
AI based Ludo Player
Uditi Goyal, Tanya Jain, Ritish Shailly, Manas Shukla
Mini Project | Intro to Artificial Intelligence
April 28th, 2022

http://www.youtube.com/watch?v=Y4srdU1lj0o&t=15

Research Topic
Creating an AI based player
to play the game Ludo

Problem Statement

- Creating an AI program to play the game, Ludo
- The algorithm consists of the player deciding between which four pieces that

would result in the best outcome
- The algorithm will create among 2-4 players and play the game as bots

Game Rules

- There are 4 pieces per player.
- A player needs to roll 6 to release a piece.
- Bonus die rolls are allowed when a player rolls a 6.
- Releasing a piece is optional when a player rolls a 6.
- First player is selected at random when the game is started.

-

Concepts used from AI
class

- MDPs (Markov Decision Process)
- Reinforcement learning
- Q-learning
- Neural Networks (FANN)

Mathematical Model

- Markovian Decision Process

<S, A, Pa(s,s’), Ra(s,s’)>
- S: all possible states in environment
- A: set of all possible actions in an environment
- Pa: Transition model (Probability of moving from s to s’)
- Ra: Immediate reward received when agent goes to s’

-

Mathematical Model

- Markovian Decision Process

<S, A, Pa(s,s’), Ra(s,s’)>
- S: all possible states in environment
- A: set of all possible actions in an environment
- Pa: Transition model (Probability of moving from s to s’)
- Ra: Immediate reward received when agent goes to s’

Reinforcement learning devises a policy 𝝅 which maps states to actions

Optimal policy 𝝅* produces maximum cumulative rewards of all states

-

Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values
for each state/action combination (known as Q-Values), and updates them

Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values
for each state/action combination (known as Q-Values), and updates them

Policy Update:

Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values
for each state/action combination (known as Q-Values), and updates them

Policy Update:

For our problem, we have set the QL learning rate as 0.5 and discount factor as 0.95

Framework

Learning Objective: Select best applicable action for a given state

A = {defensive, aggressive, fast, random, preferRelease}

State Representation:

- Each piece has (52+5) squares
- Each square state represented by real number (0 - no pieces, 1- four pieces)
- 4 unary inputs which indicate current player turn
- So, total inputs = (59 X 4) + 4 = 294 inputs

Training and Testing:

- The model was trained using 4 QL players and was tested in 2 scenarios
- 1 QL vs 3 random players
- 1 QL vs 3 expert players

Framework
Rewards: Rewards were designed to pick moves in descending order:

- Win the game
- Release a piece.
- Defend a vulnerable piece
- Knock an opponent piece
- Move pieces closest to home
- Form a blockade

Loss: the agent is penalized in the following situations:

- Getting one of its pieces knocked in the next turn.
- Losing the game

Policy:

- The epsilon-greedy policy is used to balance between exploration and
exploitation with ε = 0.9

Expert Player
Priority of Strategies:

- Defensive - Maximize knocking range from opponents
- Aggressive - Prefer knocking opponent’s piece
- Fast - Move pieces to home location first
- Random

Approaches

- Implemented with Reinforcement Learning
- Similar approach to the Pac-man game
- Uses Deep Learning which includes our agent and the environment

- Every time the agent performs an action, the environment gives a positive
or negative reward to the agent

- Goal: For the agent to learn which actions maximizes the reward

Results

Research Paper Results

Limitations
- We tried to reproduce the research done in the paper. However due to lack of

computing power we weren’t able to reproduce it completely.
- The results against random players were comparable to research paper.

However There were slightly more deviations when tested against expert
players.

- This game is based on luck (dice rolls) which adds a complexity to evaluation
of results.

Lessons learned
- Reinforcement learning for AI agent
- Implementation of Q-learning for multiagent AI games
- Effect of learning parameter and discount factor in Q-learning

- Learning becomes better with lower learning rate
- Learning is quicker with higher learning rate
- Low discount factor is quicker because it learned policy that doesn’t consider future states
- High discount factor considers future states and is therefore slower

- Effect of learning against expert vs random players
- Algorithm performs better with random players as compared to expert players

Future Work

- Can be applied to other games such as
Chess, Minecraft, Pac-man

- Explore deeper game search like TF tree
- Improve QL player by optimizing reward
- Analyze Expert player mover to enhance

performance

Questions?

