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ABSTRACT

We present a graph-based model for representing two aligned genomic sequences. An
alignment graph is a mixed graph consisting of two sets of vertices, each representing one of
the input sequences, and three sets of edges. These edges allow the model to represent a
number of evolutionary events. This model is used to perform sequence alignment at the
level of nucleotides. We define a scoring function for alignment graphs. We show that
minimizing the score is NP-complete. However, we present a dynamic programming algo-
rithm that solves the minimization problem optimally for a certain class of alignments,
called breakable arrangements. Algorithms for analyzing breakable arrangements are
presented. We also present a greedy algorithm that is capable of representing reversals. We
present a dynamic programming algorithm that optimally aligns two genomic sequences,
when one of the input sequences is a breakable arrangement of the other. Comparing what
we define as breakable arrangements to alignments generated by other algorithms, it is seen
that many already aligned genomes fall into the category of being breakable. Moreover, the
greedy algorithm is shown to represent reversals, besides rearrangements, mutations, and
other evolutionary events.
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1. INTRODUCTION

Synteny is a slippery concept. In some contexts, it is used to denote the collocation of several genetic

loci on one chromosome. In other contexts, it is used to describe the preserved order of genes of related

species on chromosomes. Most research simplifies analysis of a genome to the level of ‘‘gene’’ or ‘‘synteny

block.’’ This simplification has a number of problems. It is difficult to know whether a sequence is actually a

gene and, if it is a gene, where the start codon, exons, introns, and stop codon are. In addition, a gene may have

multiple transcripts, a sequence may be a pseudogene, and the sequences of two genes may overlap. Espe-

cially ignored is the absolute location of genes on a chromosome, as opposed to the less informative relative

position.

A new synteny-like term could be defined to compare genomes at the detailed level of nucleotides, taking

into account the length of genes and their absolute positions. One could think of genomes as being

composed of parts (subsequences) and compare genomes by comparing the parts that constitute each

genome. However, the parts are not defined in advance. Therefore, an algorithm has to define the parts so as
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to optimize a similarity measure. Given two genomes with parts that are very similar and parts that are not,

an algorithm may seek to infer how similar the two genomes are. This takes us to our concept of whole

genome alignment.

Let G1 and G2 be two genomes. We wish to define a distance between G1 and G2 based on an optimal

alignment. Here, alignment is something more than the traditional pairwise or multiple sequence alignment.

Suppose G1 and G2 are identical, except for a substring in the middle of G2 that is the Watson-Crick

complement of the corresponding substring in G1. In genome rearrangement terms, this is a reversal. Now,

real genomes do not evolve so neatly. There will not be crisp boundaries for the reversal. And, there will be

point mutations that occur, as well as sequence insertions and deletions. However, ultimately, these two

genomes have a common ancestor genome and the parts of the current genome could, in principle, be

‘‘mapped’’ or ‘‘aligned’’ to parts of the ancestor and hence the two genomes could be piecewise aligned to

each other.

Because of genome rearrangements and the large sizes of most genomes, an optimal alignment of the

suggested sort will be expensive to compute. However, practical approximation algorithms can be de-

veloped. A whole genome alignment looks for a decomposition of G1 and a decomposition of G2 into

substrings such that paired substrings are optimally aligned. It is possible that, in alignment, some strings

will undergo Watson-Crick complementation at the nucleotide level. Two other scenarios can occur. One

scenario is that there may be gene duplications that separate the two genomes. In this case, multiple

sequences from one genome will align to a single sequence in the other genome. The other scenario is

actual movement within the genome. A gene sequence or other genomic sequence may move from one part

of a genome to another. The sequence may also be reversed (on the opposite strand) from where it started.

In these cases, there are ‘‘breaks’’ forced in the alignment.

In this article, an alignment graph, a graph-based model, is presented and used for aligning two se-

quences. Moreover, the manner in which different evolutionary events are represented using the described

model is presented. Also, a class of sequences—breakable arrangements—is defined for which the given

dynamic programming algorithm gives optimal results, and a greedy heuristic is also given.

In Section 2, we present related work from the literature. Section 3 gives the preliminaries and definitions

used in the rest of the article. Then, in Section 4, we show how the defined alignment graph is used to

represent different evolutionary events, and how the graph is scored is discussed in Section 5. The problem

addressed in this article is defined and proven to be NP-complete in Sections 6 and 7, respectively. A

dynamic programming algorithm for solving the defined problem is presented in Section 8. Breakable

arrangements are discussed in Section 9. Sections 10 and 11 give algorithms for identifying and counting

breakable arrangements. Then, the dynamic programming algorithm is proven optimal for breakable ar-

rangements in Section 12. In Section 13, real alignments are tested for breakability. A heuristic greedy

algorithm is presented in Section 14 to solve the defined alignment problem. Finally, conclusions and future

directions are presented in Section 15.

2. RELATED WORK

Sequence alignment is a way of arranging genomic sequences to identify similarities between sub-

regions that point to some functional, structural, or evolutionary relationship. If two sequences in an

alignment share a common ancestor, then differences between the two sequences could be interpreted as

point mutations, insertions, deletions, or other evolutionary events that help us infer the evolutionary

distance between the two sequences. Pairwise alignment techniques align two input sequences, whereas

multiple sequence alignment techniques support three or more sequences.

According to Blanchette (2007), two strategies are known to solve alignment problems, namely, global

alignment and local alignment. In global alignment, the sequences are considered as a whole. This imposes

the constraint on the alignment that orthologous genes must be colinear, which prevents the detection of

rearrangements and duplications. A general global alignment technique is the Needleman-Wunsch dynamic

programming algorithm (Needleman and Wunsch, 1970). Local alignment considers fragments of the input

sequences and aligns fragments rather than whole sequences, which overcomes the deficiency of global

alignment that colinearity must be maintained, at the expense of efficiency, where a higher probability of

false alignments is expected. The Smith-Waterman dynamic programming algorithm (Smith and Water-

man, 1981) is a general local alignment algorithm. Some techniques combine both global and local
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alignment strategies, such as the hybrid technique named glocal (Brundo et al., 2003). For large sequences,

exact methods are impractical, requiring large amounts of memory and long execution times. Many

heuristics have been developed to overcome the impracticality of exact algorithms.

Some pairwise alignment methods are highlighted. Dot matrix methods construct plots with dots re-

presenting matching characters, where one sequence is placed at the topmost row, and the other sequence is

placed on the leftmost column. This method is time consuming, but it is simple and easy to visualize. Some

tools were developed using this technique, including the DNADot1 web-based tool and the DOTLET2 Java

based tool ( Junier and Pagni, 2000). These are both global alignment techniques. Another technique is

dynamic programming, which can be used for both global and local alignments, as previously mentioned.

Dynamic programming techniques use scoring functions to find optimal solutions, and once a scoring

function is defined, a dynamic programming algorithm is guaranteed to find an optimal answer, if the

scoring function defined is summed column-wise.

There are several techniques for multiple sequence alignment. Some of the techniques are sequence-based,

like CLUSTAL W (Thompson et al., 1994), whereas others use secondary structures, like MUMMALS (Pei

and Grishin, 2006), or 3D structures, as in M-Coffee (Wallace et al., 2006). Some are genome aligners, for

example, MUMmer (Delcher et al., 1999). There are programs that use seeded pairwise alignment; these

programs use heuristics for aligning large sequences, where a seed is defined as a short highly conserved

match, and a local alignment is considered only if it contains this seed. Nearly all seeded pairwise alignment

programs are based on BLAST (Altschul et al., 1990). Examples of programs that employ this technique are

BLASTZ (Schwartz et al., 2003), LAGAN (Brundo et al., 2003), CHAOS (Brudno et al., 2003), AVID (Bray

et al., 2003), and MUMmer (Delcher et al., 1999). Other programs that perform multiple sequence alignment

either use multiple pairwise alignments or perform alignment on all input sequences at once. MLAGAN

(Brundo et al., 2003), CLUSTAL W (Thompson et al., 1994), and MAVID (Bray and Pachter, 2004) use

progressive sequence alignment (Durbin et al., 1998), where a phylogenetic tree is first inferred by performing

pairwise alignments. A non-phylogenetic alignment technique is consistency-based multiple sequence

alignment (Morgenstern et al., 2005, Pohler et al., 2005, Szklarczyk and Heringa, 2006, Ye and Huang,

2005). Also, the MAUVE tool (Darling et al., 2004) allows alignments with rearrangements. However, the

results obtained by MAUVE were shown to be best on closely-related organisms. It also does not support the

alignment of large regions shared by subsets of the genomes or the rearranged regions shared by subsets of

the genomes. Moreover, it does not perform well when there are many duplicated segments. Another

drawback of the MAUVE algorithm is that it requires manual data entry for some parameters. The pro-

gressive version of the MAUVE algorithm allows for alignment of more divergent genomes, and it reduces

the manual adjustment of the alignment scoring parameters. It also aligns regions conserved among subsets of

the input genomes. However, it still has the limitation of being slow, consuming more memory than the

original MAUVE algorithm, and continuing the use of manual adjustment.

Other research directions define the alignment problem in terms of a graph problem. The local multiple

sequence alignment problem could be viewed as finding Eulerian paths in a graph (Zhang and Waterman,

2005). Raphael et al. (2004) use de Bruijn graphs to perform multiple sequence alignments. They present a

technique, A-Bruijn Alignment, which represents an alignment as a directed graph, and they present

methods to detect cycles and reversals. The first task is to find a graph that represents the domain structure,

and the second is to find a mapping of each sequence to this graph. The graph is constructed from a set of

pairwise local alignments. The graph representation presented in Raphael et al. (2004) is used in the

alignment of protein sequences with shuffled or repeated domain structure and also in the alignment of

proteins containing domains that are not present in all proteins, domains that are present in different orders

in different proteins, and domains that are present in multiple copies in some proteins. Moreover, the

technique they present detects duplications and inversions.

Phuong et al. (2006) present an algorithm, ProDA, for aligning protein sequences with repeated and

shuffled domains. The algorithm they present computes local alignments for every pair of sequences, then

clusters those alignments into blocks of globally alignable subsequences to determine block boundaries and

resolve inconsistencies between pairwise alignments to be able to find the multiple alignment between

blocks.

1Available at http://www.vivo.colostate.edu/molkit/dnadot/.
2Available at http://myhits.isb-sib.ch/cgi-bin/dotlet.
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Paten et al. (2008) present two programs, namely Enredo and Pecan, for multiple genome alignment.

They divide the problem of multiple genome alignment into two stages. The first stage partitions the input

genomes into a set of colinear segments; this is carried out by the program Enredo, which handles

rearrangements and duplications. The second stage generates a base pair level alignment map for each

colinear segment; this is carried out by the program Pecan, which makes the alignment problem practical

on a large scale.

Ma et al. (2008) present a polynomial-time algorithm to find the most parsimonious evolutionary history

of any set of related genomes. They start with a single genome, called the root genome, taken from a

species called the original species. Evolution of the root genome takes place through evolutionary events,

namely, loss and gain of chromosomes, duplication, and rearrangement. When a speciation event occurs, an

identical copy of the genome is made, and then evolution of the copies takes place independently.

Ergun et al. (2003) present a linear time greedy algorithm that computes sequence similarity with

rearrangements. They define two edit operations, character edits, which allow insertions, deletions and

replacements, and segment edits, which allow substring relocations, deletions, and duplications. The dis-

tance between two sequences is the minimum number of edit operations needed to transform one string into

the other.

An algorithm for multiple genome alignment without a reference organism is implemented as part of the

VISTA genome pipeline (Dubchak et al., 2009). The algorithm is based on progressive alignment. After

aligning two genomes, the algorithm builds synteny blocks based on the outgroups, where outgroups are the

genomes that are not yet aligned. This helps the algorithm then align more distant genomes.

In Yancopoulos et al. (2005), a method for finding genomic distances is presented. The method is based

on a comparison graph generated for two genomes, and the distance is calculated from breakpoints and

cycles in the graph. In their method, they also define a double-cut-and-join operation that accounts for the

events of inversion, translocation, fission, and fusion.

Otu and Sayood (2003) propose a new sequence distance measure. Their method uses Lempel-Ziv

complexity for finding the relative distances between sequences, and they use the distance matrix obtained

to construct phylogenetic trees.

Varre et al. (1999) present another family of genome distances, namely transformation distances.

Transformation distances are calculated in terms of segment-based events, like insertion and deletion of

sequence segments. The algorithm presented computes the exact distance between two input sequences,

without taking the order of residues into account, and, hence, the algorithm is able to account for dupli-

cations and translocations.

3. PRELIMINARIES

Let S1¼ a1a2 � � � am and S2¼ b1b2 � � � bn be two genomic sequences. We define a class of edge-colored,

mixed directed and undirected graphs representing alignments of S1 and S2. There are two disjoint sets of

nodes, U¼fu1, u2, . . . , umg and V ¼fv1, v2, . . . vng. Node ui is labeled ai, and node vi is labeled bi. The

directed edges are colored blue and form the following set of edges:

Eblue¼
f(ui, uiþ 1)j1 � i5mg[
f(vi, viþ 1)j1 � i5 ng:

There are two sets of undirected edges. Eblack consists of edges colored black, each of which connects a

node in U to a node in V. Ered consists of edges colored red, each of which connects a node in U to a node in

V. For each choice of Eblack and Ered, the resulting mixed graph G¼ (U, V; Eblue, Eblack, Ered) is an

alignment graph for S1 and S2. The blue edges form two directed paths, one for each genomic sequence.

Intuitively, a black edge connects two nucleotides that are on the same strand, while a red edge connects

two nucleotides that are on opposite strands. In other words, black edges connect nucleotides that are not

complementary, while red edges connect complementary nucleotides. A node that has no black or red edge

incident on it is unaligned. Figure 1 shows an example of an alignment graph.

Let G¼ (U, V; Eblue, Eblack, Ered) be an alignment graph for S1 and S2. A free node is one that is

unaligned, that is, having neither black nor red incident edges. Two edges eij and ekl in G are adjacent in S1

when nodes i and k in S1 are separated by zero or more free nodes, namely uiþ 1, uiþ 2, . . . , uk� 1, and nodes
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j and l in S2 are also separated by zero or more free nodes, namely vjþ 1, vjþ 2, . . . , vl� 1. Similarly, two

edges eij and ekl in G are adjacent in S2 when nodes j and l in S2 are separated by zero or more free nodes,

namely vjþ 1, vjþ 2, . . . , vl� 1, and nodes i and k in S1 are also separated by zero or more free nodes, namely

uiþ 1, uiþ 2, . . . , uk� 1. In case of red edges, free nodes in S1 are ui� 1, ui� 2, . . . , ukþ 1 and in S2 are

vj� 1, vj� 2, . . . vlþ 1. A break in the alignment graph G occurs when there exist two adjacent edges in S1 or

in S2, where one edge is in Eblack and the other is in Ered or vice versa. A break also occurs when two edges

are adjacent in S1 but not in S2 or vice versa.

A point mutation is represented by either a black edge connecting two nodes with different labels, or a

red edge connecting two nodes with labels that are not complementary.

A duplication is a node with more than one incident edges, either red or black or both.

4. REPRESENTING DIFFERENT PHENOMENA

Our model aligns at the nucleotide level. This makes it possible to align two sequences without the need

to identify a gene sequence, start/stop codons, exons, introns, and pseudogenes. The model presented is a

graph-based model that uses three kinds of edges, blue, black, and red edges, contained in Eblue, Eblack, and

Ered, respectively. Blue edges sequence the nucleotides. Black and red edges make it possible to represent

evolutionary events other than the insertions, deletions, and mutations identified by other alignment

techniques. For example, the model allows the representation of rearrangements, reversals, and duplica-

tions.

Consider the graph in Figure 1. The nodes in the top row represent the first sequence, while those in the

bottom row represent the second sequence. The blue edges between nodes of the same sequence indicate

the order of nucleotides in the sequence. A black edge connecting a node from the top row to a node from

the bottom row represents a position in both input sequences that descends from the same position in the

least common ancestor and that are on the same strand. Analogously, a red edge represents a position in

both input sequences that descends from the same position in the least common ancestor and that are on

opposite strands. Consider the effect of different evolutionary phenomena on the graph in Figure 1. First,

the events of insertion and deletion result in repositioning of the nucleotides and having nodes that are

unaligned. Therefore, the effect of insertion and deletion is that we add or remove blue directed edges. In

the case of insertion, undirected edges are not affected, while deletion may result in deleting undirected

edges as well. In Figure 1, the node u8 can be the result of an insertion in the first sequence, or a deletion

from the second sequence.

In case of duplication, the duplicate nodes are aligned to the same nodes in the other sequence; this gives

a one-to-many relation, as shown in Figure 1 for nodes u1 and u2, which are repeated twice in the second

sequence, in the nodes v1, v2, v3, and v4. New blue edges are added, as well as black edges to align the

duplicate nodes.

Point mutations do not affect the edges of the graph. Since black and red edges indicate common

ancestry, mutation does not remove this common ancestor. This is illustrated in Figure 1, once for nodes u3

and v5, and another time for nodes u6 and v7, where the red edge indicates that these nodes should be

complementary.

In reversals, we have to represent complementation, that is, the movement of a subsequence to the opposite

strand. We have a new order for the nucleotides, along with complementation of nucleotides on the opposite

strand. The effect on the graph is only in the position of edges, but they still connect the same nucleotides they

connected before the reversal. This is shown in Figure 1, in the nodes u5, u6, u7 and v7, v8, v9.

Transposition results in repositioning a subsequence, and, hence, the edges are repositioned accordingly,

as shown in Figure 1 for nodes u9, u10, u11, u12 and v10, v11, v12, v13. The blue edges indicate the change in

location, and, hence, the black edges are also repositioned.

FIG. 1. The effect of evolutionary

events on an alignment graph.
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5. SCORING MECHANISM

Given an alignment graph G¼ (U, V; Eblue, Eblack, Ered), we must calculate a score s(G) that represents

the level of alignment intrinsic in G. The score s(G) can depend on the following components of G:

� The presence, absence, and color of edges.
� The indices of the nodes.
� The labels of the connected nodes (ui and vj).
� The number of edges incident to each node.

Special cases can arise at the ends of a sequence, for example, if a sequence starts by a duplication.

Therefore, for the purposes of scoring, two additional nodes are added to each sequence, one at the

beginning and another at the end. Hence, given two sequences U¼ u1, . . . , um and V ¼ v1, . . . , vn, nodes u0

and umþ 1 are added to U, and nodes v0 and vnþ 1 are added to V, where an alignment graph connects node

u0 to v0 and node umþ 1 to vnþ 1 using black edges (Fig. 2).

Those graph characteristics guide us to calculate an alignment score that accounts for different evolu-

tionary events. Those events result in the graph characteristics defined previously, namely, breaks, muta-

tions, free nodes, and duplications.

Given two identical sequences, an optimal alignment is a perfect alignment, that has Eblack¼ {(ui,

vi) j1� i�m} and Ered¼;. A perfect alignment has a score s(G)¼ 0 and only a perfect alignment should

have s(G)¼ 0. Each break, mutation, free node, and duplication adds a penalty to s(G). For each break, we

add a penalty wb to the score; for mutations, we add wm; for a free node, we add wf; and for duplications, we

add wd. This yields the following formula

s(G)¼ bwbþmwmþ fwf þ dwd,

where b is the number of breaks, m is the number of mutations, f is the number of free nodes, and d is the

number of duplications.

Figure 3 is an example to illustrate the described scoring mechanism. Let wb¼ 1, wm¼ 4, wf¼ 4, and

wd¼ 4. U¼ {u1, u2, u3, u4, u5, u6, u7} and V¼ {v1, v2, v3, v4, v5, v6, v7, v8}. Three breaks can be detected, at

(u1, v1), (u4, v2), and (u5, v5). Also, a mutation is seen between nodes u6 and v7. Finally, there is one free

node, v6. This results in s(G)¼ 3wbþwmþwf¼ 11.

6. PROBLEM DEFINITION

Given a scoring function s(G) for alignment graphs, we have the following computational problem.

Optimal Whole Genome Alignment Graph

INSTANCE: Two DNA sequences S1 and S2 and weights wb, wm, wf, and wd.

SOLUTION: An alignment graph G for S1 and S2 that minimizes the alignment score, s(G).

This is the computational problem that we address.

FIG. 2. An alignment graph that

starts by a duplication.

FIG. 3. Scoring example.
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7. NP-COMPLETENESS PROOF

The following 3-Partition problem is used in the proof that Optimal Whole Genome Alignment Graph is

NP-complete (Garey and Johnson, 1979).

3-Partition

INSTANCE: Set A of 3m elements, a bound B> 0, and a positive size s(a) for each a 2 A such that

B/4< s(a)<B/2 and such that
P

a2A s(a)¼mB.

QUESTION: Can A be partitioned into m disjoint sets A1, A2, . . . , Am, each containing 3 elements, such

that, for 1� i�m, we have
P

a2Ai
¼B?

The 3-Partition problem is NP-complete in the strong sense, which means that it remains NP-complete if

we express the numbers in the instance in unary.

Theorem 1. Optimal Whole Genome Alignment Graph is NP-complete.

Proof. We first need to show that Optimal Whole Genome Alignment Graph is in NP. Given a whole

genome alignment, it is straightforward to compute, in polynomial time, the score of the alignment and check

whether that score is less than the given bound. Hence, Optimal Whole Genome Alignment Graph is in NP.

To complete the proof, we reduce 3-Partition to Optimal Whole Genome Alignment Graph in polyno-

mial time. Let A¼fa1, a2, . . . , a3mg, a set of 3m elements, sizes s(ai) for each ai 2 A, and bound B

constitute an instance of 3-Partition. We assume that all the numbers are represented in unary. The

corresponding instance of Optimal Whole Genome Alignment Graph consists of two sequences over the

DNA alphabet:

U¼As(a1)TAs(a2)T � � �As(a3m)Gm� 1

V ¼ (ABG)m� 1ABT3m� 1:

Both strings have length mBþ 4m� 2 and the same counts of A’s, G’s, and T’s. Set the weights for scoring

an alignment to wb¼ 1 and wm¼wf¼wd¼ 4. The bound for the score is S¼ 7m� 3. It is clear that U, V,

and S can be constructed from the instance of 3-Partition in polynomial time, since the sizes are represented

in unary.

If only black edges are allowed, then there are 7m� 3 ‘‘natural’’ breaks in U, consisting of one before

and after each of 3m� 1 T’s and one before each of m� 1 G’s. If there is a 3-partition of A, then it is

straightforward to give a global alignment of U and V of score S: use the partition of A to match three

blocks of A’s in U to each AB block in V , then match each G in U to an arbitrary G in V and each T in U to

an arbitrary T in V.

Now assume that there is a global alignment of U and V with score� S. It is clear that, unless there are

red edges, then the global alignment has at least S breaks (all of the natural ones in U). Since we assume

that there are no red edges, there can be no mutations, free nodes, or duplicate nodes. Hence, each block of

AB in V specifies three elements of A, and we get the desired 3-partition of A.

If only red edges are allowed, we have the same number of natural breaks, using the same construction

above, since there is one break before and after each delimiter, either a T or a G, then the score will still be

7m� 3. When both black and red edges are allowed, then some of the T’s will connect to A’s using red

edges. Therefore, there will be the same two breaks at each delimiter T connected to an A. In addition to

that, there will be a break at each of the A’s that will be connected to one of the T’s at the end of the second

sequence. Therefore, if the number of T’s connected to A’s by red edges is k, then the number of breaks will

be 7m� 3þ 2k. This shows that allowing red edges will never result in a score less than 7m� 3.

We have demonstrated that 3-Partition reduces to Optimal Whole Genome Alignment Graph in poly-

nomial time. We conclude that Optimal Whole Genome Alignment Graph is NP-complete. &

8. DYNAMIC PROGRAMMING

A dynamic programming algorithm can be used to approximately solve reversal-free and duplication-

free whole genome alignment. The presented dynamic programming algorithm is shown optimal for a class

of sequences defined later in Section 9. The algorithm takes two sequences S1 and S2 as input, of lengths m
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and n, respectively. The algorithm starts processing all the pairs of subsequences, starting from pairs of

length 0 and increasing the lengths until m and n. Finding the alignment score between pairs of length 1 is

trivial, and the score can be calculated as follows. S1[i, i] and S2[j, j] are either identical with a score of 0, or

different and considered a mutation with a score of wm.

The alignment scores of the pairs of substrings are stored in an array, AlignScore, where each cell in the

array is indexed by four indices, i, k, j, and l, where i indicates the S1 subsequence starting position,

k indicates the S1 subsequence ending position, j indicates the S2 subsequence starting position, and

l indicates the S2 subsequence ending position. Processing pairs of subsequences continues to longer

subsequences, where the score is calculated using the previously calculated scores of shorter subsequences.

This is done by trying each and every possible break, and aligning all possible parts together, to be able to

find the minimum score. For example, given S1¼AC and S2¼CA, a possible break is at (1, 1), this gives

four parts of the sequences, namely, S1[1, 1]¼A, S1[2, 2]¼C, S2[1, 1]¼C, and S2[2, 2]¼A. Any of the

parts can be aligned to one another, and since the scores of aligning those parts are already calculated, since

the parts are all of shorter lengths, then it is easy to compare the scores resulting from different combi-

nations. The optimal score is obtained by aligning S1[1, 1] to S2[2, 2], and aligning S1[2, 2] to S2[1, 1], this

gives a score of 0 �wm, since all values are identical, plus a break penalty wb. For longer subsequences,

more breaks are considered, and all are processed to find the minimum score. This minimum score is only

recorded if it is less than aligning the two subsequences without any breaks, otherwise, a score without

breaks is recorded in the AlignScore array.

Therefore the base cases are, for 1� i�m and 1� j� n, as follows:

AlignScore[i, i, j, j]¼ 0 if S1[i, i]¼ S2[j, j],

wm otherwise:

�

FIG. 4. Algorithm for RegAlign.

Table 1. Scoring Function Used by RegAlign

s(x, y) A C G T —

A 0 4 4 4 4

C 4 0 4 4 4

G 4 4 0 4 4

T 4 4 4 0 4

— 4 4 4 4 0
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The function RegAlign used in the following recursive relation is the classic global alignment algorithm

for the case when there are only mutations, insertions, and deletions. The algorithm for RegAlign is

illustrated in Figure 4, and the scoring function used by RegAlign is shown in Table 1. The algorithm for

whole genome alignment using a dynamic programming approach is illustrated in Figure 5.

And, the general case:

AlignScore[i, k, j, l]¼ min
i�x�k, j�y�l

RegAlign(S1[i, k], S2[j, l]),

AlignScore[i, x, j, y]þ
AlignScore[xþ 1, k, yþ 1, l]þwb,

AlignScore[xþ 1, k, j, y]þ
AlignScore[i, x, yþ 1, l]þwb

8>>><
>>>:

AlignScore [i, k, j, l] fetches a value from the AlignScore array.

Illustrative Example. This example shows the steps of the dynamic programming algorithm, Table 2

shows the alignment scores of pairs of subsequences. Let wb¼ 1, hence wm¼wf¼wd¼ 4 · wb¼ 4, and let

the empty sequence be l. S1¼AC and S2¼CA.

Theorem 2. Algorithm TrueAlign has time complexity O(m4n4).

Proof. From the pseudocode in Figure 5, there are six nested loops, three repeat m times and three

repeating n times. The function RegAlign, shown in Figure 4 has a complexity of O(mn). Therefore, the

overall complexity of whole genome alignment is O(m4n4). &

FIG. 5. Algorithm for whole genome alignment.
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9. ARRANGEMENTS

The algorithm GenomeAlign in Figure 5 is proven optimal for a certain class of alignments. Given two

aligned nucleotide sequences S1 and S2, the two sequences are broken into blocks. The blocks are separated

by breaks. The blocks are numbered for S1 and S2, and if the sequence of numbers obtained for S2 can be

recursively broken into a prefix and a suffix of the block numbers obtained for S1, then this alignment can

be obtained by GenomeAlign.

As an example, take S1¼ACCCGT and S2¼CACTGC. An alignment graph for S1 and S2 is shown in

Figure 6. By performing the alignment between S1 and S2, S1 could be broken into blocks that correspond to

the parts aligned to S2. For example, AC in S1 are nucleotides numbers 1 and 2, and they are aligned with

nucleotides 2 and 3 in S2, this makes block number 1 in S1 align with block number 2 in S2. The rest of the

blocks are obtained using the same approach. Therefore, the blocks corresponding to this example are

B1¼ 1, 2, 3, 4 and B2¼ 2, 1, 4, 3. If B1 is taken as a reference, then B2 can be broken into a prefix and a

suffix of B1. Therefore, GenomeAlign solves optimally this alignment instance.

Another example is when S1¼ACCCGT and S2¼GCCATC. An alignment graph for S1 and S2 is shown

in Figure 7. In this example, aligning S1 and S2 results in nucleotide 1 in S1 being aligned with nucleotide 4

in S2, this results in one block. Then nucleotides 2 and 3 in S1 are also 2 and 3 in S2, this is another block.

And so on, the blocks are numbered with reference to S1. Therefore, the blocks corresponding to this

example are B1¼ 1, 2, 3, 4, 5 and B2¼ 4, 2, 1, 5, 3. Taking B1 as a reference, B2 cannot be broken into a

prefix and a suffix of B1, and hence it is not solved by GenomeAlign.

Let S be a set of n integers. An arrangement A of S is a sequence of integers of length n in which every

element of S occurs exactly once. For example, if S¼ {1, 4, 5, 7, 12}, then 5, 12, 1, 7, 4 is an arrangement

of S, but neither 4, 1, 3, 7, 5 nor 12, 7, 4, 5, 4 is. The reverse of A is denoted by AR. If A is an arrangement,

then A(i) is the element in position i in the sequence. For example, if A¼ 5, 12, 1, 7, 4, then A(4)¼ 7. If

n� 1 is an integer, then the identity arrangement for n is the sequence In¼ 1, 2, . . . , n. Let S be any set of

n integers. Then sort(S), the sorted arrangement of S, is the unique arrangement of S in which the elements

Table 2. Illustrative Example for GenomeAlign

S1 S2 Score

A l 4

A C 4

A A 0

A CA 4

C l 4

C C 0

C A 4

C CA 4

AC l 8

AC C 4

AC A 4

AC CA 1

l C 4

l A 4

l CA 8

FIG. 6. An alignment that can be

obtained by GenomeAlign.
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appear in increasing order. For example, sort({1, 4, 5, 7, 12})¼ 1, 4, 5, 7, 12 and sort({1, 2, 3, 4, 5})¼ I5. If

A is an arrangement of n elements, then the size of A is size(A)¼ n.

If A¼ a1, a2, . . . , an is an arrangement and 1� i� j� n, then A[i, j]¼ ai, aiþ 1, . . . , aj is a subarrange-

ment of A; of course, A[i,j] is an arrangement of the set fai, aiþ 1, . . . , ajg. For example, given an ar-

rangement A¼ 5, 7, 6, 4, 9, 8, then the following is a subarrangement: A[3, 5]¼ 6, 4, 9. An arrangement A

is consecutive if it is a subarrangement of In, for some n. A set S is consecutive if sort(S) is consecutive. For

example, the arrangement 3, 4, 5, 6, 7, 8 is consecutive, while neither 4, 3, 5, 6 nor 3, 4, 7, 8 is. The set {2,

4, 3, 6, 5} is consecutive, but the set {2, 4, 6, 5} is not.

The class of breakable arrangements is defined recursively, as follows. The base cases are subar-

rangements of In for some n, which are all breakable arrangements. Now, assume that A1 is a breakable

arrangement of a consecutive set S1 and that A2 is a breakable arrangement of a consecutive set S2 such that

S1\S2¼; and such that S1[S2 is consecutive. Then, both A1A2 and A2A1 are breakable arrangements. For

example, if A1¼ 6, 4, 5 and A2¼ 2, 3, 1, then it is easy to show that A1 and A2 are breakable. Moreover, {6,

4, 5}, {2, 3, 1}, and {6, 4, 5, 2, 3, 1} are all consecutive sets. Hence, 6, 4, 5, 2, 3, 1 and 2, 3, 1, 6, 4, 5 are

breakable arrangements. However, 6, 4, 5 cannot be combined with 2, 1 to form a breakable arrangement,

since {6, 4, 5, 2, 1} is not a consecutive set.

The definition of a breakable arrangement implies that, for every breakable arrangement A, there exists a

binary tree T with A at the root, breakable subarrangements of A at every node, and subarrangements of In at

the leaves. Such a tree is called a break tree for the arrangement. For example, consider A¼ 2, 1, 7, 5, 6, 8,

9, 10, 4, 3. Starting from the left of A, the first place that we can break yields subarrangements 2, 1 and 7, 5,

6, 8, 9, 10, 4, 3. The subarrangement 2, 1 breaks further into the two subarrangements 2 and 1 of an identity

arrangement. The subarrangement 7, 5, 6, 8, 9, 10, 4, 3 breaks into 7, 5, 6, 8, 9, 10 and 4, 3. Continuing

recursively, we get the break tree in Figure 8.

An example of a non-breakable arrangement is A¼ 2, 1, 7, 5, 3, 8, 10, 9, 4, 6. The first division into

consecutive subarrangements is 2, 1 and 7, 5, 3, 8, 10, 9, 4, 6. However, it is not possible to further break 7,

5, 3, 8, 10, 9, 4, 6 into two consecutive subarrangements.

Theorem 3. The two shortest non-breakable arrangements are iþ 2, i, iþ 3,iþ 1 and iþ 1, iþ 3, i,

iþ 2.

FIG. 7. An alignment that cannot

be obtained by GenomeAlign.

FIG. 8. A break tree for A¼ 2, 1,

7, 5, 6, 8, 9, 10, 4, 3.
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Proof. From the definition of breakable arrangements, we know that a breakable arrangement must be

able to break into a prefix and a suffix of the identity arrangement In. For the arrangement iþ 2, i, iþ 3,

iþ 1, the possible breaks are iþ 2 and i, iþ 3, iþ 1; iþ 2, i and iþ 3, iþ 1; and iþ 2, i, iþ 3 and iþ 1. In

all three cases, there is an arrangement that is not consecutive. Therefore, iþ 2, i, iþ 3, iþ 1 is not

breakable. The same argument works for iþ 1, iþ 3, i, iþ 2. &

Theorem 4. If A is a breakable arrangement, then its reverse AR is also breakable.

Proof. Given a breakable arrangement A, we know that A can be recursively broken into a prefix and a

suffix of the identity arrangement I corresponding to A. Therefore, it is clear that AR can similarly be broken

in the same way, by simply recursively reversing the break tree obtained for A. &

10. IDENTIFYING BREAKABLE ARRANGEMENTS

In this section, we address the identification problem for breakable arrangements:

Identify Breakable Arrangement

INSTANCE: Arrangement A.

QUESTION: Is A breakable?

If A is breakable, the algorithm should construct a break tree for A. We construct the break tree top-down.

Using the recursive definition of a breakable arrangement, at any stage we have a consecutive ar-

rangement A that we need to represent as A1A2, where A1 and A2 are also consecutive arrangements. For

example, given the consecutive arrangement A¼ 7, 3, 9, 5, 8, 4, 2, 1, 6, the algorithm identifies two

consecutive subarrangements A[1, i] and A[iþ 1, n], where n¼ size(A)¼ 9 and i is as small as possible. If

we consider i¼ 1, we have A[1, 1]¼ 7 and A[2, 9]¼ 3, 9, 5, 8, 4, 2, 1, 6; we see that A[2, 9] is not a

consecutive arrangement. If we consider i¼ 2, we have A[1, 2]¼ 7, 3 and A[3, 9]¼ 9, 5, 8, 4, 2, 1, 6; in this

case, neither subarrangement is consecutive. As we consider all other values of i, we see that at least one of

the corresponding two subarrangements is not consecutive. We conclude that A is not breakable.

Now consider an example of a breakable arrangement. Let A¼ 7, 6, 5, 9, 8, 4, 3, 2, 1. A can be divided

into A[1, 5] and A[6, 9], which are consecutive subarrangements of A. Hence, a top-down algorithm can

address each of A[1, 5] and A[6, 9] recursively. Continuing recursively, we ultimately end up with the break

tree in Figure 9.

Figure 10 shows the algorithm for solving Identify Breakable Arrangement.

Theorem 5. The algorithm Breakable has time complexity O(n3 log n).

Proof. Each call to the recursive algorithm Breakable is performed in time Cn2 log n, for some constant

C> 0. The loop on line 8 repeats n times, and in each iteration sorting is performed, and this takes time

FIG. 9. Break tree for A¼ 7, 6, 5,

9, 8, 4, 3, 2, 1.
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Cnlog n. Therefore, the time needed for the loop is Cn2 log n. The function is recursively called for

subarrangements of the input A. The worst case for the sizes of the subarrangements A[1, i] and A[iþ 1, n]

is when A[1, i] has a size of 1. Therefore, the complexity of the function can be expressed using the

following recurrence:

T(1)¼ 1

T(2)¼ 2

T(n)� T(1)þ T(n� 1)þCn2 log n:

From the above recurrence, it is seen that, in the worst case, the function is called n times. Hence, the

recursive algorithm Breakable is of complexity O(n3 log n). &

Theorem 6. The algorithm Breakable identifies all breakable arrangements and only breakable ar-

rangements.

Proof. If Breakable(A, r) returns True, then it has built a break tree with root r that proves that A is

breakable. Hence, Breakable(A, r) returns True only for breakable arrangements.

To prove that algorithm Breakable identifies all breakable arrangements, we proceed by induction on the

size of the input arrangement. The base case occurs for arrangements of size 1. Such arrangements are

necessarily subarrangements of an identity arrangement and hence are breakable. In this case, Algorithm

Breakable returns True, as required.

The inductive hypothesis is that, for n� 1, all breakable arrangements of size� n are identified correctly

by algorithm Breakable.

FIG. 10. Algorithm for identifying breakable ar-

rangements.
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Now, assume that A is a breakable arrangement of size nþ 1. Without loss of generality, assume that A is

an arrangement of the set 1, 2, . . . , nþ 1. Let T be a break tree for A, and let A[1, j] and A[jþ 1, nþ 1] be

the labels of the children of the root of T. Furthermore, let i be the value chosen by the algorithm Breakable

so that A[1, i] and A[iþ 1, nþ 1] are selected as the labels of N1 and N2 in the first recursive call of

Breakable. Clearly, i� j. If i¼ j, then A[1, i] and A[iþ 1, nþ 1] are both breakable and the inductive

hypothesis implies that Breakable will correctly identify them and hence A as breakable. If i< j, then we

proceed as follows.

Without loss of generality, assume that every element of A[1, i] is less than every element of A[iþ 1,

nþ 1] (the remaining case that every element of A[1, i] is greater than every element of A[iþ 1, nþ 1] is

symmetric). Then 1 is an entry of A[1, i], and nþ 1 is an entry of A[iþ 1, nþ 1]. We claim that A[1, i] is the

label of some node in T. To see this, consider the node labels of the nodes on the leftmost path of T.

Without loss of generality, we can write the labels in order as A[1, s1], A[1, s2], . . . , A[1, st], where

s1¼ nþ 1, s2¼ j, and A[1, st] is a subarrangement of Inþ 1. Of necessity, s1 4 s2 4 � � � 4 st. Hence, we can

select a unique k such that sk> i and skþ 1� i. If skþ 1¼ i, then the claim that A[1, i] is the label of some

node in T is true. Otherwise, to obtain a contradiction, assume that skþ 1< i. We have that A[1, skþ 1] and

A[skþ 1þ 1,sk] are both breakable, since they are labels in T. Since every element of A[skþ 1þ 1, i] is less

than every element of A[iþ 1, sk], both A[skþ 1þ 1, i] and A[iþ1, sk] must be consecutive. A[1,skþ 1] cannot

contain the element 1, since then algorithm Breakable would have selected skþ 1 instead of i. So A[skþ 1, i]

must contain the element 1. Since it is breakable, A[skþ 1, i] must in fact contain the elements

1, 2, . . . , sk � skþ 1. However, every element of A[1, skþ 1] is smaller than every element of S[iþ 1, sk],

which gives us the desired contradiction. We conclude that A[1, i] is the label of some node in T and hence

breakable. Moreover, since A[1, i] is on the leftmost path of T, we have that A[iþ 1, nþ 1] is breakable as

well. By the inductive hypothesis, the recursive calls by Breakable correctly identify A[1, i] and A[iþ1,

nþ1] as breakable. Hence, Breakable identifies A as breakable. By induction, we conclude that algorithm

Breakable identifies all breakable arrangements. &

11. COUNTING BREAKABLE ARRANGEMENTS

For an integer n� 1, let C(n) be the number of breakable arrangements on the set f1, 2, . . . , ng. To

compute C(n), we proceed as follows. The base cases are C(1)¼ 1 and C(2)¼ 2. Let n� 3. Let A be a

breakable arrangement of f1, 2, . . . , ng. By the definition of breakable arrangements, there exists an i such

that 1� i� n� 1 and such that there is a breakable arrangement A1 of f1, 2, . . . , ig and a breakable

arrangement A2 of fiþ 1, iþ 2, . . . , ng satisfying A¼A1A2 or A¼A2A1. For a fixed i, there are

2C(i)C(n� i) ways to create a breakable arrangement of f1, 2, . . . , ng. Hence,

C(n) �
Xn� 1

i¼1

2C(i)C(n� 1):

It is not equal because, for i� 2, some of the 2C(i)C(n� i) arrangements for i may be counted in ar-

rangements for some i0, where i0< i. For example, the breakable arrangement 2, 1, 3, 4 will be counted both

for i¼ 2 and for i¼ 3.

We claim that exactly half of the 2C(i)C(n� i) arrangements for i, where i� 2, are counted earlier. Fix

i� 2. Let A1 be a breakable arrangement of f1, 2, . . . , ig, and let A2 be a breakable arrangement of

fiþ 1, iþ 2, . . . , ng. Let AR
1 be the reverse of A1; it is easy to see that AR

1 is also breakable. We claim that

precisely one of A1A2 and AR
1 A2 is counted by an i0 with i0< i. (The argument for A2A1 and A2AR

1 is similar.)

Without loss of generality, we may assume that i appears before 1 in A1. Let A1¼ a1, a2, . . . , ai, let aj¼ i,

and let ak¼ 1. Then 1� j< k� i. Since A1 is breakable, there exists m, where j�m< k, such that A1[mþ 1, i]

is a breakable arrangement of f1, 2, . . . , i�mg, and A1[1, m] is a breakable arrangement of

fi�mþ 1, i�mþ 2, . . . , ig. Then, AR
1 [1, i�m] is a breakable arrangement of f1, 2, . . . , i�mg, and

AR
1 [i�mþ 1, i] is a breakable arrangement of fi�mþ 1, i�mþ 2, . . . , ig. Because i appears before 1 in

A1, A1A2 was not counted earlier. Because AR
1 [1, i�m], AR

1 [i�mþ 1, i], and A2 are breakable, we have that

AR
1 [i�mþ 1, i]A2 is breakable and that AR

1 A2 is counted earlier. Hence, exactly half of the 2C(i)C(n� i)

arrangements for i, where i� 2, are counted earlier.
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We arrive at the following recurrence:

C(1)¼ 1

C(2)¼ 2

C(n)¼ 2C(1)C(n� 1)þ
Xn� 1

i¼2

C(i)C(n� 1),

where n� 3.

Figure 11 shows the algorithm for counting breakable arrangements.

Theorem 7. The algorithm CountBreakArrange has time complexity O(n2).

Proof. There are two nested loops on lines 4 through 6, the loop on line 4 repeats n times, and the loop on

line 6 repeats n times, in the worst case. The statement inside the nested loops, on line 7, is of constant time,

as it performs access on calculated values. Therefore, the overall complexity of the algorithm is O(n2). &

The sequence of counts is the same sequence as the Schröder numbers (Shapiro and Stephens, 1991),

which can be expressed by the following recurrence (Weisstein, 2003):

S0¼ 1

S1¼ 2

Sn¼ Sn� 1þ
Xn� 1

i¼0

SiSn� 1� i,

where n� 2. The equivalence of the sequences is embodied in the following theorem.

Theorem 8. For n� 0, C(nþ 1)¼ Sn.

Proof. The theorem is immediately true for n¼ 0 and n¼ 1. We proceed by induction on n, n� 2,

assuming that the theorem is true for numbers smaller than n and showing that C(nþ 1)¼ Sn. Fix n� 2.

Using the inductive hypothesis, we have

C(nþ 1)¼ 2C(1)C(n)þ
Xn

i¼2

C(i)C(nþ 1� i)

¼ 2S0Sn� 1þ
Xn

i¼2

Si� 1Sn� i

¼ 2S0Sn� 1þ
Xn� 1

i¼1

SiSn� 1� i

FIG. 11. Algorithm for counting breakable arrange-

ments.
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¼ S0Sn� 1þ
Xn� 1

i¼0

SiSn� 1� i

¼ Sn� 1þ
Xn� 1

i¼0

SiSn� 1� i

¼ Sn:

By induction, the theorem holds for all n. &

12. DYNAMIC PROGRAMMING AND ARRANGEMENTS

In this section, we prove that the dynamic programming algorithm presented in Section 8 obtains optimal

results for breakable arrangements.

Theorem 9. The algorithm GenomeAlign yields optimal results for breakable arrangements.

Proof. By contradiction. Suppose there are two sequences S1 and S2. S1 can be broken into blocks such

that each block is numbered to obtain the identity arrangement In¼1, 2, 3, . . . , n. Suppose S2 is breakable,

that is, S2 can be broken into blocks that can be numbered then mapped to the blocks of S1. The blocks of S2

are represented by the breakable arrangement R2. Assume S1 and S2 can not be optimally aligned by

TrueAlign. From the definition of breakable arrangements, it is known that R2 can be divided into subsets

that are either of size one, or are blocks of the identity arrangement. If TrueAlign can not optimally align S1

and S2, then TrueAlign can not optimally align sequences of length one, or identical sequences (blocks of

the identity arrangement), however, those are trivial cases solved by TrueAlign, and hence this gives a

contradiction. Therefore, the theorem is true. &

13. ARRANGEMENTS AND OTHER ALIGNMENTS

In this section, we study some alignment examples from the literature and see how they map to the

arrangements we define. For each alignment, the blocks are identified and numbered to obtain arrange-

ments. One of the arrangements is taken as a reference, and the breakability of the other arrangement is

tested accordingly.

The first alignment we consider is shown in Figure 6 of Darling et al. (2004). This alignment is obtained

for nine genomes listed in Table 1 of Darling et al. (2004); these are E. coli K12 MG1655, E. coli O157:H7

EDL933, E. coli O157:H7 VT-2 Sakai, E. coli CFT073, S. flexneri 2A 2457T, S. flexneri 2A, S. enterica

Typhimurium LT2, S. enterica Typhi CT18, and S. enterica Typhi Ty2. The alignment was done using the

MAUVE alignment tool (Darling et al. 2004). The alignment shown in Figure 6 of Darling et al. (2004) is

color coded, where the corresponding blocks in different genomes have the same color, and the numbers for

the blocks were obtained accordingly. The topmost row in the figure is taken as a reference, where 25

blocks were identified, giving the reference identity arrangement I¼ 1, 2, 3, . . . , 25. The other eight ar-

rangements were obtained in a similar manner, by mapping the color-codes to the first genome. The

arrangements obtained are as follows:

A1¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25

A2¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25

A3¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25

A4¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25
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A5¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22,

20, 19, 18, 17, 16, 24, 23, 25

A6¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 22, 21, 24, 23, 25

A7¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25

A8¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19,

20, 18, 17, 21, 22, 23, 24, 25

A9¼ 1, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 16, 19,

20, 18, 17, 21, 22, 23, 24, 25

All these arrangements are breakable.

MUMmer of Delcher et al. (1999) is used to align M. genitalium and M. pneumoniae. Figure 7 (bottom)

(Delcher et al., 1999) gives the identity arrangement I7¼ 1, 2, 3, 4, 5, 6, 7 for the sequence represented on

the x-axis, and A¼ 7, 2, 1, 3, 4, 5, 6 for the sequence represented on the y-axis. It is easy to check that A is a

breakable arrangement.

In Joseph and Sasikumar (2006), chaos game representation (CGR) of sequences is used to obtain

regions of similarity between two input sequences. The CGR representation of a sequence is a dot-matrix

plot, where the points on the plot are mathematically calculated. Figure 3 of Joseph and Sasikumar (2006)

yields two identical arrangements with duplication for the genomes HIV type 1 and CIV, so that is clearly

breakable. Also, for Figure 4 of Joseph and Sasikumar (2006), we obtain the identity arrangement I8¼ 1, 2,

3, 4, 5, 6, 7, 8 for the sequence on the x-axis, Pyrococcus abyssi GE5, and for that on the y-axis, Pyrococcus

horikoshii, we get the arrangement A¼ 1, 7, 5, 6, 4, 3, 2, 8, which is breakable.

In Kurtz et al. (2004), MUMmer is used to align A. fumigatus and A. nidulans. The arrangements I10¼ 1,

2, 3, 4, 5, 6, 7, 8, 9, 10 and A¼ 10, 5, 6, 7, 8, 9, 4, 3, 2, 1 are obtained for the x-axis and y-axis, respectively,

in Figure 1 of Kurtz et al. (2004). A is clearly breakable.

Other alignments from the literature also yield breakable arrangements. For example, Figure 2A of

Blanchette et al. (2004) shows an alignment between the chloroplast genomes of Arabidopsis thaliana and

Oenothera elata using threaded blockset alignment (TBA). This alignment yields two identical arrange-

ments, with duplication. Also, Figure 5 of Lu et al. (2006) shows an alignment obtained for EBV and EHV2

using GenomeBlast (Lu et al., 2006), and it is clearly breakable.

The alignment tool CoCoNUT (Abouelhoda et al., 2008) is used to align orthologs of human chromo-

some X to mouse chromosome X. In Figure 5 of Abouelhoda et al. (2008), the blocks on the solid lines on

the x-axis (human) are mapped to the identity arrangement I5¼ 1, 2, 3, 4, 5. However, the corresponding

blocks on the y-axis (mouse) yield the arrangement A¼ 3, 5, 2, 4, 1, which is not breakable.

Therefore, it is seen that all but one of the real world examples analyzed are breakable arrangements that

can be optimally solved by GenomeAlign.

14. A GREEDY ALGORITHM FOR WHOLE GENOME ALIGNMENT

A greedy approach can be used to obtain a heuristic to solve the whole genome alignment problem. This

greedy approach takes as input two sequences. Let the two sequences be denoted by S1 and S2, and let the

complement of S2 be S2
c. The algorithm in Figure 12 consists of three steps, the first is the preprocessing

step, the second is the alignment step, and the third step is the scoring step.

The preprocessing step in Figure 13 finds the alignment score between each pair of subsequences of S1

and each of S2 and S2
c, and the values are kept in a Preprocesstable, where there is an attribute in the table

to indicate whether S2 is complemented or not. An alternative method for the preprocessing step, shown in

Figure 14, is to have a prespecified subsequence size, k. This will reduce the amount of preprocessing to

only a subset of all pairs of subsequences. The alignment step in Figure 15 starts processing the two

subsequences, this is done by greedily aligning pairs of subsequences according to their alignment score,

computed in the preprocessing step. The pairs are processed in ascending order of their score. This step

continues until the two sequences are finished. If the pair being processed already contains a subsequence
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that has been aligned in a previous step, then this indicates a duplication. The scoring step in Figure 16 then

follows to compute the score of the alignment done in step two.

For example, let S1¼AC, S2¼CA, and S2
c¼GT , the preprocessing step will produce Table 3.

The alignment step then sorts the scores and returns the alignment shown in Figure 17.

This alignment is then scored, in the final step.

Theorem 10. Let S1 be a sequence of length m and S2 be a sequence of length n. Then GreedyAlign

produces a whole genome alignment of S1 and S2 in O(m3n3) time.

FIG. 12. The greedy algorithm GreedyAlign.

FIG. 13. The preprocessing step.

FIG. 14. The preprocessing step with specified sub-

sequence size.
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Proof. The preprocessing step contains four nested loops, two of which repeat m times, and the other

two repeat n times, this gives time complexity O(m2n2). The step done inside the inner loop, which is the

RegAlign has time complexity O(mn). Therefore, the preprocessing step has time complexity O(m3n3). The

alignment step first sorts the Preprocesstable, this takes O(m2n2 log m2n2). Then the alignment step iterates

on S1 and S2. The number of iterations is either m or n. Therefore, this loop is O(m), if m> n, or O(n),

otherwise. Therefore, the complexity of the alignment step is O(m2n2 log m2n2). The final scoring step loops

on the nodes of the alignment graph and scores it. This is done in O(mn). Therefore, the complexity of this

greedy approach is O(m3n3). &

Theorem 11. Let S1 be a sequence of length m, S2 be a sequence of length n, and k be the length of

subsequences. Then GreedyAlign using ReducedPreprocessPairs produces a whole genome alignment of S1

and S2 in max{O(k2mn), O((m/k)2(n/k)2 log(m/k)2(n/k)2)} time.

Proof. Without loss of generality, assume that m� n. The preprocessing step in Figure 14 contains two

nested loops, each repeating k times, giving time complexity O(k2). The step done inside the inner loop,

which is the RegAlign, has time complexity O(mn). Therefore, the preprocessing step has time complexity

O(k2mn). The alignment step first sorts the Preprocesstable, this takes O((m/k)2(n/k)2 log(m/k)2(n/k)2). Then

the alignment step iterates on S1 and S2. The number of iterations is either m or n. Therefore, this loop is

O(m). Therefore, the complexity of the alignment step is O((m/k)2(n/k)2 log(m/k)2(n/k)2). The final scoring

step loops on the nodes of the alignment graph and scores it. This is done in O(mn). Therefore, the

complexity of this greedy approach is max{O(k2mn),O((m/k)2(n/k)2 log(m/k)2(n/k)2)}. &

Example 1. This example shows the steps of the greedy algorithm in detecting reversals. Table 4

shows the alignment scores of pairs of subsequences. Let wb¼ 1, and let wm¼wf¼wd¼ 4. Starting by the

lowest scores, of value 0, it is seen that the lower scores come from aligning S1 with S2
c. S1[1, 1] aligns with

FIG. 15. The alignment step.

A THEORETICAL MODEL FOR WHOLE GENOME ALIGNMENT 723



S2
c[2, 2] using a red edge. Similarly, S1[2, 2] aligns with S2

c[1, 1] using a red edge. This gives a score of

wb¼ 1.

S1¼AC

S2¼GT

S2
c¼CA

FIG. 16. The scoring step.

FIG. 17. Alignment graph for AC and CA.
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The presented greedy algorithm fails to find the optimal alignment for sequences that have long common

subsequences that contain a few mutations. The greedy algorithm will choose to align the mutated nu-

cleotides with other matching nucleotides, thus, creating more breaks rather than creating mutations.

For example, let S1¼ACCGTAGTG and S2¼ TGCGACGAC, three possible alignments are shown in

Figures 18, 19, and 20.

Table 3. Output of the Preprocessing Step for S1¼AC and S2¼CA

S1 S2 or S2
c Complement (1/0) Score

A l 0 4

A C 0 4

A A 0 0

A CA 0 4

C l 0 4

C C 0 0

C A 0 4

C CA 0 4

AC l 0 8

AC C 0 4

AC A 0 4

AC CA 0 8

l C 0 4

l A 0 4

l CA 0 8

A G 1 4

A T 1 4

A GT 1 8

C G 1 4

C T 1 4

C GT 1 8

AC G 1 8

AC T 1 8

AC GT 1 8

l G 1 4

l T 1 4

l GT 1 8

Table 4. Greedy Algorithm: Example 1

S1 S2 Score S2
c Score

A l 4

A G 4 C 4

A T 4 A 0

A GT 8 CA 4

C l 4

C G 4 C 0

C T 4 A 4

C GT 8 CA 4

AC l 8

AC G 8 C 4

AC T 8 A 4

AC GT 8 CA 8

l G 4

l T 4

l GT 8
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The greedy algorithm will fail to obtain the alignment in Figure 18, which has the minimum number of

breaks with one extra mutation.

A number of modifications can be made to the greedy algorithm to obtain better results. However,

these modifications will yield a more complicated algorithm. First, for pairs of sequences with the

same score calculated in the preprocessing step, longer sequences should be considered first. And, the other

point is that the relative location of aligned pairs of subsequences should be taken into consideration.

In other words, if a subsequence is aligned to multiple other subsequences with the same score, then

the subsequence that will give better overall alignment should be chosen. For example, if one of the

subsequences in S1 is present in the same corresponding position in S2, then this pair is better aligned than

others.

15. CONCLUSION

In this article, we define alignment graphs as a model for whole genome alignment. We show that this

model is capable of realizing many evolutionary events. We then define a problem that, given two DNA

sequences, obtains the alignment graph with the minimum score. We also define a scoring function that we

use in our algorithms. The problem defined is shown to be NP-complete, and two algorithms are presented

to heuristically solve the problem. The first is a dynamic programming algorithm that is shown to obtain

optimal results for breakable arrangements. The second algorithm is greedy, and it detects reversals.

In the future, experiments could be carried out to test the performance of the presented algorithms on real

genomes. The weights used for different evolutionary events could be further investigated. Also, en-

hancements to the greedy algorithm could be made to make it detect duplications and obtain better results

for the cases outlined in this article.
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FIG. 18. Alignment graph for S1

and S2 with two breaks and two

mutations.

FIG. 19. Alignment graph for S1

and S2 with five breaks and one

mutation.

FIG. 20. Alignment graph for S1

and S2 with five breaks and one

mutation.
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