Since, with respect to ≤P , an intersection associated with the
crossing (cp, cq, dr, ds) is between cp and cq and between dr and ds, we have these
relations:

minP {cp, cq} <P maxP {dr, ds},
minP {dr, ds} <P maxP {cp, cq}.
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STACK AND QUEUE LAYOUTS OF POSETS 613

The following observation is helpful in constructing pairs of noncrossing chains.
Observation 3. Suppose that C1 − {ci} and C2 do not cross. If no dj ∈ C2 is

between ci−1 and ci with respect to ≤LR or if no dj ∈ C2 is between ci and ci+1 with
respect to ≤LR, then C1 and C2 do not cross.

We wish to be able to assume that CA does not contain a pair of crossing chains.
The first of two steps in justifying that assumption is to show that we can replace
two crossing chains with two noncrossing chains according to the following lemma.
The replacing pair is further constrained to satisfy the five properties in the lemma.
The need for properties 1, 2, and 3 is clear. Property 4 states that, if the original
pair crosses, then the replacing pair is smaller, in a precise technical sense, than the
original pair; hence the process of replacement of a crossing pair by a noncrossing
pair cannot be repeated forever. Property 5 allows us to identify the minima in the
replacing pair; this property is a technical condition useful only within the inductive
proof of the lemma.

Lemma 4.7. Suppose C1 and C2 are disjoint bottom chains. Then there exists
a function NC that yields a pair of bottom chains (C ′1, C

′
2) = NC(C1, C2) with these

properties:
1. C ′1 ∪ C ′2 = C1 ∪ C2;
2. C ′1 and C ′2 are disjoint;
3. C ′1 and C ′2 do not cross;
4. the sum of extents does not increase:

〈C ′1〉+ 〈C ′2〉 ≤ 〈C1〉+ 〈C2〉;
if equality holds and if C1 and C2 cross, then the minimum extent decreases:

min{〈C ′1〉, 〈C ′2〉} < min{〈C1〉, 〈C2〉};
and

5. chain minima are preserved:

c1 = minP C
′
1 = minP C1,

d1 = minP C
′
2 = minP C2.

Proof. In addition to our previous notation for C1 and C2, we define

α = minLR C1,

β = maxLR C1,

γ = minLR C2,

δ = maxLR C2.

By Observation 1, either c1 = α or c1 = β, and either d1 = γ or d1 = δ. If c1 = α,
choose a path D1 from c1 to β that covers the subchain C1[c1, β]; if c1 = β, choose a
path D1 from c1 to α that covers the subchain C1[c1, α]. Similarly, if d1 = γ, choose
a path D2 from d1 to δ that covers the subchain C2[d1, δ]; if d1 = δ, choose a path
D2 from d1 to γ that covers the subchain C2[d1, γ]. By Observation 1, both paths are
monotonic with respect to ≤LR.

We proceed to show the lemma by induction on the pair (m,n). Recall that m
is the cardinality of C1 and n is the cardinality of C2. The base cases are all pairs
(m,n) with either m = 1 or n = 1. In these cases, C1 and C2 do not cross, and setting
NC(C1, C2) = (C1, C2) yields the desired pair of bottom chains.
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614 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

For the inductive case, we assume that m ≥ 2, that n ≥ 2, and that the lemma
holds for (m′, n′) whenever m′ < m and n′ ≤ n or whenever m′ ≤ m and n′ < n.
We show that the lemma then holds for C1 and C2. Without loss of generality, we
assume α <LR γ. There are now three main cases depending on the relative order of
α, β, γ, and δ with respect to <LR.

Case 1. α <LR β <LR γ <LR δ. In this case, C1 and C2 do not cross and the
lemma trivially holds.

Case 2. α <LR γ <LR β <LR δ. In this case, C1 and C2 necessarily cross. There
are four subcases.

Case 2.1. c1 = α and d1 = γ. Paths D1 and D2 necessarily contain at least one
intersection. Let v be the intersection that occurs first in going from α to β on D1.
The subpath D′

1 of D1 from c1 to v does not meet the subpath D′
2 of D2 from d1 to

v until v. Hence, unless D′
2 consists only of d1 (that is, d1 = v), one of D′

1 and D′
2

is above the other in the upwards embedding. D′
1 cannot be above D′

2, because the
rainbow arc of d1 is a barrier to D′

1 going above d1. Hence, either D′
2 consists only of

d1 or D′
2 is above D′

1. There are two subcases, depending on the relative order of c2
and v according to P .

Case 2.1.1. c2 <P v. Since c2 is on D′
1 and the rainbow arc of c2 must not be a

barrier for D′
2, we have c2 <LR d1. Let (C ′1, C

′
2) = NC(C1−{c2}, C2). Since c1 ∈ C ′1,

we set NC(C1, C2) = (C ′1 ∪ {c2}, C ′2). For this case only, we provide a full proof that
the lemma holds for NC(C1, C2), leaving the details for the remaining cases to the
reader. We employ the properties that hold for (C ′1, C

′
2) by the inductive hypothesis.

By property 5 of the inductive hypothesis, C ′1 and C ′2 are bottom chains with c1 ∈ C ′1
and d1 ∈ C ′2. We must show that C ′1 ∪ {c2} is a bottom chain. If dj ∈ C2[v, dn], we

have c2 <P dj . If dj ∈ C2[d1, v) and c1 <P dj , then c2 <P dj , since any path in ~H(P )
between c1 and dj must cross D′

1 between c2 and v. In any case, for any dj ∈ C ′2,
if c1 <P dj , then c2 <P dj . Hence, (C ′1 ∪ {c2}, C ′2) is a pair of bottom chains, as
required. We now establish that NC(C1, C2) satisfies the 5 properties.

1. By property 1 of the inductive hypothesis, C ′1∪C ′2 = (C1−{c2})∪C2. Hence,
(C ′1 ∪ {c2}) ∪ C ′2 = C1 ∪ C2.

2. By property 2 of the inductive hypothesis, C ′1 and C ′2 are disjoint. Since
c2 6∈ C ′1 ∪ C ′2, C ′1 ∪ {c2} and C ′2 are disjoint.

3. By property 3 of the inductive hypothesis, C ′1 and C ′2 do not cross. Since
c2 <LR d1, there is no node of C2 between c1 and c2. Also, by Observation 1
there is no node in C1 that is between c1 and c2. Therefore there is no node
in C ′2 between c1 and c2 and hence by Observation 3, C ′1 ∪ c2 and C ′2 do not
cross. Since there is no node of C ′2 between c1 and c2 with respect to ≤LR,
C ′1 ∪ {c2} and C ′2 do not cross by Observation 3.

4. To be definite, let α = ap, β = aq, γ = ar, and δ = as. Then, by property 4
of the induction hypothesis and the fact that c1 <LR c2 <LR β, we have

〈C ′1〉+ 〈C ′2〉 ≤ 〈C1 − {c2}〉+ 〈C2〉
= (q − p) + (s− r)

= 〈C1〉+ 〈C2〉,
and, if equality holds and if C1 − {c2} and C2 cross,

min{〈C ′1〉, 〈C ′2〉} < min{〈C1 − {c2}〉, 〈C2〉}.
If 〈C ′1〉 + 〈C ′2〉 < 〈C1〉 + 〈C2〉, then we are done. So assume that 〈C ′1〉 +
〈C ′2〉 = 〈C1〉 + 〈C2〉. Calculate 〈C1〉 = q − p and 〈C2〉 = s − r. We obtain
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STACK AND QUEUE LAYOUTS OF POSETS 615

〈C ′1〉 + 〈C ′2〉 = (q − p) + (s − r). If δ ∈ C ′2, then 〈C ′2〉 = s − r = 〈C2〉,
〈C ′1〉 = 〈C1〉 = q − p, and aq = β ∈ C ′1, a contradiction to C ′1 and C ′2 not
crossing. Hence, δ ∈ C ′1, 〈C ′1〉 = s− p, 〈C ′2〉 = q− r, and 〈C ′1 ∪ {c2}〉 = s− p.
Then we have

min{〈C ′1 ∪ {c2}〉, 〈C ′2〉} = min{s− p, q − r}
= q − r

< min{q − p, s− r}
= min{〈C1〉, 〈C2〉}.

Hence, property 4 holds for (C ′1 ∪ {c2}, C ′2).
5. By property 5 of the inductive hypothesis, c1 = minP C

′
1 = minP C1 − {c2}

and d1 = minP C
′
2 = minP C2. Since c1 <P c2, we obtain c1 = minP C

′
1 ∪

{c2} = minP C1 and d1 = minP C
′
2 = minP C2, as required.

This completes the full proof for the case c2 <P v.
Case 2.1.2. v ≤P c2. Hence, d1 <LR c2. For this case, let c1 = ap, c2 = aq,

β = ax, d1 = ar, d2 = as, and δ = ay. We have p < r < q ≤ x < y and r < s ≤ y.
Consider the relative left-to-right positions of c2 and d2.

First suppose that d2 <LR c2. Since d2 <LR c2 <LR δ, no node in C2(d2, dn] is
between d1 and d2. Since the subpath of D2 from d2 to δ must go below or through
c2, c2 must be above d2 in the vertical order. Hence, no node of C1 is between d1

and d2. Let (C ′1, C
′
2) = NC(C1, C2[d2, dn]). By Observation 3, (C ′1, C

′
2 ∪ {d1}) is a

pair of noncrossing chains. Set NC(C1, C2) = (C ′1, C
′
2 ∪ {d1}). We need to show that

(C ′1, C
′
2 ∪ {d1}) satisfies property 4. By property 4 of the inductive hypothesis,

〈C ′1〉+ 〈C ′2〉 ≤ 〈C1〉+ 〈C2[d2, dn]〉.

Calculate 〈C1〉 = x− p, 〈C2〉 = y − r, 〈C2[d2, dn]〉 = y − s, and

〈C ′1〉+ 〈C ′2 ∪ {d1}〉 = 〈C ′1〉+ 〈C ′2〉+ (s− r)

≤ 〈C1〉+ 〈C2[d2, dn]〉+ (s− r)

= (x− p) + (y − s) + (s− r)

= (x− p) + (y − r)

= 〈C1〉+ 〈C2〉.

If 〈C ′1〉 + 〈C ′2 ∪ {d1}〉 < 〈C1〉 + 〈C2〉, then property 4 holds. So assume 〈C ′1〉 + 〈C ′2 ∪
{d1}〉 = 〈C1〉+〈C2〉. If |C ′1| = 1 (that is C ′1 = {c1}), then 1 = min{〈C ′1〉, 〈C ′2∪{d1}〉} <
2 ≤ min{〈C1〉, 〈C2〉}, and again property 4 holds. Otherwise, |C ′1| ≥ 2. Since d2 ∈ C ′2
and C ′1 and C ′2 do not cross, δ ∈ C ′1. Hence, 〈C ′1〉 = y − p, 〈C ′2〉 = x − s, and
〈C ′2 ∪ {d1}〉 = x− r. We have

min{〈C ′1〉, 〈C ′2 ∪ {d1}〉} = x− r

< min{x− p, y − r}
= min{〈C1〉, 〈C2〉}.

Hence, property 4 holds.
Now suppose that c2 <LR d2. There are finally three subcases to consider.
Case 2.1.2.1. d2 <LR δ and c2 <LR β. Let (C ′1, C

′
2) = NC({c1} ∪

C2[d2, dn], C1[c2, cm]). There are no nodes of C1 ∪ C2 between d1 and c2. So set
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616 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

NC(C1, C2) = (C ′1, C
′
2 ∪ {d1}). By Observation 3, {d1} ∪ C ′2 is a chain that does not

cross C ′1. By property 4 of the inductive hypothesis,

〈C ′1〉+ 〈C ′2〉 ≤ 〈{c1} ∪ C2[d2, dn]〉+ 〈C1[c2, cm]〉,
and, if equality holds, then either {c1} ∪ C2[d2, dn] and C1[c2, cm] do not cross, or

min{〈C ′1〉, 〈C ′2〉} < min{〈{c1} ∪ C2[d2, dn]〉, 〈C1[c2, cm]〉}.
We proceed to show that property 4 holds for C ′1 and {d1} ∪C ′2. Since 〈{d1} ∪C ′2〉 =
〈C ′2〉+ (q − r), we have

〈C ′1〉+ 〈{d1} ∪ C ′2〉 = 〈C ′1〉+ 〈C ′2〉+ (q − r)

≤ 〈{c1} ∪ C2[d2, dn]〉+ 〈C1[c2, cm]〉+ (q − r)

= (〈C2〉 − (s− r) + (s− p)) + (〈C1〉 − (q − p)) + (q − r)

= 〈C1〉+ 〈C2〉,
and hence

〈C ′1〉+ 〈{d1} ∪ C ′2〉 ≤ 〈C1〉+ 〈C2〉.
If this inequality is strict, then property 4 holds. If equality holds, then one of two
possibilities holds. First suppose that {c1} ∪ C2[d2, dn] and C1[c2, cm] do not cross.
In that case, we have β <LR d2 <LR δ and

min{〈C ′1〉, {d1} ∪ 〈C ′2〉} = min{y − p, x− r}
= x− r

< min{x− p, y − r}
= min{〈C1〉, 〈C2〉}.

Second suppose that

min{〈C ′1〉, 〈C ′2〉} < min{〈{c1} ∪ C2[d2, dn]〉, 〈C1[c2, cm]〉}
= x− q.

Then

min{〈C ′1〉, 〈{d1} ∪ C ′2〉} ≤ min{〈C ′1〉, 〈C ′2〉}+ (q − r)

< (x− q) + (q − r)

= x− r

< min{〈C1〉, 〈C2〉}.
For both possibilities, property 4 holds. We conclude that NC(C1, C2) = (C ′1, {d1} ∪
C ′2) gives the desired pair of chains.

Case 2.1.2.2. d2 <LR δ and c2 = β. Since c1 <LR d2 and d1 <LR c2, both
{c1} ∪ C2[d2, dn] and {d1} ∪ C1[c2, cm] are chains, and they do not cross. Setting
NC(C1, C2) = ({c1} ∪ C2[d2, dn], {d1} ∪ C1[c2, cm]) gives the desired pair of chains.
Since

〈{c1} ∪ C2[d2, dn]〉+ 〈{d1} ∪ C1[c2, cm]〉 = (y − p) + (q − r)

= (x− p) + (y − r)

= 〈C1〉+ 〈C2〉,
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STACK AND QUEUE LAYOUTS OF POSETS 617

and

min{〈{c1} ∪ C2[d2, dn]〉, 〈{d1} ∪ C1[c2, cm]〉} = min{y − p, q − r}
= q − r

< min{q − p, y − r}
= min{〈C1〉, 〈C2〉},

property 4 holds.
Case 2.1.2.3. d2 = δ. Let (C ′1, C

′
2) = NC(C2[d2, dn], {d1} ∪ C1[c2, cm]). Since c1

is leftmost and d2 rightmost in C1 ∪ C2, the pair (C ′1 ∪ {c1}, C ′2) is also noncrossing.
Let az = minLR C2[d2, dn]. We have r < z ≤ y and 〈C2[d2, dn]〉 = y− z. By property
4 of the inductive hypothesis, we have

〈C ′1〉+ 〈C ′2〉 ≤ 〈C2[d2, dn]〉+ 〈{d1} ∪ C1[c2, cm]〉
= (y − z) + (x− r).

We proceed to show property 4 for (C ′1 ∪ {c1}, C ′2). First,

〈C ′1 ∪ {c1}〉+ 〈C ′2〉 = 〈C ′1〉+ 〈C ′2〉+ (z − p)

≤ 〈C2[d2, dn]〉+ 〈{d1} ∪ C1[c2, cm]〉+ (z − p)

= (y − z) + (x− r) + (z − p)

= (x− p) + (y − r)

= 〈C1〉+ 〈C2〉.

If this inequality is strict, then we are done. Otherwise, 〈C ′1 ∪ {c1}〉 + 〈C ′2〉 = (x −
p) + (y − r) and 〈C ′2〉 = x− r. We have

min{〈C ′1 ∪ {c1}〉, 〈C ′2〉} = min{y − p, x− r}
= x− r

< min{y − r, x− p}
= min{〈C1〉, 〈C2〉}.

Hence, Property 4 holds for (C ′1 ∪ {c1}, C ′2).
Case 2.2. c1 = α and d1 = δ. In this case, C1 and C2 always cross. If we succeed

in replacing these with two noncrossing chains C ′1 and C ′2 having the same nodes,
then maxLR C

′
1 < minLR C

′
2. Hence, property 4 follows easily for every (C ′1, C

′
2) =

NC(C1, C2) constructed for this case.
Again, let v be the first intersection of D1 and D2. If v ∈ A, then all of C1(v, cm]

is to the right of v, and all of C2(v, dn] is to the left of v. If v 6∈ C1 ∪C2, then setting
NC(C1, C2) = (C1[c1, v) ∪ C2(v, dn], C2[d1, v) ∪ C1(v, cm]) gives the desired pair of
chains. If v ∈ C1 ∪ C2, then setting NC(C1, C2) = (C1[c1, v] ∪ C2(v, dn], C2[d1, v) ∪
C1(v, cm]) gives the desired pair of chains. In either case, C ′1 and C ′2 do not cross.

If v 6∈ A, then the argument is a bit more involved. Otherwise, if c2 <LR γ,
then let (C ′1, C

′
2) = NC(C1 − {c2}, C2). Setting NC(C1, C2) = (C ′1 ∪ {c2}, C ′2) gives

the desired pair of chains. If β <LR d2, then let (C ′1, C
′
2) = NC(C1, C2 − {d2}).

Setting NC(C1, C2) = (C ′1, C
′
2∪{d2}) gives the desired pair of chains. Hence, suppose

γ <LR c2 and d2 <LR β. Since the rainbow arcs of c2 and d2 are barriers, we have
v ≤P c2, d2 ≤P v, and d2 <LR c2. By Observation 1, there are four possibilities.
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618 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

Case 2.2.1. C1(c2, cm] is to the left of c2 and C2(d2, dn] is to the left of d2. If
C1(c2, cm] remains to the right of d2, then set NC(C1, C2) = ({c1}∪C2[d2, dn], {d1}∪
C1[c2, cm]). Otherwise, (c2, cm, d1, d2) is a crossing, and, by Observation 2, c2 <P dj ,
for all j ≥ 2. Hence C2 ∪ {c2} is a chain, and there are no nodes of C1 ∪ C2 between
c2 and d1. Let (C ′1, C

′
2) = NC(C1 − {c2}, C2). Setting NC(C1, C2) = (C ′1, C

′
2 ∪ {c2})

gives the desired pair of chains.

Case 2.2.2. C1(c2, cm] is to the left of c2 and C2(d2, dn] is to the right of d2. Let
(C ′1, C

′
2) = NC(C1[c2, cm], C2[d2, dn]). Setting NC(C1, C2) = ({c1} ∪ C ′2, {d1} ∪ C ′1)

gives the desired pair of chains.

Case 2.2.3. C1(c2, cm] is to the right of c2 and C2(d2, dn] is to the left of d2. Here
C1[c2, cm] and C2[d2, dn] do not cross. Setting NC(C1, C2) = ({c1}∪C2[d2, dn], {d1}∪
C1[c2, cm]) gives the desired pair of chains.

Case 2.2.4. C1(c2, cm] is to the right of c2 and C2(d2, dn] is to the right of d2.
This is the left-to-right mirror image of 2.2.1. The same argument applies, mutatis
mutandis.

Case 2.3. c1 = β and d1 = γ. This case cannot occur because the rainbow arcs of
c1 and d1 are barriers to the paths D1 and D2. It would require both D1 to go below
d1 and D2 to go below c1, which is impossible.

Case 2.4. c1 = β and d1 = δ. This case is the left-to-right mirror image of Case
2.1. The same argument applies, mutatis mutandis.

Case 3. α <LR γ <LR δ <LR β. In this case, C1 and C2 may cross. There are
again four subcases.

Case 3.1. c1 = α and d1 = γ. First suppose c2 <LR d1. Let (C ′1, C
′
2) =

NC(C1 − {c1}, C2). The desired pair of chains is NC(C1, C2) = (C ′1 ∪ {c1}, C ′2).
Suppose that d1 <LR c2 <LR δ. Then D1 and D2 necessarily have an intersection
before c2 and before δ. This is handled as in Case 2.1. Suppose that δ <LR c2
and c2 6= β. Then C1(c2, cm] is to the right of c2, C2 is between c1 and c2, and
C1 and C2 do not cross. Finally, suppose δ <LR c2 and c2 = β. Let (C ′1, C

′
2) =

NC(C1 − {c1}, C2). Since all of C1(c2, cm] ∪ C2 is between c1 and c2 with respect to
≤LR, and since c2 ∈ C ′1, it follows that C ′1 ∪ {c1} and C ′2 do not cross. The desired
pair of chains is NC(C1, C2) = (C ′1 ∪ {c1}, C ′2). It is necessary to justify property
4. Let τ = min2≤i≤m ci, where min is taken with respect to ≤LR. There are three
subcases.

Case 3.1.1. τ <LR γ. Note that all of C2(d1, dn] is to the right of d1 = γ. If τ and
γ are unrelated with respect to ≤P or if τ <P γ, then τ 6∈ C ′2, since γ = minP C

′
2. If

γ <P τ , then τ , being to the left of γ, is unrelated to every node in C2[d2, dn]; again
τ 6∈ C ′2. Since τ ∈ C ′1, we have 〈C ′1〉 = 〈C1[c2, cm]〉. Applying property 4, we must have
〈C ′2〉 < 〈C2〉 if C1[c2, cm] and C2 cross. It follows that 〈C ′1∪{c1}〉+〈C ′2〉 < 〈C1〉+〈C2〉
if C1 and C2 cross.

Case 3.1.2. γ <LR τ <LR δ. For C2[c2, cm] and C1, this case is the same as Case
2.2. For all the possibilities in that case, we get that 〈C ′2〉 < 〈C2〉. Hence,

〈C ′1 ∪ {c1}〉+ 〈C ′2〉 = (β − α) + 〈C ′2〉
< (β − α) + 〈C2〉
= 〈C1〉+ 〈C2〉,

as desired.

Case 3.1.3. δ <LR τ . In this case, C ′1 = C1[c2, cm] and C ′2 = C2 do no cross.
Hence, neither do C ′1 ∪ {c1} and C ′2.
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STACK AND QUEUE LAYOUTS OF POSETS 619

Case 3.2. c1 = α and d1 = δ. In this case, C1 and C2 do not cross, as the rainbow
arc of d1 is a barrier to D1 crossing D2.

Case 3.3. c1 = β and d1 = γ. This case is the left-to-right mirror image of Case
3.2.

Case 3.4. c1 = β and d1 = δ. This case is the left-to-right mirror image of Case
3.1.

The second and last step in justifying the assumption converts any CA into a C′A
that has no pair of crossing chains.

Lemma 4.8. Suppose CA is a set of disjoint bottom chains of minimum cardinality
that covers A. Then there exists a set C′A of disjoint bottom chains that covers A such
that |C′A| = |CA| and no pair of chains in C′A cross.

Proof. If CA contains no pair of crossing chains, then C′A = CA is the set required
for the lemma.

Otherwise, let C1, C2 ∈ CA be a pair of chains that cross. By Lemma 4.7, there
exist chains C ′1 and C ′2 such that by substituting these chains for C1 and C2, we
get the set C′′A = CA ∪ {C ′1, C ′2} − {C1, C2}, which is also a set of bottom chains of
minimum cardinality that covers A. By property 4, either

(i) the sum of the extents of chains in C′′A is strictly less than the sum of the
extents of chains in CA or,

(ii) min{〈C ′1〉, 〈C ′2〉} < min{〈C1〉, 〈C2〉}.
Since every chain has extent at least 0, repeated substitution of a pair of crossing
chains by a pair of noncrossing chains must eventually reduce the sum of the extents
of the chains. Again, since every chain has extent at least 0, the sum of the extents
of the chains cannot reduce infinitely, and hence we must eventually arrive at a set
C′A that contains no pair of noncrossing chains. This set C′A is the set required for the
lemma.

We are finally prepared to prove our main result.
Proof of Theorem 4.5. By Lemma 4.8, we may assume that CA contains no pair of

crossing chains. Now let CB be a partition of B into at most W (P ) chains. Similarly,
we may assume that CB contains no pair of crossing chains.

Consider an arbitrary bottom chain C and an arbitrary top chain C ′. It is possible
that a rainbow arc connects a node in C to a node in C ′. However, it is not possible
for more than one rainbow arc to connect C and C ′, for then one of the rainbow arcs
(the “longest” one) would be a transitive arc in ~H(P ). For example, in Fig. 4.5, we
cannot have a bottom chain C = {a1, a2} and a top chain C ′ = {b1, b2}, for then
there is a path from b2 to b1 and (a1, b1) is a transitive arc.

We now construct a bipartite graph G = (CA, CB , E), where E contains an edge
between C ∈ CA and C ′ ∈ CB if there is a rainbow arc connecting C to C ′. Since
every rainbow arc connects exactly one bottom chain to exactly one top chain, there
is exactly one edge in G for every rainbow arc; that is, |E| = k. Since there is no
pair of crossing bottom chains and no pair of crossing top chains, G is planar. As
an example, Fig. 4.7 illustrates a graph G = (CA, CB , E) obtained from the poset of
Fig. 4.5. In particular,

CA =
{
{a1, a2}, {a3, a4}, {a5, a6}

}

and

CB =
{
{b1, b5}, {b2}, {b3}, {b4}, {b6}

}
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Fig. 4.7. A bipartite planar graph G = (CA, CB , E) corresponding to the poset in Fig. 4.5.

According to Euler’s formula for planar graphs, we have

|CA|+ |CB | − |E|+ f = 1 + t,(4.1)

where f is the number of faces in a planar embedding of G and t is its number of
connected components. If G consists of a single edge, then k = 1 ≤ W (P ) and k <
4W (P ), as desired. Otherwise, since G is bipartite, we have the following inequality:

4f ≤ 2|E|,(4.2)

f ≤ |E|
2
.

Combining equations 4.1 and 4.2, we obtain

|CA|+ |CB | − |E|+ |E|
2

≥ 1 + t,(4.3)

|CA|+ |CB | ≥ 1 + t +
|E|
2
,

2 +
|E|
2

≤ |CA|+ |CB |.

We know that |E| = k and that both |CA| and |CB | are at most W (P ). Substituting
into equation 4.3, we obtain

k + 4 ≤ 4W (P ).

Hence, the queuenumber of ~H(P ) with respect to σ is less than 4W (P ).

Corollary 4.9. For any planar poset P where ~H(P ) contains at least one arc,
QN(P ) < 4W (P ).

We believe that this result can be improved to show that, for any poset P , there
exists a W (P )-queue layout of ~H(P ); see Conjecture 1 in section 7.

5. Stacknumber of posets with planar covering graphs. In this section we
construct, for each n ≥ 1, a 3n-element poset Rn such that H(Rn) is planar and hence
has stacknumber at most 4 (see Yannakakis [21]), but such that the stacknumber of
the class R = {Rn | n ≥ 1} is not bounded.
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Theorem 5.1. For each n ≥ 1, there exists a poset Rn such that |Rn| = 3n,
H(Rn) is planar, and

⌈n
2

⌉
≤ SN(Rn) ≤ n.

Proof. Suppose n ≥ 1. Define three disjoint sets U , V , and W as follows:

U = {ui | 1 ≤ i ≤ n},
V = {vi | 1 ≤ i ≤ n},
W = {wi | 1 ≤ i ≤ n}.

The poset Rn = (U ∪ V ∪W,≤) is given by

ui < ui+1,

vi < vi+1,

wi < wi+1,

for 1 ≤ i ≤ n− 1,

ui < wi < vi,

for 1 ≤ i ≤ n, and

un < v1.

Figure 5.1 shows H(R4).
Aside. While the covering graph H(Rn) is clearly planar, the poset Rn is not

planar. This can be seen as follows. In any upward embedding of ~H(Rn) in the plane,
the nodes

u1, u2, . . . , un, v1, v2

have increasing y-coordinates. Thus, any point in the plane whose y-coordinate is
between the y-coordinates of u1 and v2 lies either on the left or on the right of the
path

D = u1, u2, . . . , un−1, un, v1, v2.

Now add the nodes w1 and w2 to the embedding. Their y-coordinates are between
the y-coordinates of u1 and v2 because of u1 < w1 < v1 < v2 and u1 < u2 < w2 < v2.
If both w1 and w2 are embedded on the same side of D, then the paths u1, w1, v1 and
u2, w2, v2 must cross somewhere. If w1 and w2 are embedded on different sides of D,
then the line segment (w1, w2) crosses a line segment in D. End Aside.

To prove the lower bound on SN(Rn), let σ be any topological order on ~H(Rn).
The order σ contains the elements of U ∪ V in the order u1, u2, . . . , un, v1, v2, . . . , vn,
and the elements of W in the order w1, w2, . . . , wn. The elements of W are mingled
among the elements of U ∪ V . Suppose w1, w2, . . . , wk occur before un in σ, while
wk+1, wk+2, . . . , wn occur after un. Then the arcs

(w1, v1), (w2, v2), . . . , (wk, vk)
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Fig. 5.1. The covering graph of R4.

form a k-twist, while the arcs

(uk+1, wk+1), (uk+2, wk+2), . . . , (un, wn)

form an (n− k)-twist. Hence,

SN(Rn) ≥ max(k, n− k) ≥ dn/2e .
Therefore, SN(Rn) ≥ dn/2e, as desired.

The proof of the upper bound is constructive. An n-stack layout of Rn is obtained
by laying out the elements of U ∪ V in the only possible order, and then placing each
wi immediately after ui for all i, 1 ≤ i ≤ n. The assignment of arcs to stacks is as
follows. Assign each arc in the set {(ui, wi), (wi, vi), (wi, wi+1)} to stack si for all i,
1 ≤ i ≤ n − 1 and assign each arc in the set {(un, wn), (wn, vn)} to stack sn. Note
that no two arcs assigned to the same stack intersect. The only arcs remaining to be
assigned are the arcs in the set

{(ui, ui+1) | 1 ≤ i ≤ n− 1} ∪ {(vi, vi+1) | 1 ≤ i ≤ n− 1} ∪ {(un, v1)}.
The arcs (vi, vi+1) for i, 1 ≤ i ≤ n − 1, do not intersect any other arc and can be
assigned to any stack. Each arc (ui, ui+1), 1 ≤ i ≤ n−1, is assigned to stack si+1 and
arc (un, v1) is assigned to stack s1. An n-stack layout of Rn is obtained. The upper
bound follows.

Two observations about the poset Rn constructed in the above proof are in order.
The first observation is that QN(Rn) = 2. A 2-queue layout of R4 is shown in Fig. 5.2.

D
ow

nl
oa

de
d 

03
/0

8/
19

 to
 1

28
.1

73
.5

4.
80

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STACK AND QUEUE LAYOUTS OF POSETS 623

�� �� �� ��

 	
 	
 	"!"!"!"!"!"!"!

$' $' $' $'

l l l l l l l l l l l lu4u3u2u1 v1 v4v3v2
w1 w2 w3 w4

Fig. 5.2. A 2-queue layout of R4.
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u1 u2

w2 w3

u3 u4

w4 v4 v3 v2

w1

v1

Fig. 5.3. A 2-stack layout of the covering graph of R4.

In general, the total order used in the n-stack layout of Rn described in the above
proof yields a 2-queue layout of Rn. The second observation is that the stacknumber
and the queuenumber of the covering graph H(Rn) is 2. A 2-stack layout of H(R4)
is shown in Fig. 5.3. In general, a 2-stack layout of H(Rn) can be obtained because
H(Rn) is a hamiltonian planar graph [1].

Theorem 5.1 and the above observations lead to the following corollaries.
Corollary 5.2. There exists a class R = {Rn | n ≥ 1} of posets such that

|Rn| = 3n, H(Rn) is planar, and

SNR(n)

QNR(n)
= Ω(n).

Corollary 5.3. There exists a class R = {Rn | n ≥ 1} of posets Rn such that
|Rn| = 3n, H(Rn) is planar and

SNR(n)

SNH(R)(n)
= Ω(n).

6. NP-completeness results. Heath and Rosenberg [13] show that the prob-
lem of recognizing a 1-queue graph is NP-complete. Since a 1-stack graph is an outer-
planar graph, it can be recognized in linear time (Sys lo and Iri [18]). But Wigderson
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[19] shows that the problem of recognizing a 2-stack graph is NP-complete. Heath
and Pemmaraju [9] and Heath, Pemmaraju, and Trenk [11] show that the problem
of recognizing a 4-queue poset is NP-complete. They also show that the problem
of recognizing a 6-stack dag is NP-complete. We have not been able to extend this
NP-completeness result for stack layouts of dags to an analogous result for posets.

Formally, the decision problem for queue layouts of posets is POSETQN.
POSETQN
INSTANCE: A poset P .
QUESTION: Does P have a 4-queue layout?

Theorem 6.1 ([1, 9]). The decision problem POSETQN is NP-complete.

Since the Hasse diagram of a poset is a dag, this result hold for dags in general.
This result is in the spirit of the result of Yannakakis [20] that recognizing a 3-
dimensional poset is NP-complete.

7. Conclusions and open questions. In this paper, we have initiated the
study of queue layouts of posets and have proved a lower bound result for stack
layouts of posets with planar covering graph. The upper bounds on the queuenumber
of a poset in terms of its jumpnumber, its length, its width, and the queuenumber of
its covering graph, proved in section 3, may be useful in proving specific upper bounds
on the queuenumber of various classes of posets. We believe that the upper bound
of W (P )2 on the queuenumber of an arbitrary poset P , proved in section 3, and the
upper bound of 4W (P ) on the queuenumber of any planar poset P , proved in section
4 are not tight. We have the following conjecture.

Conjecture 1. For any poset P , QN(P ) ≤W (P ).

We have established a lower bound of Ω(
√
n) on the queuenumber of the class

of planar posets. We believe that this bound is tight and come to the following
conjecture.

Conjecture 2. For any n-element planar poset P , QN(P ) = O(
√
n).

We conjecture that another upper bound on the queuenumber of a planar poset P
is given by its length L(P ). We believe that it is possible to embed a planar poset in
an “almost” leveled-planar fashion with L(P ) levels. (See Heath and Rosenberg [13]
for a definition of leveled-planar embeddings.) From such an embedding, a queue
layout of P in L(P ) queues should be obtainable. Therefore we have the following
conjecture.

Conjecture 3. For any planar poset P , QN(P ) ≤ L(P ).

In section 5, we show that the stacknumber of the class of n-element posets having
planar covering graphs is Θ(n). However the stacknumber of the more restrictive class
of planar posets is still unresolved.
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