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ABSTRACT

Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA mole-
cules that enhance or inhibit the splicing process via the binding of splicing factors, proteins
that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a
genome are either experimental or computational. Here, we propose a formalism based on
de Bruijn graphs that combines genomic structure, word count enrichment analysis, and
experimental evidence to identify SREs found in exons. In our approach, SREs are not
restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative
exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying
from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified
binding sites. Our model provides a novel method to predict variable length putative reg-
ulatory elements computationally for further experimental investigation.

Key words: algorithms, combinatorics, computational molecular biology, graphs and networks,

literature data mining, machine learning, probability, sequences.

1. INTRODUCTION

Alternative splicing is a process for regulating gene expression and promoting proteomic diversity in

eukaryotes. It is the process whereby a pre-mRNA from a eukaryotic gene can be spliced in different

ways to produce different mRNA isoforms with potentially different functions (Eichner et al., 2011). Recent

studies indicate that more than 95% of human genes undergo alternative splicing (E et al., 2013; Lv et al.,

2013; Wen et al., 2010). The RNA splicing process depends on the recognition of specific sequence elements

in pre-mRNAs called splicing signals. They include conserved sequences, called the core splicing signals,

that act as the corresponding signals to the spliceosome to splice out the intronic regions, such as the 50 splice

site, the 30 splice site, and the branch point sequence. In addition to these core splicing signals, other short

sequences on the pre-mRNA, called splicing regulatory elements (SREs), are pivotal to ensure that splicing

events occur accurately and efficiently (Matlin et al., 2005). Splicing factors, such as SR proteins and

hnRNPs, which are specific proteins that regulate alternative splicing, bind to these SREs (Wang and Burge,

2008). Therefore, identifying SREs is crucial to the understanding of alternative splicing.

The SREs are classified as exonic/intronic splicing enhancers/silencers (ESE, ESS, ISE, or ISS) based on

where they reside (exon or intron) and whether they promote or inhibit the inclusion of the exons (Buendia
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et al., 2012; Wang and Burge, 2008; Wen et al., 2010). Accurate splicing is crucial. It is believed that up to

50% of human genetic diseases are the result of mutations either in the core splicing signals or in the SREs

(Barash et al., 2010a; Ferreira et al., 2007; Keren et al., 2010; Lv et al., 2013; Matlin et al., 2005). For

instance, alternative splicing is involved in familial isolated GH deficiency type II (IGHD II) (Kim et al.,

2009), Frasier syndrome disease (Kim et al., 2009), neurodegenerative diseases (Garcia-Blanco et al.,

2004), and frontotemporal dementia with parkinsonism-17 (FTFP-17) (E et al., 2013).

There have been several large-scale experimental studies of alternative splicing. Experimental tech-

niques utilized to identify SREs include systematic evolution of ligands by exponential enrichment

(SELEX) (Chasin, 2007), UV crosslinking and immunoprecipitation (CLIP) (Ule et al., 2003), and minigene-

based systems (Wang et al., 2004). SELEX experiments have been carried out with a number of SR

proteins and hnRNPs (Djordjevic, 2007; Matlin et al., 2005). CLIP has allowed the identification of the

binding sites in vivo of several splicing factors, such as NOVA (Ule et al., 2003), SRSF1 (ASF/SF2)

(Sanford et al., 2008), hnRNP A1 (Guil and Cáceres, 2007), and TDP-43 (Tollervey et al., 2011). There are

at least 655 human splicing factor binding sites that are experimentally verified currently (Giulietti et al.,

2013). The minigene-based technology utilizes the natural transcriptional and splicing machinery but

concentrates only on a genomic segment of interest (Warner and Chamberlain, 2006). Several studies have

exploited minigene technology for identifying SREs (Barash et al., 2010b; Ke and Chasin, 2010; Zhang

et al., 2005; Zhang and Chasin, 2004).

On the other hand, there are various computational approaches that have been utilized to identify SREs.

The word count enrichment approach is a widely used technique. It identifies SREs as short nucleotide

sequences (typically 6-mers) that are statistically enriched in a thoughtfully selected set of exons with

respect to a background or negative data set. For example, in the RESCUE-ESE approach, Fairbrother et al.

(2002) identified 6-mers in constitutive human exons by sequence enrichment in exons versus introns and

by sequence enrichment in exons with weak splice sites versus exons with strong splice sites. Using strict

cutoffs, 238 distinct 6-mers were identified as possible ESEs, which were clustered into ten motifs. Zhang

and Chasin (2004) utilized noncoding exons (exons that are not involved in protein synthesis although they

exist in the pre-mRNA) instead of protein-coding exons and identified 2096 enhancers and 974 silencers.

Wen et al. (2010) employed the same approach to identify tissue-specific SREs in mouse genes. Mouse

RNA-seq data for three tissues (brain, liver, and skeletal muscle) were utilized. Using a z-score, they

identified any 6-mer that is over-represented in one tissue but not in the other two tissues as a tissue-specific

SRE. The authors identified 456 putative enhancers and silencers. Among these, 45 were common to all

tissues. Fedorov et al. (2001) compared the frequencies of 4-mers and 5-mers in exons to those in intronless

genes. They identified 23 sequences that were significantly more abundant in exons. Pertea et al. (2007)

introduced another computational approach to identifying ESE motifs in the model plant Arabidopsis

thaliana. First, they utilized an approach similar to RESCUE-ESE to identify putative ESE 6-mers; 84

potential ESE 6-mers were identified. Then, they applied Gibbs sampling to the 50 and 30 flanking ends of

the internal exons to identify the most common motifs, where the previously identified ESEs were used as

input seeds.

Instead of employing statistical analyses, Zhang et al. (2003) exploited support vector machine (SVM)

classifiers to define specific sequence information that distinguishes true exons from pseudo-exons. Pseudo-

exons are intronic sequences that, although flanked by obvious consensus splice sites, they are not observed

in spliced mRNAs. The authors identified 256 splicing elements. Zhang et al. (2012) employed a varying

effect regression model on splicing elements (VERSE) to predict genome-wide intronic SREs. RNA-seq

data for 16 human tissues were used. The authors incorporated non-motif-based biological features (e.g.,

phyloP conservation scores) into the model as the baseline binding preference of splicing factors. More

than half of the SREs (55.68%) were found to be significant only in one tissue.

In all the previously stated studies, a predefined length for SREs is assumed, and the frequency of

occurrence of these SREs is taken into account. What is known is that the motifs recognized by SR proteins

are short and degenerate (Pertea et al., 2007). Their lengths range from 4 to 18 nucleotides (Goren et al.,

2006), but most SRE studies have focused on 6-mers (Alexandre et al., 2004; Buendia et al., 2012; Pertea et

al., 2007; Ramalho et al., 2013; Sakabe and De Souza, 2007; Wen et al., 2013). Some utilized 7-mers (Kim

et al., 2009; Szcześniak et al., 2013; Zhang and Chasin, 2004) or 5-mers (Zhang et al., 2003) instead. As

experimental evidence indicates, SREs should not be restricted to a fixed length. SpliceAid-F (Giulietti

et al., 2013) is a recent comprehensive database that includes all known splicing factors and their experi-

mentally determined binding sites, from which it is clear that the experimentally verified SREs vary in
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length. SpliceAid-F contains binding site sequences for different organisms. That includes human, mouse,

chicken, rat, and rabbit. Therefore, assuming a predefined size beforehand can lead to inaccurate results,

especially when the SRE frequency is a key part in the analysis, as SRE length affects frequency.

Here, we propose a de Bruijn graph-based model to identify exonic splicing elements of variable length

that entails word count enrichment analysis. The proposed model combines different data sources to

accurately identify SREs. We utilize data from Ke et al. (2011), who used a minigene approach to insert

random 6-mers into the central exon. Based on their results, an enrichment index is calculated for all

possible 6-mers, which is considered a measure of central exon inclusion ability. Utilizing these scores in

our graph model, we can identify longer k-mers. We apply our model on a data set of all known human

coding exons and their flanking intronic regions to find exonic enhancers and silencers. The discovered

ESEs and ESSs overlap with many of the experimentally verified splicing elements in the SpliceAid-F

database (Giulietti et al., 2013), as well as several computationally predicted data sets.

2. PRELIMINARIES

We use terminology from formal language theory (Hopcroft and Ullman, 1979). Let S be an alphabet, a

finite set of symbols such as the DNA alphabet {A, C, G, T}. For k ‡ 1, the k-dimensional de Bruijn graph

G = (V, E) over S is a directed graph with vertex set V = Sk, all length-k strings over S, and edge set

E = f(rw‚ ws)jw 2 Sk - 1‚ r‚ s 2 Sg:

In other words, an ordered pair of length-k strings (u, v) 2 E if the length-(k - 1) suffix of u equals the

length-(k - 1) prefix of v (Rosenberg and Heath, 2000). Clearly, jV j = jSjk, jEj = jSjk + 1, and the indegree

and outdegree of each vertex is jSj.
For example, the three-dimensional (3D) de Bruijn graph over the binary alphabet S = {0, 1} has 23 = 8

vertices, that is V = {000, 001, 010, 011, 100, 101, 110, 111}. This de Bruijn graph is depicted in Figure 1.

Similarly, the two-dimensional (2D) de Bruijn graph over the DNA alphabet S = {A, C, G, T} has vertex set

V = fAA‚ AC‚ AG‚ AT‚ CA‚ CC‚ CG‚ CT‚ GA‚ GC‚ GG‚ GT‚ TA‚ TC‚ TG‚ TTg:

Let G = (V, E) be any de Bruijn graph, and let U 4 V. The SRE graph GU = (U, E0) for G and U is the

vertex-induced subgraph of G with edge set

E0 = f(u‚ v) 2 E j u‚ v 2 Ug:

A weakly connected component in a directed graph G = (V, E) is a maximal, nonempty set of vertices

C 4 V such that, for every pair of vertices u‚ v 2 V , there is path in the underlying undirected graph from u

to v (Pemmaraju and Skiena, 2003). The set of weakly connected components of G clearly partition V.

A j-core (or j-shell) decomposition analysis is a method to identify the most connected or important

nodes in a graph (Kitsak et al., 2010). Using j-core analysis, the graph is described in a layered structure as

illustrated in Figure 2, where the innermost nodes are the most important ones and the other nodes will be

FIG. 1. The three-dimensional

(3D) de Bruijn graph over alphabet

S = {0, 1}.
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positioned in the outer layers according to their importance, revealing a hierarchy for the graph. Therefore,

finding the position of the node relative to the organization of the network can determine its influence better

than utilizing a local property of nodes such as its degree (Batagelj and Zaversnik, 2003). The j-core of a

graph is obtained by recursively removing all nodes with degree < j and their incident edges; the remaining

nodes and edges form the j-core graph.

3. METHODS

3.1. Data Sets

LEIsc (log of the enrichment index, scaled) scores from Ke et al. (2011) are used. Utilizing the minigene

approach, they placed all 4096 6-mers at five different sites in two model exons. For each 6-mer, an LEIsc

value was calculated. It represents a relative measure of central exon inclusion for each pre-mRNA

molecule, with higher values representing greater inclusion.

A library of variant minigenes was constructed to include random 6-mers and then sequenced using an

Illumina Genome Analyzer. A relative concentration was assigned to all 6-mers based on millions of high-

confidence reads. The library was then transfected into human embryonic kidney cells (HEK293), and 24

hours after the transfection, the mRNA molecules that had successfully included the central exon were

isolated and converted to cDNA. The output molecules were then similarly sequenced. For each 6-mer, an

enrichment of output proportion over input proportion (enrichment index, or EI) was calculated. The EI

value represents the splicing efficiency of the central exon.

The spectra of activities of the 6-mers often differed among the five chosen sites. Much of this context

effect was due to the creation of different overlapping sequences at each site. The 6-mer scores were

identified based on the average of LEIsc values of a specific 6-mer in all five sites and all different places

within a 16-nucleotide region of each site. In this way, LEIsc values can determine potential SREs that are

generally used. Using a t-test to compare each LEIsc value of a specific 6-mer with the average of the LEIsc

values of molecules that do not contain this 6-mer, Ke et al. (2011) identified 1182 potential ESEs and 1090

potential ESSs. The LEIsc scores range from 0.0534 to 1.034 in the ESE case. In the ESS case, they range

from - 0.0596 to - 1.061. Figure 3 shows the distribution for both ESE values and ESS values.

FIG. 2. An example of j-core

analysis where three shells are iden-

tified (adapted from Kitsak et al.,

2010).
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Another data source is all the available unique coding exons for known human genes from the ENCODE

project (Karolchik et al., 2004), which reports 205,163 exons from 29,179 genes. Data was acquired from

the RefSeq Genes track, where known human protein-coding and non-protein-coding genes are recorded.

The December 2013 human genome assembly (GRCh38/hg38) is used. The 200 intronic nucleotides

upstream and the 200 intronic nucleotides downstream of each exon are also retrieved.

For comparing our results with previously published results, several databases are utilized. SpliceAid-F

(Giulietti et al., 2013) is a recent comprehensive database that includes all the experimentally verified

splicing factors and their binding sites. It contains 71 splicing factors and 655 binding sites for human. We

also used AEdb (Stamm et al., 2006), which is a database for alternative exons and their properties from

various species; it is the manually curated component of the Alternative Splicing Database (ASD). The

exon data in AEdb have been experimentally verified.

In addition, we compared our ESE list with four other computational data sets. The RESCUE-ESE

(Fairbrother et al., 2002) data set contains 238 6-mers for human exons. Another data set is PESE (Zhang

and Chasin, 2004), where 2096 8-mers were identified. The third data set is from Fedorov et al. (2001) and

contains 4- and 5-mers as potential ESEs. Finally, in the data set from Zhang et al. (2003), the authors

concentrated on 5-mer putative ESEs.

For ESSs, we compared our results with FAS-ESS (Wang et al., 2004) and PESS (Zhang and Chasin,

2004). The FAS-ESS data set contains 130 10-mer sequences that were identified utilizing the mini-gene

approach. PESS is another data set in which the authors compared the frequencies of 8-mers (allowing one

mismatch) in constitutively spliced noncoding exons with those in pseudo-exons and the 50 untranslated

regions (UTRs) of intronless genes.

3.2. Outline of our computational strategy

A de Bruijn graph–based model followed by word count enrichment analysis is applied. Our hypothesis

is that SREs can be detected through both their effect on splicing (inclusion ratio and LEIsc scores) and

their frequency in a specific data set (exons) with respect to a background data set (flanking introns). In

particular, utilizing a de Bruijn graph allows us to detect potential SREs of different lengths based on the

experimental data from Ke et al. (2011). The assumption that all SREs are of the same length can lead to

inaccurate results as the actual length of an SRE is usually unknown. Therefore, developing a computa-

tional method to produce SREs that vary in length based on experimental data can achieve more accurate

results.

If there are two 6-mers that overlap in five nucleotides and both of them have high LEIsc values, there is

a greater probability that they form a potential 7-mer SRE. For example, if the two 6-mers ACGTCA and

CGTCAT both have high LEIsc scores, there is a good chance of having one 7-mer SRE with the sequence

FIG. 3. Distribution of the LEIsc

scores. The x-axis represents LEIsc

scores and the y-axis represents their

frequencies. On the left, ESS values

range from - 0.0596 to - 1.061,

while on the right, the ESE values

range from 0.0534 to 1.034. LEIsc,

log of the enrichment index, scaled;

ESS, exonic splicing silencers; ESE,

exonic splicing enhancers.
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ACGTCAT. The same applies with m consecutive 6-mers in the de Bruijn graph; if they all have high LEIsc

values, then they can form one potential (m + 5)-mer SRE.

The processing in our model consists of six steps. First, we construct the six-dimensional de Bruijn graph

G = (V, E) over the DNA alphabet S = {A, C, G, T} and associate each vertex with its rank based on LEIsc

scores from Ke et al. (2011). Second, depending on whether we are searching for ESEs or ESSs, we select a

subset U 4 V; for example, if we are looking for ESEs, then we might select U to be the 400 6-mers with

the highest LEIsc values. Third, we construct the SRE graph GU. Fourth, we determine the weakly

connected components in GU. Fifth, we apply the algorithm GenSRE to each weakly connected compo-

nent to determine a set of potential SREs (see section 3.3). Sixth, these sequences are submitted to word

count enrichment analysis accompanied by all known human coding exons with their intronic flanks (see

section 3.4).

3.3. Identifying variable length SREs

The six-dimensional de Bruijn graph G = (V, E) over the DNA alphabet S = {A, C, G, T} is constructed.

Each vertex v is a 6-mer. G represents all the possible one-character overlaps between pairs of 6-mers. It

has 4096 vertices and 16,384 edges.

As stated before, each 6-mer has an LEIsc value that represents a relative splicing strength score for that

6-mer (Ke et al., 2011). The higher the LEIsc value, the greater the potential enhancing effect of that 6-mer

on splicing. Similarly, the lower the LEIsc value, the greater the potential silencing effect of that 6-mer

(Fig. 3). We utilize the findings in Ke et al. (2011) of potential exonic enhancers and silencers. If a specific

6-mer was found to be an enhancer or silencer, we use its associated LEIsc score. If it is defined as neutral,

we consider its LEIsc value to be zero. Then, we order all the scores in descending order and associate each

vertex v in the G graph with its rank. The rank is suggestive of the strength of a 6-mer on splicing. As a

result, the graph can capture hot spots where many connected vertices have high ranks (for enhancers) or

low ranks (for silencers). Supplementary Table S1 (Supplementary Data are available online at www

.liebertonline.com/cmb) contains all possible 6-mers in descending order according to their LEIsc scores.

Let R be a predefined number of ranks. A set U is constructed by choosing the top R vertices by rank in the

case of searching for ESEs, and the lowest R vertices by rank in the case of ESSs. The SRE graph GU = (U,

E0) is constructed. Weakly connected components Ci � U‚ i = 1‚ 2‚ . . . ‚ w, where w is the number of

weakly connected components in GU, are then extracted. Supplementary Figure S1 is an example of one of

the weakly connected components for ESEs, where R = 100.

We developed the GenSRE algorithm to generate all potential SREs. The pseudocode for GenSRE can

be found in Figure 4. For each Ci, the SeqAssembly algorithm is applied as illustrated in Figure 5. Starting

from each vertex v 2 Ci, a modified depth-first traversal is performed. At each vertex x, a sequence sx will

FIG. 4. GenSRE algorithm: Gen-

erating all possible sequences from

the weakly connected components.
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be produced, representing the sequence going from v to x. Clearly, the sequence length jsxj depends on what

level the traversal reaches. This process is repeated with each vertex in Ci as the starting vertex for the

traversal, as given in the GenSRE algorithm. The result is all potential sequences with length six or more.

As stated before, the idea is that, if there are two 6-mers that are overlapping in five nucleotides and both of

them have high ranks, there is a greater probability that they form a 7-mer potential ESE. Figure 6

illustrates an example of the traversal and the output sequences. Consequently, the output sequences

represent k-mers that can serve as potential SREs.

As illustrated in line 10 of the SeqAssembly algorithm, we mark the vertices we encounter in the traversal

as visited. Therefore, these vertices will not be visited again. We do not allow such revisits, because the

existence of directed cycles will result in an infinite loop. The main drawback is that a vertex may be reached

multiple times because two initially parallel paths from v intersect at some vertex x. Fortunately, these paths

will rarely be shorter than length 6, so the algorithm does retrieve most SREs of length £ 12.

Theorem 1. The GenSRE algorithm has time complexity O(jUj(jUj + jE0j)), where jUj is the number of

nodes in the SRE graph and jE0j is the number of edges.

Proof. The SeqAssembly algorithm will be repeated for each weakly connected component and each

vertex in each component. Having jUj nodes in all the components, this operation will be repeated jUj
times. The time complexity of the depth-first traversal is O(jVCij + jECij), where jVCij is the number of

FIG. 5. SeqAssembly: Sequence

assembling algorithm. A subroutine

to traverse a weakly connected

component starting from a specific

vertex. Each vertex x is associated

with a sequence sx, which is extended

as the traversal goes deeper.

FIG. 6. An illustration of GenSRE

algorithm. The depth-first traversal

starts at vertex ACGGTA where the

dotted lines with its associated num-

ber represent order of the traversal.

The resulting sequences are labeled

by the order they were produced.

The output sequences in order are:

s1 = ACGGTA, s2 = ACGGTAG, s3 =
ACGGTAC, s4 = ACGGTACA, s5 =
ACGGTACC.
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vertices in a weakly connected component Ci and jECij is the number of its edges. Therefore the time

complexity for the traversal on all components is O(jUj + jE0j). Consequently, the time complexity of the

algorithm is O(jUj(jUj + jE0j)). -

3.4. Word count enrichment analysis

As mentioned before, word count enrichment analysis is a computational technique that is widely used

for identifying SREs. It searches for short nucleotide sequences that are statistically overrepresented or

underrepresented through the comparison of foreground and background sequences (Wen et al., 2010;

Zhang et al., 2012). The same approach is followed here on the set S of sequences produced from the

GenSRE algorithm. A data set consisting of the human coding exons and of their flanking intronic

regions is utilized as well.

Consider any sequence s 2 S; let j = jsj be its length. Its frequency fE(s) in the first and last 50 nucle-

otides of all the exons is calculated. Its frequency fI(s) in the intronic flanking regions is calculated as well.

Let NE and NI be the total number of j-mers in the exonic and intronic regions, respectively. Note that NE

and NI change with each j-mer based on its length. The two-sample proportion z-score (Fairbrother et al.,

2002; Wen et al., 2010; Zhang and Chasin, 2004) of s is then given by

zs =
fE(s) - fI(s)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( 1
NI

+ 1
NE

)p(1 - p)
q ‚

where

p =
NIfI(s) + NEfE(s)

NI + NE

:

We use pooled sample proportion p, as our null hypothesis states that fE = fI (Weiss, 2005). Potential SREs

are defined as overrepresented j-mers in exonic regions but not in intronic regions. To test the statistical

significance under the null hypothesis fE = fI, j-mers with z ‡ 1.64 ( p < 0.05, two-tail test) are identified as

being overrepresented. A false discovery rate (FDR) is calculated for each overrepresented j-mer, and j-mer

with FDR corrected p-value that is less than 0.05 are reported (Benjamini and Hochberg, 1995).

3.5. Analysis of the functional characteristics of predicted SREs

To assess the significance of our predicted SREs and whether they are good candidates for ESEs or ESSs,

we utilized the command-line version of Ontologizer (Bauer et al., 2008), with the goal of determining the

enriched GO annotations for the experimentally verified SREs from SpliceAid-F (Giulietti et al., 2013) and

checking whether our predicted SREs share the same enriched GO terms. This can be interpreted, as both

sets of SREs affect the regulation of similar pathways.

The genes that contain all the human coding exons that we use in our analysis are utilized as a background

data set. For each exonic splicing element in SpliceAid-F, the exon data set is searched to allocate each

Table 1. Distribution of the 400 6-mers on the Weakly Connected Components

in Case of Extracting Potential Exonic Splicing Enhancers

Number of 6-mer ESEs 352 5 2 1

Number of weakly connected components 1 2 5 28

ESE, exonic splicing enhancers.

Table 2. Number of Resulted ESEs Using Different Exonic Flank Sizes

Exon flank size (n) 50 100 150 200

Number of utilized exons 134596 34595 14970 10634

Number of putative ESEs 2001 1806 1595 1575
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splicing element, and the corresponding gene set is identified to form the study set. GO annotation files

gene_ontology_edit.obo and gene_association.goa_human were down-

loaded. GO enrichment analysis is performed using the Topology-Elim algorithm. Westfall-Young Single

Step multiple testing correction procedure is then applied. The same approach is applied on our predicted

splicing elements.

We are interested in the biological process annotations. Therefore, for the previously known splicing

elements, we choose the biological process category with the minimum adjusted p-value, where we consider

only terms with p < 0.05 to be significant. Then, we categorize the known splicing elements according to

their biological processes, and we did the same procedure for our set of putative splicing elements.

4. RESULTS

For predicting potential ESEs, we chose the highest 400 6-mers by LEIsc values. In other words, the SRE

graph was extracted with R = 400. We chose the value of R to be 400 as most of the analysis done by

Ke et al. (2011) on their produced LEIsc scores, which we utilize, was on the highest or the lowest 400

LEIsc scores. However, R can be chosen to be any value based on the utilized data. Applying our model,

36 weakly connected components are produced with most of the 6-mers located in one large component.

This component consists of 352 6-mers out of the 400. Table 1 provides the sizes of all the weakly

connected components. Certainly, a weakly connected component of size 1 can produce only one ESE, a

6-mer, while most of the potential ESEs are harvested from the one of size 352.

The GenSRE algorithm recovered 53,984 potential ESEs. Their lengths range from 6 to 87 nucleotides,

with an average length of 48 nucleotides. Having one large weakly connected component is the reason that

there are many potential ESEs that are quite long. Applying word count enrichment analysis, we obtained

about 1500 to 2000 ESEs based on how many nucleotides are taken into account from the start and the end

of all the exons (exonic flanks), as shown in Table 2. We started with n = 50, where n is the size of the

Table 3. Number of Common ESEs Between Different Experiments

n (Number of ESEs) 50 (2001) 100 (1806) 150 (1595) 200 (1575)

50 (2001) 2001 1704 1514 1467

100 (1806) — 1806 1528 1475

150 (1595) — — 1595 1460

200 (1575) — — — 1575

FIG. 7. Distribution of the ESE

lengths. The x-axis represents ESE

length and the y-axis represents the

frequency of occurrence.
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exonic flanks. Extending this to n = 100 nucleotides did not change the results significantly, as many of the

resulting ESEs are overlapping, as illustrated in Table 3. Different experiments were done utilizing dif-

ferent exonic flank lengths. These included 50, 100, 150, and 200 nucleotides. Supplementary Tables S2,

S3, S4, and S5 contain the details of each experiment, including: a list of predicted ESEs, the frequency of

each ESE in the exonic and intronic regions, its z-score, its associated p-value, and its FDR corrected p-

value. In case of 50 nucleotide exonic flanks, we identified 2001 potential ESEs where their lengths range

from 6 to 12 nucleotides. Figure 7 depicts the predicted ESE length distribution.

We compared our results, where the exonic flanks are 50 nucleotides, with exonic binding sites from

SpliceAid-F (Giulietti et al., 2013). Removing duplicate binding sites, SpliceAid-F includes 330 different

sequences for humans. Among those, 112 are exonic binding sites. We removed all sites that bind to

members of the extended family of heterogeneous nuclear ribonucleoproteins (hnRNPs) and other splicing

factors that are considered silencers according to the literature. The remaining 59 sequences are considered

ESEs, as they bind to splicing factors that are involved in enhancing activities. Since our predicted ESEs

are of variable length, as are SpliceAid-F binding sites, we calculated the overlap between the two sets by

finding whether each sequence in the first list is totally contained in at least one sequence in the second list

and vice versa. The total number of overlapped sequences is 105.

Another data set is AEdb (Stamm et al., 2006). It contains 294 splicing regulatory motifs. Among those,

124 are ESEs. We considered only the 64 ESEs that belong to humans.

In addition, we compared our ESE list with four other computational data sets, such as the RESCUE-ESE

(Fairbrother et al., 2002) data set where the total overlap was 54 6-mers. The RESCUE-ESE approach is

focused on exon skipping events (Chasin, 2007), which may explain the low overlapping percentage.

Another data set is PESE (Zhang and Chasin, 2004), where the overlap is 454 sequences. That includes 44

exact sequences (of length 8). The third data set is from Fedorov et al. (2001). As it contains only 4- and 5-

mers as potential ESEs, we could only test if our data set includes any of these sequences. This also applies

to the data set from Zhang et al. (2003). Table 4 summarizes the overlapping results.

To verify the ability of word count enrichment analysis to filter the potential splicing elements, we

applied this analysis to the 112 exonic and 87 intronic binding sites from SpliceAid-F (Giulietti et al.,

2013). Table 5 illustrates that 70.3% of the exonic binding sites were overrepresented in the human coding

exons and about 74% of the intronic binding sites were overrepresented in the flanking intronic regions,

which indicates the ability of this analysis to identify potential regulatory elements. The total number of

exonic binding sites is 112 sequences. However, we are searching for overrepresented sequences in the

exonic flanks of length 50 nucleotides. Therefore, we limited the search for sequences with length less than

or equal to 50 nucleotides (104 sequences). Many of the sequences were not found in our data set of all

human coding exons (40 sequences). The remaining sequences (64 sequences) were tested for overrep-

resentation by calculating their z-scores. Using the same cutoffs, k-mers with z ‡ 1.64 (P < 0.05, two-tail

test) are identified as being overrepresented. A false discovery rate (FDR) is calculated for each

Table 4. Number of Overlapped ESEs with Previously Published Data Sets

SpliceAid-F AEdb RESCUE-ESE PESE Fedrove Zhang

Data set 2001/69 2001/64 2001/238 2001/2060 2001/42 2001/42

Approximate 103/9 62/6 54/54 447/51 —/16 —/12

Exact 7 5 54 44 — —

Total 105 63 54 454 42 12

Table 5. OverPresented Binding Site Statistics from the SpliceAid-F

Data Set Utilizing Word Count Enrichment Analysis

Binding sites Exonic Intronic

Total number 112 87

Total number with length £ 50 nucleotides 104 77

Number of sequences found in our data set 64 50

Number of overrepresented sequences 45 (70.3%) 37 (74%)
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overrepresented k-mer, and k-mers with FDR corrected p-value that is less than 0.05 are reported. The same

approach is applied on the intronic binding sites.

For the exonic splicing silencers, we chose the lowest 400 6-mers in LEIsc values by rank. Applying our

model, 18 weakly connected components are produced with most of the 6-mer silencers connected in one

component, as in the case of 6-mer enhancers. The largest component consists of 369 6-mer ESSs out of the

400 silencers. Table 6 indicates the size of all the produced components.

The GenSRE algorithm resulted in 63,780 potential ESSs, with lengths ranging from 6 to 88 nucleotides

and an average length of 47 nucleotides. For word count enrichment analysis, we chose the exonic flank

size to be 50 nucleotides as in the case of ESEs. This resulted in 3080 ESSs with length ranges from 6 to 15

nucleotides. Figure 8 illustrates the ESS length distribution. Supplementary Table S6 contains the ESS

related information, including: a list of predicted ESSs, the frequency of each ESS in the exonic and

intronic regions, its z-score, associated p-value, and its FDR corrected p-value.

Our ESSs are compared with other data sets as illustrated in Table 7, such as SpliceAid-F (Giulietti et al.,

2013), AEdb (Stamm et al., 2006), FAS-ESS (Wang et al., 2004), and PESS (Zhang and Chasin, 2004).

We used Ontologizer to analyze the functional similarities between the known splicing elements from

SpliceAid-F data set and our predicted SREs. Table 8 depicts the different biological process categories

for both ESEs from SpliceAid-F and our predicted ESEs. Out of 19 categories for the known ESEs, 14 are

shared with our ESEs with the largest p-value as 0.00271. Supplementary Table S7 contains the complete

list of the biological processes in which the predicted ESEs are involved. Supplementary Tables S8 and

S9 depict the common biological process categories for ESSs and the biological processes for the

predicted ESSs, respectively. Our remaining ESEs have more functional categories; some of them are

listed in Table 9.

5. DISCUSSION

We introduce a de Bruijn graph formalism to identify exonic splicing elements of variable length.

Utilizing this approach leads to the identification of new potential ESEs and ESSs. One of the advantages of

Table 6. Distribution of the 400 6-mers on the Weakly Connected

Components in Case of Extracting Potential ESSs

Number of 6-mer ESSs 369 6 4 3 2 1

Number of weakly connected components 1 1 1 2 2 11

ESS, exonic splicing silencers.

FIG. 8. Distribution of the ESS

lengths. The x-axis represents ESS

lengths and the y-axis represents

their frequencies.
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our model is its scalability. This model allows building the de Bruijn from any k-mer (based on the

available data). The number of k-mers that are taken into consideration (R) can be changed according to

the available data as well. In our case, we utilized the LEIsc scores as a measurement for ranking 6-mers.

The rank can be based on other criteria such as conservation scores. Deciding on the significance of the

produced k-mers may depend not only on the rank values and frequency but also on other data sources. For

example, having a list of all protein binding sequences that are experimentally verified can increase the

probability of having a certain k-mer as a putative SRE if a part of the sequence is in the verified list.

Another possibility is utilizing the conservation score of the sequence of interest.

Another advantage of our model is its flexibility. We applied our model on a list of all known human

coding exons and its flanking intronic regions to find potential ESEs. The same approach is also applied for

finding ESSs. To do so, instead of selecting the highest 400 6-mers, we selected the lowest 400 6-mer in the

LEIsc scores. Potentially, our model can also be utilized to find ISEs and ISSs by searching for the

sequences of interest to be overrepresented in the intronic regions and underrepresented in the exonic

flanks.

Using the parameter values of R = 400 and exonic flank size of 50 nucleotides, we identified 2001

potential ESEs. This includes some of the well-known ESEs such as GAAGAA, which is verified experi-

mentally in the RESCUE-ESE data set (Fairbrother et al., 2002). It is noticed that this 6-mer is part of the

consensus sequences RGAAGAAC (R = A or G) that has been verified as a SELEX binding motif to the

ASF/SF2 splicing factor (Tacke and Manley, 1995). ASF/SF2 is one of the highly conserved proteins that

affects alternative splicing (Tacke and Manley, 1995). Our method could accurately identify this binding

site as GGAAGAAC with p-value 1.07 · 10 - 55. Moreover, there are some other possibilities that contain

the same sequence such as GGAAGAACG and GAAGAACG with p-values 2.01 · 10 - 9 and 2.43 · 10 - 41,

respectively.

Another consensus motif for the ASF/SF2 splicing factor is GARGARGAR (Selvakumar and Helfman,

1999), which we have in our results as GAAGAAGAG with p-value 9.58 · 10 - 23, in addition to longer k-

mers that contain this sequence (see Supplementary Table S3).

Table 7. Number of Overlapped Potential ESSs

with Previously Published Data Sets

SpliceAid-F AEdb FAS PESS

Data set 3080/53 3080/24 3080/130 3080/1019

Approximate 88/10 22/3 190/— 338/35

Exact 3 3 — 34

Total 95 23 190 339

Table 8. Common Biological Process Categories of Our ESE List and ESE from SpliceAid-F

Based on GO Term Enrichment Analysis

SpliceAid-F Predicted

GO ID Name ESEs ESEs

GO:0007250 Actin filament capping 1 1

GO:0006200 ATP catabolic process 1 5

GO:0007411 Axon guidance 11 178

GO:0030574 Collagen catabolic process 1 39

GO:0032508 DNA duplex unwinding 1 6

GO:0022617 Extracellular matrix disassembly 5 191

GO:0046037 GMP metabolic process 1 1

GO:0071044 Histone mRNA catabolic process 1 4

GO:0086010 Membrane depolarization during action potential 1 11

GO:0007018 Microtubule-based movement 2 26

GO:0007528 Neuromuscular junction development 1 7

GO:0090292 Nuclear matrix anchoring at nuclear membrane 4 1

GO:0021860 Pyramidal neuron development 1 1

GO:0060372 Regulation of atrial cardiac muscle cell membrane repolarization 1 1
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Utilizing the results obtained from Ontologizer, we investigated the effect of having similar binding sites

on the biological processes in which they are involved. In other words, we wanted to know if the genes that

contain the binding site GAAGAA are involved in the same biological process of the genes that contain the

longer binding site GGAAGAAC. The answer is ‘‘no.’’ For GAAGAA; the most enriched biological process

is ‘‘axon guidance’’ while, for GGAAGAAC, it is ‘‘protein ubiquitination involved in ubiquitin-dependent

protein catabolic process.’’ It is obvious from Figure 9 that they are unrelated processes.

Axon guidance or axon path finding is a critical and complicated process for nervous system wiring,

where there are certain tracts the axons should follow to reach specific targets (Nugent et al., 2012). Defects

in this process can lead to various human disorders such as HGPPS (Nugent et al., 2012; Engle, 2010),

congenital mirror movements, and congenital fibrosis of the extraocular muscles (Nugent et al., 2012), L1

syndrome, and albinism (Engle, 2010). Some of these disorders, such as HGPPS and L1 syndrome,

are caused from missense, splice site, and frameshift mutations of the ROBO3 and L1CAM genes,

respectively.

On the other hand, ubiquitin is a small regulatory protein that resides in eukaryotic cells and attaches to

other proteins. This attachment can signal protein degradation (Burnett et al., 2008). It has been shown that

ubiquitin has a controlling role in the splicing pathway and hence affects spliceosome assembly (Bellare et

al., 2008). Moreover, according to Burnett et al. (2008), ubiquitin influences the stability and degradation of

the SMN protein. In humans, SMN is encoded by two genes, SMN1 and SMN2. Mutations in SMN1 cause

spinal muscular atrophy (SMA) disease. SMN stability is affected by its ability to oligomerize. Therefore,

SMN mutations that prevent oligomerization lead to rapid degradation, and this may be the reason that it

causes SMA (Burnett et al., 2008). It is also worth mentioning that the SMN protein is part of a large

multiprotein complex (the SMN complex), which is essential for the biogenesis of small nuclear ribonu-

cleoprotein particles (snRNPs). These snRNPs are major components of the spliceosome machinery.

It is clear that, although both of the these binding sites are overlapping on most of their sequences, the

biological processes of the genes they reside in are highly different and alternative splicing is involved in both

of the processes in different ways. The ability to determine a specific biological process can make it easier to

investigate the actual effect the alternative splicing has in different contexts. Mutations in these binding sites

can also affect the alternative splicing role. Therefore, having the ability to predict variable length SREs,

instead of having a prefixed size before applying our analysis, gives the opportunity to discover new bio-

logical processes that alternative splicing may affect and gives an insight into how alternative splicing may

work. Although we have a large number of biological processes in our analysis (947 categories), we see it as

an opportunity for investigating specific contexts in which alternative splicing may play a role.

Table 9. Example of Some Biological Process Categories of the Predicted

ESEs Based on GO Term Enrichment Analysis

ID Annotation

Number of predicted

ESEs

GO:0031532 Actin cytoskeleton reorganization 3

GO:0008154 Actin polymerization or depolymerization 2

GO:0070358 Actin polymerization-dependent cell motility 2

GO:0007190 Activation of adenylate cyclase activity 2

GO:0006919 Activation of cysteine-type endopeptidase activity

involved in apoptotic process

2

GO:0009060 Aerobic respiration 3

GO:0097055 Agmatine biosynthetic process 3

GO:0021960 Anterior commissure morphogenesis 2

GO:0019885 Antigen processing and presentation

of endogenous peptide antigen via MHC class I

5

GO:0015991 ATP hydrolysis coupled proton transport 5

GO:0007409 Axonogenesis 3

GO:0051016 Barbed-end actin filament capping 4

GO:0006699 Bile acid biosynthetic process 3

GO:0015878 Biotin transport 11

GO:0007596 Blood coagulation 3
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One of the ESSs that we have in our results and that is validated experimentally is TAGTTAG, a 7-mer

ESS, which binds to the splicing repressor hnRNP A1 (Millevoi et al., 2010). Another 7-mer exon silencer

is TTAAGGT (Baris et al., 2003), which is involved in optic atrophy disease.

Having one large weakly connected component that contains most of the SREs, whether for enhancers or

silencers, indicates that there is much overlapping among the known SREs and confirms our hypothesis that

longer k-mers can be a better and more accurate representation of SREs than shorter ones. As stated before,

having an edge between two vertices means they overlap in five nucleotides and perhaps they form one 7-

mer SRE. Analyzing the largest component further using j-core analysis (Batagelj and Zaversnik, 2003),

Figure 10 illustrates the most influential nodes in the ESE case. In other words, these nodes are the most

central and highly connected nodes. As a result, the 6-mers that these nodes represent are the most repeated

6-mers in our ESE list.

These sequences are found to be GC enriched with GC content about 68% (Table 10, column 1), which is

analogous to many data sets that are experimentally verified (Table 2 in Chasin, 2007). This is also

consistent with the fact that the regions around the splice sites are GC-enriched, which is considered one

characteristic of having a stable pre-mRNA secondary structure (Zhang et al., 2011). Conserved and stable

pre-mRNA secondary structures are thought to play an important role in splicing, as in Hiller et al. (2007),

some of the experimentally verified SREs were found to be enriched near the splice sites in the regions of a

single-stranded local secondary structure.

On the other hand, performing the same analysis on the silencers list, core sequences are found to be T-

rich and C-poor just as in the PESS data set (Zhang and Chasin, 2004). Supplementary Figure S2 indicates

the core nodes in the ESS case.

6. CONCLUSION

We have presented a new de Bruijn graph formalism to identify exonic splicing elements of variable

length. Utilizing this approach leads to the identification of new potential ESEs and ESSs. Genomic

structure, word count enrichment analysis, and experimental evidence were all utilized in our model to

increase the accuracy of our results. We have developed GenSRE algorithm to produce potential variable

length SREs. To demonstrate the usefulness of our approach, we compared our results with experimentally

verified data sets and computational data sets as well. Our results overlap with many of the experimental

and computational results. We also analyzed the effect of having similar binding sites on the biological

processes in which they are involved. We indicated that although the binding sites may overlap on most of

their sequences, the biological processes of the genes they reside in can be highly different. Thus, the SRE’s

length is a key part in the analysis where it cannot be assumed to be fixed. Our approach can open new

directions to study SREs and the roles they play in alternative splicing.
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Table 10. Base Compositions of Core Sequences

in the Case of Exonic Enhancers and Silencers

Data ESEs ESSs

A% 21 23

C% 30 6

G% 38 33

T% 11 38
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