Fetching the Right Breed

Dog Breed Image Classification
CS5804 Mini Project

Group 7 - Team Introduction

Katie Geary
kgeary6@vt.edu
BME PhD student

Interest: Al in medicine

Meghan Cooke
macooke@vt.edu
MEng in CSA
Interest: Al

Jonathan Mahoney,
jpmahoney@vt.edu

MEng in CSA
Interest: Al

Srujan Vithalani
srujan@vt.edu
MEng in CSA
Interest: Al

https://canvas.vt.edu/courses/165443/users/211986

Problem Description

What kind of dog is that?!
® Accept images from users
® Determine if a dog is present
e |dentify dog breeds accurately
® Tests the assumption that
humans look like their dogs

Background

Images Classification of Dogs and Cats using Fine-Tuned VGG Models

Publisher: IEEE

Mahardi ; I-Hung Wang ; Kuang-Chyi Lee ; Shinn-Liang Chang All Authors

3 614
Paper Full
Citations ~ Text

Abstract
Document Sections
» Introduction
» Dataset for CDC
» Fine Tuning Models for CDC
» CDC Models Training Result

» Conclusion

Abstract:

Image classification has become more popular as it is the most basic application and implementation of deep learning.
Images of dogs and cats are the most common example to train image classifiers as they are relatable. It is easy to
classify the image of cats and dogs, but the images of various breeds are difficult to classify with high accuracy. In this
paper, we tried to build an image classifier to recognize various breeds of dogs and cats (CDC) using fine-tuned VGG
models. Two common models, VGG 16 and VGG19 were used to build the classifier. The resulting model from VGG16 has
a training accuracy of 98.47%, validation accuracy of 98.56%, and testing accuracy of 83.68%. The model from VGG19
has a training accuracy of 98.59%, validation accuracy of 98.56%, and testing accuracy of 84.07%.

Published in: 2020 IEEE Eurasia Conference on 10T, Communication and Engineering (ECICE)

Prediction Prediction
Bernese Mountain Dog Abyssinian Cat

™~
Prediction

Basset Hound

LN 3
Prediction Prediction:
Scottish Fold Beagle
Fig. 4 Prediction result of single image

Background

VGG16 is a Convolutional Neural Network ez 2262200
developed in 2014 out of Oxford University

112x 112 x 128

7x7x512

® Trained on ImageNet (i . %@ﬁ@

e Convolution, ReLU, max pooling, fully |
connected and softmax layers

® Very accurate but painful to train

e PyTorch, Tensorflow, and Keras

e Highly adaptable

: 1x1x4096 1x1x1000

Background

Stanford Dogs Dataset

® Originally from ImageNet, but
refined for fine-grained image
categorization
e 20580 images total
® 120 breeds
O ~150 images of each breed
O Breeds form all over the world

n02102973-irish_water_spaniel (70) n02088094-afghan_hound (9)

n02097130-giant_schnauzer (46)

n02113978-

Input Image

l

Is it a dog?
Approach . s
Yes No
(J ubAcCITY What kind of dog? 1sit human’
! |
. . Output: v '
e Obtain pre-trained VGG16 This is a *insert dog Yes No
network breed* I '
What kind of Exit
® Remove end/output layers dog does it look
® Replace to match the framework like?
of what you are predicting 0ut;ut:
® Retrain on Stanford Dogs dataset You look like a *insert

dog breed*

Image Preprocessing

L] festpet = 0.3 @ atasetyetestpet) <4==m /(:30 split for training and test

train_size = len(dataset) - test_size data
train_size, test_size

(14406, 6174)

[1 train_ds, test_ds = random_split(dataset, [train_size, test_size])
len(train_ds), len(test_ds) .
© train_transform = transforms.Compose([

(14406, 6174) transforms.Resize((256, 256)),
transforms.RandomCrop(224, padding=4, padding_mode="'reflect'),
transforms.RandomHorizontalFlip(p=0.3),
transforms.RandomRotation(degrees=30),
transforms.ToTensor(),

D]

test_transform = transforms.Compose([
transforms.Resize((224,224)),

Training image augmentation mmpy = trensforns.TeTensord),

Model

model = models.vgglé({pretrained=

for param in model.parameters():
param.requires_grad =

model.classifier[-1].requires_grad =

num_features = model.classifier[-1].in_ features
model.classifier[-1] = nn.Linear(num_features, 120)

model = model.to(device)

Results

train_loss = []
train_acc = []

for epoch in range(EPOCHS):
trainEpochLoss, trainEpochAcc = Train(model, train_loader, optimizer, criterion)
train_loss.append(trainEpochLoss)
train_acc.append(trainEpochAcc)
print(f'Epoch: {epoch} Train Loss: {trainEpochLoss} Train Acc: {trainEpochAcc}"')

Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:

@ Train
1 Train
2 Train
3 Train
4 Train
5 Train
6 Train
7 Train
8 Train
9 Train
10 Train
11 Train
12 Train
13 Train
14 Train

Loss: 2.355252196523878 Train Acc: 0.5134666562080383
Loss: ©.9587489938735962 Train Acc: ©.7814105749130249
Loss: @.7257632601261139 Train Acc: 0.8167430758476257
Loss: 0.6171630475256178 Train Acc: 0.832639217376709
Loss: 0.5415320964654287 Train Acc: 0.8500624895095825
Loss: ©.4919695989290873 Train Acc: 0.860405445098877
Loss: 0.4609191241529253 Train Acc: 0.8651256561279297
Loss: ©.4332262490193049 Train Acc: 0.8729696273803711
Loss: ©.40483390337891@5 Train Acc: 0.882548987865448
Loss: ©.3825222474336624 Train Acc: 0.8839372992515564
Loss: ©.3648779981666141 Train Acc: 0.8911564946174622
Loss: ©.35117199811670513 Train Acc: ©.8935166001319885
Loss: ©.3367801884147856 Train Acc: 0.8968485593795776
Loss: ©.3238857471280628 Train Acc: 0.9016382694244385
Loss: ©.30980095757378473 Train Acc: 0.9051090478897095

plt.plot(train_loss, label='Train Loss')
plt.show()

125

100

0.75

0.50

0.25

predicted, expected = evaluate(model, test_loader, criterion, test=True)

plt.plot(cpu_train_arr, label='Train Acc')
plt.show()

0.90 4

0.851

0.80 4

0.754

0.70 4

0.60 1

0.55

0.50 1

Scores:

Precision: ©.8370735501684606, Recall: 0.833685805761606, Fscore: ©.8329355043953408, Accuracy: 0.8382161458333334

10

'Labrador retriever' 'Labrador retriever'

'French bulldog'

'0ld English sheepdog'

emiedt - Actual: Labradoodle Actual: Sheepadoodle

Results

Human Detected! You look like a Weimaraner

Human Detected! You look like a Lhasa

Human Detected! You look like a Sussex spaniel

Human Detected! You look like a Maltese dog

Lessons Learned

Overfitting
can occur
Training is
very time
consuming

VGG16 is an extremely

powerful image
classification system

Endless
Applications

Future Work

4

Incorporation into an app Additional breeds Other animals

for use on the go
Breed mix prediction

References

[1] Mahardi, I. -H. Wang, K. -C. Lee and S. -L. Chang, "Images Classification of Dogs and Cats using Fine-Tuned
VGG Models," 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan,
2020, pp. 230-233, doi: 10.1109/ECICE50847.2020.9301918.

[2] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

[3] Udacity, “Deep-learning-V2-pytorch/project-dog-classification at master - udacity/deep-learning-V2-
pytorch,” GitHub. [Online]. Available: https://github.com/udacity/deep-learning-v2-
pytorch/tree/master/project-dog-classification. [Accessed: 23-Mar-2023]

[4] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Stanford Dogs Dataset,” Stanford dogs dataset for fine-
grained visual categorization. [Online]. Available: http://vision.stanford.edu/aditya86/ImageNetDogs/.
[Accessed: 23-Mar-2023]

