LY

Al based Ludo Player
. - % o .

: o 8
Uditi Goyal, Tanya Jain, Ritish Sh#illy, Manas Shukla.
Mini Project | Intro to Artificial Intelligence .
April 28th, 2022 |

wo?
ynd

710
meeg)

119}

http://www.youtube.com/watch?v=Y4srdU1lj0o&t=15

Research Topic

Creating an Al based player
to play the game Ludo

Problem Statement

- Creating an Al program to play the game, Ludo
- The algorithm consists of the player deciding between which four pieces that
would result in the best outcome
- The algorithm will create among 2-4 players and play the game as bots

Game Rule

N L X 9 h‘u v {\
i q@e c 4 ¥ * " T o X
.F\‘ d 4 v ’Q - g v/ kc;} N ¥ t¢
. & ® a., . c 0 (,/} & U % & X }’2 : Q
E \(// 4 %E‘ £ a | & ~ /’g‘% 7 4 % ’
(‘{ /f}"#‘% A LN 9 c ‘(- &y L E 0
U ¢ x © 4 *Q % b
&, © gx,%*w .l . B fc% PN o ¢ AN C df Al
w p 2R Yy R = Concepts used from
(@] 3
é ko A b /74
2) ‘U Qo I
A R A =, . @ class
a N 4 A\ % ° & b < X 5 z/\ o
L E T R AR
S q %) & @ T Ad!) Y .
a,Y) 2 /b ¢ ml o o
R %bz ; €~(% R P _K;é »ﬁf{ ars § : .- MDPs (Markov Decision Process)
e, Q ;® S« . - ¢ m . .
RS il AT ;a PR - 6 Sa g - Reinforcement learning
g % % c T O~ 2 o 17, .
; - « ° “, - Q-learning
v &y d:qu % A ” 7 2
o Mi ® %;4 M) T Pe 0 - Neural Networks (FANN)

Mathematical Model

- Markovian Decision Process

<§, A, Pa(s,s’), Ra(s,s’)>

S: all possible states in environment
A: set of all possible actions in an environment

P_: Transition model (Probability of moving from s to s’)
R :Immediate reward received when agent goes to s’

Mathematical Model

- Markovian Decision Process

<§, A, Pa(s,s’), Ra(s,s’)>

S: all possible states in environment
A: set of all possible actions in an environment

P_: Transition model (Probability of moving from s to s’)
R :Immediate reward received when agent goes to s’

Reinforcement learning devises a policy & which maps states to actions

Optimal policy #* produces maximum cumulative rewards of all states

Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values
for each state/action combination (known as Q-Values), and updates them

Q(s,a) = r(s,a) + ymax Q(s", a)

Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values
for each state/action combination (known as Q-Values), and updates them

Q(s,a) = r(s,a) + ymax Q(s’, a)

Policy Update:
TD/Emor
Q™" (sy,a1) + Q(s¢,a¢) + o . (ry + o . max Q(8¢41,a) - Q(s,,a,))
R B ~~ N ot @ | SEED ST
old value learning rate reward discount factor N old value

estimate of optimal future value

N >
"

new value (temporal difference target)

Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values
for each state/action combination (known as Q-Values), and updates them

O(s,a) = r(s,a) + ymax O(s’, a)

Policy Update:
TD/Error
Q" (st,a1) + Q(st,a4¢) + a - (e+ ¥ - max Q(s¢41,a) = Q(Sr,af))
e ——. Rl N g Ny o . e
old value learning rate reward discount factor NG old value

estimate of optimal future value

N >

new value (temporal difference target)

For our problem, we have set the QL learning rate as 0.5 and discount factor as 0.95

Framework

Learning Objective: Select best applicable action for a given state
A ={defensive, aggressive, fast, random, preferRelease}

State Representation:

Each piece has (52+5) squares

Each square state represented by real number (0 - no pieces, 1- four pieces)
4 unary inputs which indicate current player turn

So, total inputs = (59 X 4) + 4 =294 inputs

Training and Testing;:

- The model was trained using 4 QL players and was tested in 2 scenarios
- 1 QL vs 3 random players
- 1 QL vs 3 expert players

Framework

Rewards: Rewards were designed to pick moves in descending order:

- Win the game

- Release a piece.

- Defend a vulnerable piece

- Knock an opponent piece

- Move pieces closest to home
- Form a blockade

Loss: the agent is penalized in the following situations:

- Getting one of its pieces knocked in the next turn.
- Losing the game

Policy:

- The epsilon-greedy policy is used to balance between exploration and
exploitation with € =0.9

Expert Player
Priority of Strategies:

- Deftensive - Maximize knocking range from opponents
- Aggressive - Prefer knocking opponent’s piece

- Fast - Move pieces to home location first

- Random

Approaches

- Implemented with Reinforcement Learning
- Similar approach to the Pac-man game
- Uses Deep Learning which includes our agent and the environment

- Every time the agent performs an action, the environment gives a positive
or negative reward to the agent
- Goal: For the agent to learn which actions maximizes the reward

Results

== Expert Player

== Random Player

o
N

60
40

Win % vs Learning Episodes

% Buiuuip

Learning Episodes

Research Paper Results

80% 80%

70% 70%

60% 60%

S A R

o 2o

g c

3 30% 1 S 30% -

20% 20% /\/\/‘\/‘A"/W\/\/\/\
10% - 10% A

2500 22500 42500 62500 82500 2500 22500 42500 62500 82500
Learning episodes Learning episodes

(a) Winning rate against 3 random players (b) Winning rate against 3 expert players

Limitations

We tried to reproduce the research don
computing power we weren’t able to rei
The results against random players wer

he paper. However due to lack of
uce it completely.

parable to research paper.
However There were slightly more devidtiéns when tested against expert
players.

This game is based on luck (dice rolls) which adds a complexity to evaluation
of results.

Lessons learned

- Reinforcement learning for Al agent
- Implementation of Q-learning for multiagent Al games
- Effect of learning parameter and discount factor in Q-learning

- Learning becomes better with lower learning rate

- Learning is quicker with higher learning rate

- Low discount factor is quicker because it learned policy that deesn’t consider future states
- High discount factor considers future states and is therefore slower

- Effect of learning against expert vs random players

- Algorithm performs better with random players as compared to expert players

Future Work

Can be applied to other games such as
Chess, Minecraft, Pac-man i
Explore deeper game search like TF tree
Improve QL player by optimizing reward &2
Analyze Expert player mover to enha’nge"{ 3 }

-
55

performance

.-.,;;g;ﬁ;- S

=
< i ,‘:{’L.Q'» A
- - - by -~ ~
i S o \.:{" RS
- g e

.

Questions?
and

