

PREDICTING MLB GAMES USING A MULTILAYER PERCEPTRON NEURAL NETWORK

RYAN LEWIS MAY 1, 2023

			والابتار المراجع والمتر والمتراجع ومتراجع والمتراجع والمراج

PROBLEM

- Predicting the outcomes of any sport match is a very difficult task. Coaches, managers, and especially sports bettors all try to create predictive models to find ways to win
- M.C. Purucker, in his paper "Neural Network Quarterbacking," found that a supervised neural network with back-propagation was the most effective at predicting NFL games, and he achieved a 61% accuracy rate. This was enough to achieve long term profitability of sports bets
- My goal is to extend his work and achieve at least 60% accuracy in predicting MLB games, as well as try to achieve long term profitability in betting markets

DATASETS

- Schedules, batting statistics and pitching statistics for the entire 2022 season were downloaded from espn.com and stored in an sqlite3 database
- Each team's moneyline odds for each game were also downloaded
- Total of 2,396 games comprise the dataset, with 75% (1,797) of the games used to train, and 25% (599) used to test the network

Batting Splits

NAME	GP	W	L	AB	R	н	2B	3B	HR	RBI	AVG
Total	162	101	61	5509	789	1394	298	11	243	753	.253
Home	81	55	26	2656	395	680	137	5	125	378	.256
Away	81	46	35	2853	394	714	161	6	118	375	.250

02 / METHODS & DATA

FEATURE SELECTION

- Six statistics were used as input for each team:
 - Runs scored per game
 - Runs allowed per game
 - Team batting average
 - Average number of runs allowed by the starting pitcher
 - Total win percentage
 - Home/away win percentage
- First 3 statistics were aggregated over a team's most recent 30 games
 - Accounts for a team's hot and cold streaks while still avoiding outlier games

THE NETWORK

- 6 input features for each team for a total of 12 values in the input vector
- Through testing, a hidden layer of 3 neurons was found to produce the best results
- Output is binary, with a 0 representing a home team win and 1 for an away team win

THE NETWORK (cont)

- The scikit-learn library was used to construct the network. It offers 3 different optimization functions for its MLPClassifier:
 - Stochastic gradient descent
 - Adam
 - L-BFGS
- All three were tested to find the most accurate results

02 / METHODS & DATA

PERFORMANCE ANALYSIS

- The accuracy of each of the three optimization algorithms were recorded
- For each, A simulation was performed to evaluate the profitability in betting markets
 - Starting balance of \$0
 - For each prediction, a \$100 bet was "placed" on the winning team
 - Incorrect prediction: \$100 subtracted from balance
 - Correct: Profit was calculated using moneyline odds and added to balance
 - Was done for each of the 599 games in the test dataset

RESULTS

Algorithm	SGD	ADAM	L-BFGS
Accuracy	55.9%	56.9%	62.1%
Ending Balance	\$367.05	\$238.74	\$3797.48

SGD

-500

-1000

Balance (\$)

L-BFGS

/ RESULTS

LESSONS LEARNED

- MLP neural networks can be very effective in predicting the results of MLB games, even with only a few input features
- The optimization algorithm used can drastically change the results
- Even a very small accuracy difference can greatly improve profitability in betting markets, and just a 62% accuracy can be enough

FUTURE WORK

- Continue testing performance of this network over a larger sample size, possible that it just got lucky
- Conduct many more experiments on various other parameters:
 - Different statistics used as input
 - Aggregation size (other than 30 games)
 - Different structure/numbers of hidden nodes in the network
 - Different sizes of training/testing data