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ABSTRACT 

A partial order or poset  ,P X   on a (finite) base set X  determines the set  P  of linear extensions of P . 

The problem of computing, for a poset P , the cardinality of  P  is #P-complete. A set  1 2, , , kP P P  of posets on 

X  covers the set of linear orders that is the union of the  iP . Given linear orders 1 2, , , mL L L  on X , the Poset 

Cover problem is to determine the smallest number of posets that cover  1 2, , , mL L L . Here, we show that the 

decision version of this problem is NP-complete. On the positive side, we explore the use of cover relations for finding 
posets that cover a set of linear orders and present a polynomial-time algorithm to find a partial poset cover. 
 
Keywords: Linear Orders; Partial Orders; NP-Completeness; Algorithms 

1. Introduction 

Finite partial orders or posets have numerous applica- 
tions, including scheduling [1-8], molecular evolution 
[9-12], data mining [13-17], graph theory [18-23], and 
algebra [24-27]. Many applications implicitly or explic- 
itly involve linear extensions of posets. For example, the 
solution of many scheduling problems requires a lineari- 
zation of the jobs being scheduled consistent with some 
precedence constraints given by a poset. As the number 
of linear extensions of a poset may be exponential in the 
number of elements of the base set, many computational 
problems related to linear extensions are not solvable in 
polynomial time. Ruskey [28], West [29], Pruesse and 
Ruskey [30], Canfield and Williamson [31], Korsh and 
LaFollette [32], and Ono and Nakano [33] provide algo- 
rithms to generate all of the linear extensions of a finite 
poset. As the size of a solution may be exponentially 
large, these algorithms emphasize the ability to generate 
each successive linear extension in polynomial time, at 
least on average. Sampling the linear extensions of a 
poset is easier. Bubley and Dyer [34] use a rapidly mix- 
ing Markov chain to generate a random linear extension 
of a finite poset, sampled almost uniformly. 

Problems in mining order information from databases 
of sequences (see, e.g., [16,17,35,36]) have an inverted 
character from that of many computational problems 

involving posets. Here, a problem instance is a set of 
linear orders of items from some universal set, while a 
solution is one or more posets that well explain, through 
their linear extensions, a significant number of the linear 
orders. An example from computational neuroscience [37] 
might go as follows. Each item is the firing of a neuron, 
while each linear order is a sequence of neuronal firings, 
ordered in time from an experiment. The solution is a 
neural circuit that explains a set of such linear orders. 
These novel problems are ripe for mathematical formal- 
ization and study. In this paper, we define and study one 
such problem. A problem instance is a set of permuta- 
tions of a base set, and a solution covers the instance 
with linear extensions (Section 2). We prove that the 
Poset Cover problem (a decision problem) is NP-com- 
plete in Section 3. In Section 4, we explore how cover 
relations relate to poset covers. Finally, we develop a 
polynomial-time algorithm to find a partial cover in Sec- 
tion 5. 

2. Preliminaries 

In this section, we establish terminology and notation and 
prove some basic results. 

A partial order or poset P  is an irreflexive, anti- 
symmetric, and transitive binary relation P  defined on 
a finite set X  of cardinality 1n  . We write P  as the 
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ordered pair  , PP X  . Equivalently, poset P  is a 
transitive directed acyclic graph (DAG), namely, 

   , , PP X x y x y  . If G is a DAG, then its transi- 

tive closure is a poset by this equivalence. The rank 
function  : 1,2, ,P X n    is given by 

   1P Px y y x    . The empty poset is  ,X  . 

Let ,x y X  be distinct. Then x  and y  are com- 
parable in P , written Px y , if Px y  or Py x , 
while x and y  are incomparable, written 

P
x y , other- 

wise. Moreover, x is covered by y or y covers x, written 

Px y , if Px y  and there is no z X  such that 

P Px z y  . In this case, the ordered pair  ,x y  is a 
cover relation for P . It is well-known that a (finite) 
poset is uniquely determined by its set of cover relations 
(see [38]). 

If  11 , PP X   and  22 , PP X   are posets on the 
same set X , then 2P  is an extension of 1P , written 

1 2P P , if, for all 
1

, , Pa b X a b   implies 
2Pa b . 

The relation   on posets of X  is reflexive, antisym- 
metric, and transitive. 

A linear order  , LL X   on X is a poset L such 
that, for ,x y X , either x y  or Lx y  holds. If 
L  is a linear order, then the rank function  

 : 1,2, ,L X n    is a bijection. Setting  1
i Lx i , 

L  can be written as the sequence 1 2, , , nL x x x  , 
which is a permutation of X . Also, we write  L i  for 
the element of rank i  in L . A linear extension L  of 
a poset P  is a linear order such that P L . The set of 
all linear extensions of P  is  P . Note that     
is the set of all linear orders on X . Brightwell and 
Winkler [39] prove that the problem of determining 

 P  for a poset P  is #P-complete. 
Let  1 2, , , kP P P   be a set of k  posets on X . 

This set covers the set of linear orders  

 
1

.
k

i
i

P


   

A poset P  is maximal in   if  P    and 
there is no poset P  of X  such that ,P P P P   , 
and  P   . Let   be a set of posets on X , and 
let   be a set of linear orders on X .   blankets   
if 

 .
P

P


  


  

Lemma 1 Let   be the set of linear orders that is 
covered by a set   of posets of cardinality k . Then, 
there exists a cover ̂  of cardinality k k   that also 
covers   such that every poset in ̂  is maximal in 
 . 

Proof. We construct ̂  by examining each poset in 
 . Let P . If P  is maximal in  , then add P  
to ̂ . Otherwise, let P  be a poset of minimum car- 
dinality (as a set of ordered pairs) such that P P  and 

 P   . Since P  is not maximal, P P . More- 
over, any poset P  contained in P  of smaller car- 
dinality will have  P   . Add P  to ̂ . 

The constructed ̂  has cardinality k . Moreover, 
̂  also covers   and every poset in ̂  is maximal 
in  . The lemma follows.  

In this paper, we are interested in reversing the cover 
relationship by addressing the problem of finding a 
minimum set of posets that covers a given set of linear 
orders. As a decision problem, this is 

Poset Cover 
INSTANCE: A base set X  of cardinality 1n  ; a 

nonempty set  1 2, , , mL L L    of linear orders over 
X ; and an integer K m . 

QUESTION: Is there a set   of posets on X  of 
cardinality K  that covers  ? 

This problem is shown to be NP-complete in Section 
3. 

Let 1 2, , , nL x x x   be a linear order on X . For 
each i  satisfying 1 1i n   , the i-swap of L  is the 
linear order   1 2 1 1 2Swap ; , , , , , , , ,i i i i nL i x x x x x x x     .  
Let  Swap ;L L i  . Evidently,  Swap ;L L i , so the  

i -swap relation is symmetric, written iL L . For 
pairs  ,L L  that are i -swaps of each other, for some 
i , we define the function  SwapIndex ,L L i  . Note 
that the set differences of L  and L , namely  

  1\ ,i iL L x x    and   1\ ,i iL L x x  , each consist 
of a single ordered pair. In this case, the swap pair for 
L  and L  is the unordered pair  

   1SwapPair , ,i iL L x x   ; otherwise,  
 SwapPair ,L L   . Two linear orders 1L  and 2L  

differ by a swap, written 1 2L L , if 1 2
iL L , for 

some i . Since 1 2L L  if and only if 1 2L L , the  
  relation is also symmetric. If 1 2L L , 

1La b ,  

and 
2Lb a , then we write  2 1Swap ; ,L L a b     to 

mean that 1 2
iL L  for some i , where the elements 

swapped are a  and b . 
Let   be a set of linear orders on X . The swap 

graph of   is the undirected graph  

     , ,L L L L     . An edge  ,L L  of  

   is labeled  SwapPair ,L L . Let P  be a poset 
on X , and let L . Then, P  is a partial cover of 
  including L  if  L P  and  P   . The 
swap graph is the same as the adjacent transposition 
graph of Pruesse and Ruskey [30]. The swap graph of 
  is bipartite, since every edge connects an even per- 
mutation to an odd permutation. Moreover, the swap 
graph   P   of the linear extensions of a single 
poset is connected (see [30]). 

Let   be the set of all posets on X . Let 
A X X   be a set of ordered pairs. The up-set of A  

is 
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    Up for all , .PA P a b a b A     

 Up A  is empty if and only if the directed graph 
 ,X A  contains cycles. Let  

  , , andB a b a b X a b    be a set of unordered  

pairs. The down-set of B  is 

    Down for all , .
P

B P a b a b B    

 Down    , and we always have the empty poset 
 Down B . 

If  Up =A   , then define the minimal element in 
 Up A  to be  

 
 Up

Min .
P A

A P


   

The following properties of  Min A  follow directly 
from the definitions. 

Lemma 2  MinA A  and 

    Up MinA P A P  . 

We have the following properties of up-sets and down- 
sets. 

Lemma 3 Let ,A B X X  . If A B , then  
   Up UpB A . Let  

  , , , andC D c d c d X c d   . If C D , then  

   Down DownD C . 
Proof. Suppose that A B . By the definition of up- 

sets, 

    
    

Up < for all ,

< for all , Up .

P

P

B P a b a b B

P a b a b A A

  

   
 

Now, suppose that C D . Then,  

    
    

Down for all ,

for all , Down ,

P

P

D P a b a b D

P a b a b C C

  

   
 

by the definition of down-sets. 

3. NP-Completeness of Poset Cover 

In this section, we show that PosetCover is NP-complete, 
in the process using the following known NP-complete 
decision problem [40]. 

Cubic Vertex Cover 
INSTANCE: A nonempty undirected graph  
 ,G V E  that is cubic, that is, in which every vertex 

has degree 3; and an integer K V . 
QUESTION: Is there a subset V V   of cardinality 
K  such that every edge in E  is incident on at least 

one vertex in V  ? 
Theorem 4 Poset Cover is NP-complete.  
Proof. We show that Poset Cover is in NP and that 

Cubic Vertex Cover reduces to Poset Cover in poly- 
nomial time. 

We first show that Poset Cover is in NP. Let X , 
 1 2, , , mL L L   , and K  constitute an instance of 

Poset Cover, and let  1 2, , , kP P P   be a set of 
posets on X . First, it is easy to check whether k K  
in time polynomial in n  and m ; if k K , then return 
No. Second, if the cardinality check succeeds, check 
whether   covers   as follows. For each poset iP  
in turn, use the Korsh and LaFollette [32] algorithm to 
generate all the linear extensions of iP , one at a time, in 
constant time per linear extension. As each linear ex- 
tension  iL P  is generated, check whether L . 
If not, then return No. If so, then mark that element of 
  Covered. Note that the number of linear orders 
generated by a run of the Korsh and LaFollette algorithm 
before completion or returning No is at most m . Hence, 
the worst-case time for one run of the algorithm, in- 
cluding the checking, is  O mn . Once all the posets and 
their linear extensions are processed, check whether 
every element of   is marked Covered. If so, then re- 
turn Yes; otherwise, return No. We find that the worst- 
case time to check whether   covers   is  
 2O m m n , since k K m  . This is polynomial in 

the size of the original instance. We conclude that Poset 
Cover is in NP. 

Now, let  ,G V E  and K  constitute an instance 
of Cubic Vertex Cover . Without loss of generality, 
assume that V    and that  1, 2, ,V    . Let  

3 2s E   , and let  1 2, , , sE e e e   be an arbitrary 
labeling of the s  edges of G . As a running example of 
our reduction, we provide the cubic graph in Figure 1, 
with 6  vertices and 9s   edges. To complete the 
instance of Cubic Vertex Cover , set 4K  . 

Let  2 2n s  , and let  1 2, , , nX x x x   be a 
base set of n  elements. Let bL , the base order, be the 
linear order on X  specified by 

1 2 .
b b bL L L nx x x    

We view the elements of X  as consisting of 2s   
adjacent, non-overlapping pairs. Specifically, the pairs 
are 2 1ix   and 2ix , where 1 2i s   . All elements of 
  are obtained by a small set of swaps of such pairs, 
applied to bL . 
 

 

Figure 1. A cubic graph as part of an instance of cubic ver- 
tex cover. 
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The first s pairs correspond to the s edges in a natural 
way. In particular, edge ie E  is associated with the 
edge order  Swap ;2 1

ie bL L i  . Continuing the ex- 
ample, we set  2 2 22n s   ,  

 1 2 22 1 2 22, , , , , , , ,bX x x x L x x x    

and, for example, 

1 2 1 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22

, , , , , , , , , , , ,

, , , , , , , , , .

eL x x x x x x x x x x x x

x x x x x x x x x x


 

For each vertex v V , there are three edges incident 
on v ; let the indices of those edges be    ,1 , , 2v v  , 
and  ,3v . For each pair  ,v ie  and  ,v je  of these 
edges, we define the pair edge order to be 

   
   

, ,, Swap Swap ;2 , 1 ;2 , 1 .
v i v je e bL L v i v j

 
         

For the running example, there are 18 pair edge orders. 
For each triple    ,1 ,2,v ve e  , and  ,3ve , we define the 
triple edge order to be  

     

   
 

,1 ,2 ,3, ,

Swap Swap Swap ;2 , 1 ;2 , 1 ;

2 , 1

v v ve e e

b

L

L v i v j

v k

  

 



       
 

 

For the running example, there are 6 triple edge orders. 
The primary orders are the base, edge, pair edge, and 

triple edge orders. For primary pair edge order ,i je eL , 
there is a corresponding secondary pair edge order ob- 
tained by swapping 2 1sx   and 2 2sx  , which is  

, ,Swap ;2 1 .
i je e e ei j

L L s      

For primary triple edge order , ,i j ke e eL , there is a corre- 
sponding secondary triple edge order obtained by 
swapping 2 3sx   and 2 4sx  , which is 

, , , ,Swap ;2 3 .
i j k i j ke e e e e eL L s      

For the running example, there are 18 secondary pair 
edge orders and 6 secondary triple edge orders. 

Collect the various orders into five sets, as follows: 

 
 
 

      
      
,1 ,2 ,3

,1 ,2 ,3

,

,

, ,

, ,

1 ,

and are incident on some ,

and are incident on some ,

,

.

i

i j

i j

v v v

v v v

e

e e i j

e e i j

e e e

e e e

A L i s

B L e e v V

B L e e v V

C L v V

C L v V

  

  

  

 

  

 

  

 

We can now complete our instance of Poset Cover by 
setting 

 bL A B B C C         

and setting the integer parameter 4K K    . Note that 
1 8s     . For the running example,  
4 4 6 28K       and 1 9 8 6 58      . 

It remains to show that an instance of  Cubic Vertex 
Cover is a Yes instance if and only if the corresponding 
instance of Poset Cover  is a Yes instance. 

Fix an instance  ,G V E  and K  of Cubic Vertex 
Cover . Let ,X  , and K   constitute the corresponding 
instance of Poset Cover, as constructed above. By 
Lemma 1, we may assume that every element of a cover 
  of   is maximal in  . Since the elements of B  
must be blanketed by any cover, we may assume that the 
set 

 , , and incident on some
i j i je e e e i jL L e e v V    

is a subset of  . Similarly, since the elements of C  
must be blanketed by any cover, we may assume that the 
set 

            ,1 ,2 ,3 ,1 ,2 ,3, , , ,v v v v v ve e e e e eL L v V
     

    

is a subset of  . Note that 4      and that 
    blankets B B C C    . 
First, assume that V V   is a vertex cover of G  of 

cardinality at most K . Define 

      ,1 ,2 ,3, , .
v v vb e e e

v V

L L
  



        

Note that 4 4V K K        and that, by 
previous observations, it suffices to demonstrate that   
blankets bL  and A . Since G  is nonempty, 0E  , 
and 0V   . Therefore, bL  is blanketed by each of the  
posets 

     ,1 ,2 ,3, ,v v vb e e eL L
  

  in   corresponding to a  

vertex v V  . For an edge ie E , there is a v V   
incident on ie . Then, 

ieL  is blanketed by the poset  

     ,1 ,2 ,3, ,v v vb e e eL L
  

  in  , and hence every linear order  

in A  is blanketed by  . We conclude that   covers 
 , as desired. 

Now, assume that   is a cover of   of cardinality 
at most K  . By previous observations, we must have 
      , for some set   of cardinality at most K . 

Since   covers  ,   must blanket bL  and A . 
Let ie  be any edge of G , incident on vertices u  and 
v . Without loss of generality, we may assume that 

   ,1 ,1i u v   . There are two maximal posets that  
blanket 

     ,1 ,2 ,3, ,:
i u u ue b e e eL L L

  
  and  

     ,1 ,2 ,3, ,v v vb e e eL L
  

 . One of these posets must be in  .  

Moreover, we may assume that   contains only orders 
of this form, since each such order blankets bL , and the 
only other orders for   to blanket are the 

ieL ’s. 
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Define 

      ,1 ,2 ,3, , .
w w wb e e eV w V L L

  
      

Because   blankets all of the 
ieL ’s, we conclude 

that V   is a vertex cover of G of cardinality  
V K   , as desired. 

The theorem follows. 

4. Cover Relations 

In this section, we examine properties of cover relations 
in linear orders and their consequences for poset covers. 

Let  , PP X   be a poset, thought of as a transitive 
DAG. Then, a topological sort of P  yields an order 

1 2, , , nx x x  on X  such that i P jx x  implies i j . 
Assume that P  is not a linear order. Then there exist 

,a b X  such that 
P

a b . There exists at least one 
topological sort of P  in which a  appears to the left of 
b , and there exists at least one topological sort of P  in 
which b  appears to the left of a . (This follows from 
alternate choices available to the depth-first search used 
to construct a topological sort. See [41].) Select a 
topological sort that makes ia x  and jb x , where 
i j . In that case, we obtain a proper extension P  of 
P  in which i P ja x x b    by adding  ,i jx x  to 
the DAG and taking the transitive closure. Moreover, we 
have Pa b , since the existence of c  such that 

P Pa c b   contradicts 
P

a b . We have just demon- 
strated the following. 

Lemma 5 Let  , PP X   be a poset, and let 
,a b X  satisfy 

P
a b . Let 

     , , and .P P P Pa b x y x a b y      

Then  , PP X     is a poset, P P , and Pa b . 
Theorem 6 Let  , PP X   be a poset that is not a 

linear order, and let ,a b X  satisfy Pa b . Then 
there exists a proper extension  , PP X     of P  
such that Pa b . 

Proof. First, suppose that there exists a c X  that is 
incomparable to a . By Lemma 5, there exists a poset 
P  such that P P  and Pc a . Moreover,  

P Pc a b   , so, by the definition of ,P Pa b   . 
Second, the case of there being a c X  that is 

incomparable to b  is handled analogously. 
Finally, we have the case that no element is incom- 

parable either to a  or to b . Let ,c d X  be such that 
   , ,a b c d   and 

P
c d . (Such a pair ,c d  must 

exist, since P  is not a linear order.) If either Pc a  
and Pd a  or Pb c  and Pb d , then adding 
 ,c d  to the DAG for P  and taking the transitive 
closure gives us the desired poset. The case Pc a  and 

Pb d  (or vice versa) is impossible, since 
P

c d  and 

Pa b . There are no other cases, since Pa b . 
The theorem follows. 

Theorem 7 Let  , PP X   be a poset, and let 
,a b X  satisfy 

P
a b . Then there exists a linear order 

 , LL X   such that  L P  and La b . More-  

over, for every linear extension  11 , LL X   of P  in  

which 
1La b , there exists a unique linear extension  

 22 , LL X   of P  such that 1 2L L  and 
2Lb a . 

Proof. By Lemma 5, there exists a poset P  such that 
P P  and Pa b . By applying Theorem 6 iteratively 
to P , we ultimately obtain a linear order L  that is an 
extension of P  (and hence of P ) such that La b . 

Now, let  11 , LL X   be a linear extension of P  in 
which 

1La b . Let  
1Li a ; then  

1
1L b i   . Let  

   22 1Swap ; , LL L i X   . Let  

    1 \ , , PP L a b X     . Then P  is a poset on X  
such that P P  and such that a  and b  are incom- 
parable in P . Moreover,   2 \ ,P L b a  , so 2L  is a 
linear extension of P  in which 2b a . 

The theorem follows. 
Theorem 8 Let   be a set of linear orders on X . 

Let 1 2, , , nL x x x   be an element of  . Let i  satisfy 
1 1i n   . Let  , PP X   be a partial cover of   
including L . If  Swap ;L i  , then ix  and 1ix   are 
comparable in P  and 1i P ix x  . 

Proof. Suppose that  Swap ;L i  . First assume that 

ix  and 1ix   are comparable in P . Then it must be true 
that 1i P ix x  , since 1ix   covers ix  in L . For the 
same reason, there is no  1, 2, , 1, 2, ,j i i n     
such that 1i P j P ix x x   . Hence, 1i P ix x  . 

It remains to show that ix  and 1ix   are comparable 
in P . To obtain a contradiction, assume that ix  and 

1ix   are incomparable in P . By Theorem 7, there exists 
a unique linear extension  , LL X     of P  such that 
L L  and 1i L ix x  . Necessarily,  Swap ;L L i  . 
Since  L P  but L , we have a contradiction 
to the fact that  ,P X   is a partial cover of   
including L . The contradiction establishes that ix  and 

1ix   are comparable in P . The theorem follows. 
We next characterize a set   of linear orders that is 

covered by a single poset. The ordered pair  ,a b  is a 
cover relation for   if there exists an L  and an 
L  such that    SwapPair , ,L L a b  , La b , 
and Lb a . If  ,a b  is a cover relation for  , then 
any poset P that partially covers   including L  must 
satisfy Pa b . An  ,a b  cover sequence of length 

2k   for   is a sequence 1 2, , , ka c c c b   such 
that  1,i ic c   is a cover relation for  , for 1 1i k   . 
If there is an  ,a b  cover sequence for  , then any 
poset P  that covers   must satisfy Pa b . 

Theorem 9 A set   of linear orders is the set of 
linear extensions of a single poset if and only if, for every 

,a b X  for which a b , exactly one of the following 
holds: 1)    , SwapPair ,a b L L  for some ,L L ; 
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2) there is an  ,a b  cover sequence for  ; or 3) there 
is a  ,b a  cover sequence for  . 

Proof. For one direction, assume that there exists a 
poset P  such that   is the set of linear extensions of 
P . Let ,a b X  satisfy a b . 

First, suppose 
P

a b . By Theorem 7, there exists a 
linear extension L  of P  for which La b  and 
another linear extension L  of P  for which Lb a  
and L L . Then, 1) holds. Neither 2) nor 3) holds, 
since those imply that a  and b  are comparable in P . 

Now suppose that Pa b . (The case Pb a  is sym- 
metric). Then 1) does not hold, since that implies that 

P
a b . Also 3) does not hold, since that implies that 

Pb a . To demonstrate 2), it remains to construct an 
 ,a b  cover sequence for  . The first case is Pa b . 
Then, by repeated application of Theorem 6, there exists 
a linear extension L  of P  such that Pa b . Let 

 Swap ; ,L L a b     . Then, L . Hence, ,a b  is an 
 ,a b  cover sequence for  . More generally, we can 
write 1 2, , , ka c c c b   for some 1 2, , , kc c c  such 
that 1i P ic c   for 1 1i k   . Then  

1 2, , , ka c c c b   is also an  ,a b  cover sequence for 
 . 

For the other direction, assume that, for every 
,a b X  for which a b , exactly one of 1), 2), or 3) 

holds. Take P  to be the poset generated by all the 
ordered pairs  ,a b  such that ,a b  is a cover sequence 
for  . We need to show that   equals the set of linear 
extensions of P . There are two cases to consider for 
each linear order L . Let 1 2, , , nL x x x  . 

Case 1. 
L . To obtain a contradiction, assume that L  is 

not a linear extension of P . Then there exist ix  and 

1ix   such that 1i P ix x  . Let 1 1 2, , ,i k ix c c c x    
satisfy 1 2P P P kc c c   . Then,  

1 1 2, , ,i k ix c c c x    is an  1,i ix x  cover sequence 
for   and hence 2) holds for 1ix   and ix , but not 1) 
or 3). Let  Swap ;L L i  . Since 1) does not hold, we 
have L . But then 1,i ix x   is a cover sequence for 
 , a contradiction to the fact that 3) does not hold. In 
this case, we conclude that L  is a linear extension of 
P . 

Case 2. 
L . Without loss of generality, we may assume 

that there exist L  and i  such that L  and  
 Swap ;L L i . Since 1i L ix x  , we have that  

 1,i ix x  is a cover sequence for  . Hence, 1i P ix x   
and L  cannot be a linear extension of P . 

We conclude that   is precisely the set of linear 
extensions of P . 

The theorem follows. 

5. A Partial Cover Algorithm 

In this section, we present an algorithm for finding a 

poset that is a partial cover with a maximal set of linear 
extensions. 

5.1. Some Intuition 

Intuition for designing an algorithm to find a partial poset 
cover for a set   of linear orders is developed first. It 
suffices to take a single L  and identify a single 
poset P  that is a partial cover of   including L . 
Observe that L  is such a poset but is not satisfactory if 
we can construct a poset P L  that covers more of  . 
We use the swap graph    to direct construction of 
a more satisfactory P . 

During the process of constructing P , we maintain a 
specification for a set of posets, each of which covers a 
constructed set    . We also maintain a set     
consisting of linear orders, including L , that have 
already been chosen to be covered by the final con- 
structed poset. This specification consists of two kinds of 
information: some   relations and some ‖ relations. 
These relations must be consistent, that is, there must be 
at least one poset that satisfies them all. A bit more 
formally, the   relations can be specified by a set 
A X X   of ordered pairs, while the ‖ relations can 

be specified by a set   , , andB a b a b X a b    of 
unordered pairs. The specified set of posets is then 

   Up DownA B . 
A  will be maintained to satisfy the following pro- 

perty. Let L  be arbitrary, and let La b  be any 
cover relation of L . Let  Swap ; ,L L a b     . If 
L  , then we require that  ,a b A . The rational for 
this requirement is that every poset P  that covers L  
and does not cover L  satisfies the relation Pa b . As 
a side effect, every L   for which Lb a  can be 
eliminated from further consideration for inclusion in 
 . 

B  will be maintained to satisfy the following pro- 
perty. Again, let L  be arbitrary, and let La b  be 
any cover relation of L . Let  Swap ; ,L L a b     . If 
L , then we require that  ,a b B . The rational for 
this requirement is that every poset P  that covers both 
L  and L  satisfies the relation 

P
a b . As a side effect, 

every L   for which the  ,a b  adjacency is not in 
   can be eliminated from further consideration for 

inclusion in  . 
We will need these definitions. Let ,a b X  be 

distinct, and let L  be a linear order. The  ,a b -inter- 
change of L is the linear order that is the same as L  
except a and b have been exchanged. Let 0 1, , , kL L L  
be a sequence of linear orders such that 1i iL L  , for 
0 1i k   , so that the sequence is a path Q  in 

    . Let B  be a subset of  

  , , anda b a b X a b  . Q  is B -labeled if, for 

 10 1,SwapPair ,i ii k L L B    . A path  
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0 1, , , kQ L L L      in      is the  ,a b -mirror 
path of Q  if, for 0 i k  , iL   is the  ,a b -inter- 
change of iL . 

5.2. The Algorithm 

Figure 2 contains pseudocode for the algorithm Partial- 
Cover  , L . It works by adding linear orders from 

\   to   one at a time, while maintaining the re- 
quired properties for A and B. The subroutine Trim in 
Figure 3 is used to ensure that the required property for 
A  is maintained. The addition of a linear order to   

(Step 9) can add at most one new unordered pair to B 
(Step 10). 

We illustrate the algorithm with the example having  




12345,21345,23145,32145,31245,13245

12354,21354, 23154,32154,13254

 
 

and 12345L  . Figure 4 contains the swap graph. 
The call to Trim in Step 5 finds that 12435  is not in 
 , so any linear orders in   for which 4 is less than 3 

should be deleted. In this case, there is no such linear 
order in  . After Step 6,   3,4A   and B  . 

The first time that Step 8 is executed in Partial-Cover, 

1 12345L   and 2 21345L  . (There are three choices 
for 2L . This is just one of them.) Then  

 12345,21345   (Step 9) and   1,2B   (Step 10). 
The call to Trim in Step 11 finds that 21435  is not in 
 . The resulting cover relation  3, 4  is not new, so 

A  remains   3,4A  . The while loop from Steps 13 
to 21 has only the swap pair  1, 2  to work with. Linear 

order 32154 is missing its  1,2  swap partner, 31254. 
Hence, 32154 is deleted from  , which is now 




12345,21345,23145,32145,31245,

13245,12354, 21354,23154,13254 .

 
 

The second time that Step 8 is executed, 1 21345L   
and L2 = 23145. Then  12345,21345, 23145   (Step 
9) and     1,2 , 1,3B   (Step 10). The call to Trim in 
Step 11 finds that 23415 is not in  . The resulting 
cover relation  1,4  is new, so A is extended to  

    1, 4 , 3, 4A  . None of the linear orders in   has 
4 less than 1, so the call to Trim does not change  . 
The while loop from Steps 13 to 21 now has the swap 
pair  1,3  to work with. Linear order 13254  is miss- 
ing its  1,3  swap partner, 31254 . Hence, 13254  is 
deleted from  , which is now 




12345,21345,23145,32145,31245,

13245,12354, 21354, 23154 .

 
 

The third time that Step 8 is executed, 1 21345L   
and 2 21354L  . Then  

 12345,21345,23145, 21354   (Step 9) and  

      1, 2 , 1,3 , 4,5B   (Step 10). The call to Trim in 
Step 11 finds that 21534  is not in  . The resulting 
cover relation  3,5  is new, so A  is extended to  

      1,4 , 3, 4 , 3,5A  . None of the linear orders in 
  has 5 less than 3, so the call to Trim does not change 
 . The while loop from Steps 13 to 21 now has the 

swap pair  4,5  to work with. Linear orders 32145, 
31245, and 13245 are missing their  4,5  swap part-  

 

 

Figure 2. Pseudocode for partial-cover  , L . 
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Figure 3. Pseudocode for trim  , ,A   . 

 

 

Figure 4. Swap graph for example. 
 
ners. Hence, they are deleted from  , which is now 

 12345,21345, 23145,12354,21354, 23154 .   

The fourth time that Step 8 is executed, 1 21354L   
and 2 12354L  . Then  

 12345,21345, 23145,21354,12354   (Step 9) and  

      1,2 , 1,3 , 4,5B   (Step 10). The call to Trim in 
Step 11 finds that 13254  and 12534  are not in  . 
The resulting cover relations are  2,3  and  3,5 , so 
A  is extended to         1, 4 , 2,3 , 3,4 , 3,5A  . None 

of the linear orders in   has 3 less than 2, so the call to 
Trim does not change  . The while loop from Steps 13 
to 21 has no new swap pairs to work with. Hence, there 

are no further linear orders to delete from  , which 
remains 

 12345,21345, 23145,12354,21354, 23154 .   

The fifth and last time that Step 8 is executed,  

1 21354L   and 2 23154L  . Then  

 12345,21345, 23145,21354,12354   (Step 9) and  

      1, 2 , 1,3 , 4,5B   (Step 10). The call to Trim in 
Step 11 finds that 32154  and 23514  are not in  . 
The resulting cover relations are  2,3 , which is not 
new, and  1,5 , which is new, so A  is extended to 

          1, 4 , 1,5 , 2,3 , 3,4 , 3,5A  . None of the linear 
orders in   has 3 less than 2 or 5 less than 1, so the 
call to Trim does not change  . The while loop from 
Steps 13 to 21 has no new swap pairs to work with. 
Hence, there are no further linear orders to delete from 
 , which remains 

 12345,21345, 23145,12354,21354, 23154 .   

At this point,    . 
The resulting poset P  has the cover relations in A , 

namely, 1 4,1 5, 2 3,3 4P P P P    , and 3 5P . The 
set of linear extensions of P  is exactly the final value 
of  , namely,  
 12345, 21345,23145,12354, 21354,23154 . 

5.3. Proof of Correctness 

We assume that the following loop invariants hold each 
time that the test at the top of the while loop body (Step 7) 
is executed. 

1) L      . 
2)    is a connected graph, and    is a con- 

nected graph. 
3) The directed graph  ,X A  contains no cycles. 
4) Every element of   is a linear extension of 
 Min A , that is,   Min A   . 

5) The set A  equals the set of ordered pairs 
 ,a b X X   for which there exists L  such that 

 Swap ; ,L a b     . 

6)    Min DownA B  and consequently  
   Up DownA B  . 

7) The set B  equals the set of unordered pairs  
 ,a b X  such that a b  and such that there exist 

,L L   satisfying    SwapPair , ,L L a b   . 
8) Let 0 1, , , kQ L L L   be a B -labeled path of 

linear orders such that 
00 , ,LL a b   and 

kLa b  
and such that Q  is a shortest B -labeled path from 0L  
to kL . Let 0 1, , , kQ L L L      be the  ,a b -mirror 
path for Q . Then, all of the iL 's are in  , and either 
all of the iL  ’s are in   or none of them are. 

Together, these invariants suffice to demonstrate the 
correctness of Partial-Cover, culminating in Theorem 11. 

Every execution of subroutine Trim enforces Invariant 
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5. 
Invariant 2 is guaranteed by Steps 6 and 22 and by the 

way that linear orders are selected for addition to   
(Step 8). 

Invariants 1 and 2 guarantee that, whenever Step 8 is 
reached, there is a suitable 1 2,L L  pair to select. 

The fact that     is guaranteed through the initi- 
alization in Step 3 and the fact that any change to   
always selects a subset of  . 

Initialization. After initialization (Steps 2 through 6), 
all invariants are true for the first execution of Step 7, for 
the following reasons. We have  L   and B  . 
The execution of Trim (Step 5) ensures that Invariants 4 
and 5 hold, while maintaining L     (Invariant 1). 
Step 6 guarantees Invariant 2. Invariant 3 holds because 
the only order relations in A  are cover relations in L . 
The fact that B   makes Invariants 6, 7, and 8 true 
vacuously. 

Execution of the loop body. The fact that     
requires that the algorithm never deletes an element of 
  from   in Step 19 or in Trim. That fact also im- 
plies L , since L  is initially put in   (Step 2) and 
could only be deleted in Step 19 or in Trim. 

The algorithm never deletes an element of   from 
  in Trim. To obtain a contradiction, assume that 

jL   is deleted in Step 12 of Trim and that it is the 
first element of   deleted. The deletion of jL  is 
caused by a sequence 1 2, , , ka c c c b   such that 

 12 ,i ik c c A ， , for 1 1i k   , and 
jLb a . For 

each i  satisfying 1 1i k   , there exists an ˆ
iL    

such that ˆ 1ii iL
c c  , and  1ˆSwap ; ,i i iL c c 

    . There  

is a path in    from jL  to ˆ
iL  that does not con- 

tain an edge with swap pair  1,i ic c  , since  
 1,i ic c B   contradicts  1,i ic c A  . Consequently, 

ic  and 1ic   are in the same order in ˆ
iL  and in jL , 

which implies that 1ji L ic c  . Taken together, these 
relations imply that 

jLa b , a contradiction to 
jLb a . 

We conclude that jL  is, in fact, not deleted in Trim. 
The algorithm never deletes an element of   from 
  in Step 19. The deletion of an element 3L   

depends on the swap pairs in B . More particularly, such 
a deletion would require a B -labeled path in    
labeled from B  from 3L  to some 4L  that has a swap 
pair from B  that goes to a linear order outside  . 
This cannot happen because of Invariant 8. We conclude 
that 3L  is, in fact, not deleted in Step 19. 

Invariant 3 is maintained because the existence of a 
cycle in A implies that A and B are inconsistent. 

Invariants 4 and 5 are maintained by Trim. 
The consistency of A and B (Invariant 6) is maintained 

by Trim and the loop at Steps 15 through 21. 
Invariant 7 is maintained by the way that elements are 

added to B (Step 10). 

It remains to show that Invariant 8 holds; this is 
demonstrated in the following lemma. 

Lemma 10 Each time that Step 8 is about to be 
executed, Invariant 8 holds. 

Proof. Let 0 1, , , kP L L L   be a B -labeled path of 
linear orders such that 0L  , 

0La b , and 
kLa b  

and such that P  is a shortest B -labeled path from 0L  
to kL . Let 0 1, , , kP L L L      be the  ,a b -mirror 
path for P . 

To obtain a contradiction, assume that there is some 

iL  that is not in  . Let iL  be the first such. Then 
0i  , so 1iL   . Let    1, SwapPair ,i ic d L L B  . 

Since iL  , 1iL   cannot be in  , since it would 
have been deleted in a previous iteration due to the swap 
pair  ,c d  being in B . This is a contradiction. We 
conclude that all of the iL ’s are in  . 

We next show that P  is not just a shortest B - 
labeled path but is also a shortest path in     . Let  

  0
, < and <

kL LC c d c d d c . For any path from 0L   

to kL  in     , every  ,c d C  must be the 
swap pair for some edge in the path. Consequently, 
C B . Moreover, there is a path in      that 
uses swap pairs only from C  and each only once, so the 
length of every shortest path from 0L  to kL  is C . 
(Think about the swaps done by bubble sort; these give 
one such shortest path.) Since P  is a shortest B - 
labeled path from 0L  to kL , it must be a C -labeled 
path having k C . Note that, therefore, no swap pair 
occurs more than once in P . 

We next show that P  is a B -labeled path. Since 
P  contains no swap pair more than once and since 

0La b  and 
kLa b , if there is a swap pair  ,a x  

labeling an edge of P , we must also have the swap pair 
 ,b x  labeling another edge of P , and vice versa. 
More succinctly,  ,a x C  if and only if  ,b x C . 
Let    1, SwapPair ,i ic d L L  , for some i  satisfying  
0 1i k   . If    , ,c d a b   , then  

   1, SwapPair ,i ic d L L  . If    , ,c d a d , then  

   1, SwapPair ,i ib d L L  , which is in C  by the 
argument above. Similarly, if    , ,c d b d , then  
   1, SwapPair ,i ia d L L  , which is in C  by the 
argument above. We conclude that P  is a C -labeled 
path and hence a B -labeled path. 

Finally, we show that either all of the iL  ’s are in   
or none of them are. To obtain a contradiction, suppose 
that iL    and that 1iL   , for some i  satisfying 
0 1i k   . (The case iL    and 1iL    will 
yield a contradiction by an analogous argument.) But, in 
this case, iL   would have been deleted from   in an 
earlier iteration, a contradiction. From this contradiction, 
we conclude that either all of the iL  ’s are in   or 
none of them are. 
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Hence, Invariant 8 holds. 
The correctness and time complexity of the algorithm 

are now in view. 
Theorem 11 Algorithm Partial-Cover  , L  returns a 

set A  such that  Min A  is a partial cover of   
including L . The algorithm has time complexity  

 22O n  . 

Proof. The correctness of the algorithm follows from 
the prior discussion of the loop invariants. 

For the time complexity, we first note that  
 2A O n  and  2B O n . 

We examine the subroutine Trim. Trim is executed 
once in Step 5; once for each addition to   (Step 11; 
 O   times in total); and once for each deletion in 

Step 19 (Step 20;  O   times in total). Hence, Trim is 
executed  O   times. The loop in Steps 5 through 9  

requires  O n   time for one execution. The time  

complexity to test coverage in Step 11 requires  
   2O A O n  time. Hence, the loop in Steps 10 

through 13 requires  2O n   time for one execution. 
The while loop is executed  O   times, since each 
additional iteration of the loop because done False  
requires the reduction of the cardinality of   by at 
least one. We conclude that the total time spent in trim is  

 22O n  . 

It is easy to check that the complexity bound for all 
calls to Trim dominates the time complexity of the 
algorithm. Hence, the time complexity of Partial-Cover is  

 22O n  , as required. 

REFERENCES 
[1] B. S. Baker and E. G. Coffman, “Mutual Exclusion Sche- 

duling,” Theoretical Computer Science, Vol. 162, No. 2, 
1996, pp. 225-243. doi:10.1016/0304-3975(96)00031-X 

[2] P. Barcia and J. O. Cerdeira, “The k-Track Assignment 
Problem on Partial Orders,” Journal of Scheduling, Vol. 8, 
No. 2, 2005, pp. 135-143.  
doi:10.1007/s10951-005-6363-6 

[3] F. A. Chudak and D. B. Shmoys, “Approximation Algo- 
rithms for Precedence-Constrained Scheduling Problems 
on Parallel Machines That Run at Different Speeds,” 
Journal of Algorithms, Vol. 30, No. 2, 1999, pp. 323-343.  
doi:10.1006/jagm.1998.0987 

[4] J. R. Correa and A. S. Schulz, “Single-Machine Schedul- 
ing with Precedence Constraints,” Mathematics of Opera- 
tions Research, Vol. 30, No. 4, 2005, pp. 1005-1021.  
doi:10.1287/moor.1050.0158 

[5] T. Kis, “Job-Shop Scheduling with Processing Alterna- 
tives,” European Journal of Operational Research, Vol. 
151, No. 2, 2003, pp. 307-332.  
doi:10.1016/S0377-2217(02)00828-7 

[6] M. Peter and G. Wambach, “n-Extendible Posets, and How 
to Minimize Total Weighted Completion Time,” Discrete 
Applied Mathematics, Vol. 99, No. 1-3, 2000, pp. 157- 
167. doi:10.1016/S0166-218X(99)00131-6 

[7] N. Policella, A. Oddi, S. F. Smith and A. Cesta, “Gener- 
ating Robust Partial Order Schedules,” Proceedings of 
Principles and Practice of Constraint Programming, Vol. 
3258, 2004, pp. 496-511. 

[8] D. B. Shmoys, C. Stein and J. Wein, “Improved Approxi- 
mation Algorithms for Shop Scheduling Problems,” SIAM 
Journal on Computing, Vol. 23, No. 3, 1994, pp. 617- 
632. doi:10.1137/S009753979222676X 

[9] C. Grasso and C. Lee, “Combining Partial Order Align- 
ment and Progressive Multiple Sequence Alignment In- 
creases Alignment Speed and Scalability to Very Large 
Alignment Problems,” Bioinformatics, Vol. 20, No. 10, 
2004, pp. 1546-1556. doi:10.1093/bioinformatics/bth126 

[10] S. K. Kannan and T. J. Warnow, “Tree Reconstruction 
from Partial Orders,” SIAM Journal on Computing, Vol. 
24, No. 3, 1995, pp. 511-519.  
doi:10.1137/S0097539793252195 

[11] S. Karlin and I. Ladunga, “Comparisons of Eukaryotic 
Genomic Sequences,” Proceedings of the National Acad- 
emy of Sciences of the United States of America, Vol. 91, 
No. 26, 1994, pp. 12832-12836.  
doi:10.1073/pnas.91.26.12832 

[12] K. Miyakawa and H. Narushima, “Lattice-Theoretic Pro- 
perties of MPR-Posets in Phylogeny,” Discrete Applied 
Mathematics, Vol. 134, No. 1-3, 2004, pp. 169-192.  
doi:10.1016/S0166-218X(03)00303-2 

[13] P. L. Hammer, A. Kogan and M. A. Lejeune, “Modeling 
Country Risk Ratings Using Partial Orders,” European 
Journal of Operational Research, Vol. 175, No. 2, 2006, 
pp. 836-859. doi:10.1016/j.ejor.2005.06.040 

[14] S. Holland and W. Kiessling, “User Preference Mining 
Techniques for Personalized Applications,” Wirtschaft- 
sinformatik, Vol. 46, No. 6, 2004, pp. 439-445.  
doi:10.1007/BF03250961 

[15] S. Holland, M. Ester and W. Kiessling, “Preference Min- 
ing: A Novel Approach on Mining User Preferences for 
Personalized Applications,” Proceedings of Knowledge 
Discovery in Databases: PKDD 2003, Vol. 2838, 2003, 
pp. 204-216. 

[16] H. Mannila, H. Toivonen and A. I. Verkamo, “Discovery 
of Frequent Episodes in Event Sequences,” Data Mining 
and Knowledge Discovery, Vol. 1, No. 3, 1997, pp. 259- 
289. doi:10.1023/A:1009748302351 

[17] J. Pei, H. X. Wang, J. Liu, K. Wang, J. Y. Wang, and P. S. 
Yu, “Discovering Frequent Closed Partial Orders from 
Strings,” IEEE Transactions on Knowledge and Data En- 
gineering, Vol. 18, No. 11, 2006, pp. 1467-1481.  
doi:10.1109/TKDE.2006.172 

[18] B. Bollobas and G. Brightwell, “The Structure of Random 
Graph Orders,” SIAM Journal on Discrete Mathematics, 
Vol. 10, No. 2, 1997, pp. 318-335.  
doi:10.1137/S0895480194281215 

[19] S. Felsner and K. Reuter, “The Linear Extension Diame- 
ter of a Poset,” SIAM Journal on Discrete Mathematics, 

http://dx.doi.org/10.1016/0304-3975(96)00031-X�
http://dx.doi.org/10.1007/s10951-005-6363-6�
http://dx.doi.org/10.1006/jagm.1998.0987�
http://dx.doi.org/10.1287/moor.1050.0158�
http://dx.doi.org/10.1016/S0377-2217(02)00828-7�
http://dx.doi.org/10.1016/S0166-218X(99)00131-6�
http://dx.doi.org/10.1137/S009753979222676X�
http://dx.doi.org/10.1093/bioinformatics/bth126�
http://dx.doi.org/10.1137/S0097539793252195�
http://dx.doi.org/10.1073/pnas.91.26.12832�
http://dx.doi.org/10.1016/S0166-218X(03)00303-2�
http://dx.doi.org/10.1016/j.ejor.2005.06.040�
http://dx.doi.org/10.1007/BF03250961�
http://dx.doi.org/10.1023/A:1009748302351�
http://dx.doi.org/10.1109/TKDE.2006.172�
http://dx.doi.org/10.1137/S0895480194281215�


L. S. HEATH, A. K. NEMA 

Copyright © 2013 SciRes.                                                                                OJDM 

111

Vol. 12, No. 3, 1999, pp. 360-373.  
doi:10.1137/S0895480197326139 

[20] S. Felsner and W. T. Trotter, “Posets and Planar Graphs,” 
Journal of Graph Theory, Vol. 49, No. 4, 2005, pp. 273- 
284. doi:10.1002/jgt.20081 

[21] P. C. Fishburn, P. J. Tanenbaum and A. N. Trenk, “Linear 
Discrepancy and Bandwidth,” Order, Vol. 18, No. 3, 
2001, pp. 237-245. doi:10.1023/A:1012267732204 

[22] L. S. Heath and S. V. Pemmaraju, “Stack and Queue Lay- 
outs of Posets,” SIAM Journal on Discrete Mathematics, 
Vol. 10, No. 4, 1997, pp. 599-625.  
doi:10.1137/S0895480193252380 

[23] M. Naatz, “The Graph of Linear Extensions Revisited,” 
SIAM Journal on Discrete Mathematics, Vol. 13, No. 3, 
2000, pp. 354-369. doi:10.1137/S0895480199352609 

[24] G. Agnarsson, S. Felsner and W. T. Trotter, “The Maxi- 
mum Number of Edges in a Graph of Bounded Dimen- 
sion, with Applications to Ring Theory,” Discrete Mathe- 
matics, Vol. 201, No. 1-3, 1999, pp. 5-19.  
doi:10.1016/S0012-365X(98)00309-4 

[25] M. Aguiar and W. F. Santos, “Galois Connections for 
Incidence Hopf Algebras of Partially Ordered Sets,” Ad- 
vances in Mathematics, Vol. 151, No. 1, 2000, pp. 71-100.  
doi:10.1006/aima.1999.1864 

[26] N. Bergeron and F. Sottile, “Hopf Algebras and Edge- 
Labeled Posets,” Journal of Algebra, Vol. 216, No. 2, 
1999, pp. 641-651. doi:10.1006/jabr.1998.7794 

[27] J. Konieczny, “Reduced Idempotents in the Semigroup of 
Boolean Matrices,” Journal of Symbolic Computation, 
Vol. 20, No. 4, 1995, pp. 471-482.  
doi:10.1006/jsco.1995.1059 

[28] F. Ruskey, “Generating Linear Extensions of Posets by 
Transpositions,” Journal of Combinatorial Theory Series 
B, Vol. 54, No. 1, 1992, pp. 77-101.  
doi:10.1016/0095-8956(92)90067-8 

[29] D. B. West, “Generating Linear Extensions by Adjacent 
Transpositions,” Journal of Combinatorial Theory Series 
B, Vol. 58, No. 1, 1993, pp. 58-64.  
doi:10.1006/jctb.1993.1031 

[30] G. Pruesse and F. Ruskey, “Generating Linear Extensions 
Fast,” SIAM Journal on Computing, Vol. 23, No. 2, 1994, 

pp. 373-386. doi:10.1137/S0097539791202647 

[31] E. R. Canfield and S. G. Williamson, “A Loop-Free Al- 
gorithm for Generating the Linear Extensions of a Poset,” 
Order, Vol. 12, No. 1, 1995, pp. 57-75. 

[32] J. F. Korsh and P. S. LaFollette, “Loopless Generation of 
Linear Extensions of a Poset,” Order, Vol. 19, No. 2, 
2002, pp. 115-126. doi:10.1023/A:1016548222238 

[33] A. Ono and S. Nakano, “Constant Time Generation of 
Linear Extensions,” Proceedings of Fundamentals of Com- 
putational Theory, Vol. 3623, 2005, pp. 445-453. 

[34] R. Bubley and M. Dyer, “Faster Random Generation of 
Linear Extensions,” Discrete Mathematics, Vol. 201, No. 
1-3, 1999, pp. 81-88.  
doi:10.1016/S0012-365X(98)00333-1 

[35] P. L. Fernandez, L. S. Heath, N. Ramakrishnan, M. Tan 
and J. P. C. Vergara, “Mining Posets from Linear Or- 
ders,” Discrete Mathematics, Algorithms and Applica- 
tions, 2013, in press. 

[36] P. L. Fernandez, L. S. Heath, N. Ramakrishnan and J. P. 
C. Vergara, “Reconstructing Partial Orders from Linear 
Extensions,” Proceedings of the Fourth SIGKDD Work- 
shop on Temporal Data Mining: Network Reconstruction 
from Dynamic Data, Philadelphia, 20 August 2006, p. 4. 

[37] A. K. Lee and M. A. Wilson, “A Combinatorial Method 
for Analyzing Sequential Firing Patterns Involving an Ar- 
bitrary Number of Neurons Based on Relative Time Or- 
der,” Journal of Neurophysiology, Vol. 92, No. 4, 2004, 
pp. 2555-2573. doi:10.1152/jn.01030.2003 

[38] B. A. Davey and H. A. Priestley, “Introduction to Lattices 
and Order,” 2nd Edition, Cambridge University Press, 
Cambridge, 2002. doi:10.1017/CBO9780511809088 

[39] G. Brightwell and P. Winkler, “Counting Linear Exten- 
sions,” Order, Vol. 8, No. 3, 1991, pp. 225-242.  
doi:10.1007/BF00383444 

[40] M. R. Garey, D. S. Johnson and L. Stockmeyer, “Some 
Simplified NP-Complete Graph problems,” Theoretical 
Computer Science, Vol. 1, No. 3, 1976, pp. 237-267.  
doi:10.1016/0304-3975(76)90059-1 

[41] T. M. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, 
“Introduction to Algorithms,” 2nd Edition, The MIT Press, 
Cambridge, 2001. 

 

http://dx.doi.org/10.1137/S0895480197326139�
http://dx.doi.org/10.1002/jgt.20081�
http://dx.doi.org/10.1023/A:1012267732204�
http://dx.doi.org/10.1137/S0895480193252380�
http://dx.doi.org/10.1137/S0895480199352609�
http://dx.doi.org/10.1016/S0012-365X(98)00309-4�
http://dx.doi.org/10.1006/aima.1999.1864�
http://dx.doi.org/10.1006/jabr.1998.7794�
http://dx.doi.org/10.1006/jsco.1995.1059�
http://dx.doi.org/10.1016/0095-8956(92)90067-8�
http://dx.doi.org/10.1006/jctb.1993.1031�
http://dx.doi.org/10.1137/S0097539791202647�
http://dx.doi.org/10.1023/A:1016548222238�
http://dx.doi.org/10.1016/S0012-365X(98)00333-1�
http://dx.doi.org/10.1152/jn.01030.2003�
http://dx.doi.org/10.1017/CBO9780511809088�
http://dx.doi.org/10.1007/BF00383444�
http://dx.doi.org/10.1016/0304-3975(76)90059-1�

