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http://www.youtube.com/watch?v=Y4srdU1lj0o&t=15


Research Topic
Creating an AI based player 
to play the game Ludo



Problem Statement

- Creating an AI program to play the game, Ludo 
- The algorithm consists of the player deciding between which four pieces that 

would result in the best outcome 
- The algorithm will create among 2-4 players and play the game as bots 



Game Rules

- There are 4 pieces per player. 
- A player needs to roll 6 to release a piece.
- Bonus die rolls are allowed when a player rolls a 6. 
- Releasing a piece is optional when a player rolls a 6. 
- First player is selected at random when the game is started.  

-



Concepts used from AI 
class

- MDPs (Markov Decision Process)
- Reinforcement learning
- Q-learning
- Neural Networks (FANN)



Mathematical Model

- Markovian Decision Process

<S, A, Pa(s,s’), Ra(s,s’)>
- S: all possible states in environment
- A: set of all possible actions in an environment
- Pa: Transition model (Probability of moving from s to s’)
- Ra: Immediate reward received when agent goes to s’

-
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- Markovian Decision Process

<S, A, Pa(s,s’), Ra(s,s’)>
- S: all possible states in environment
- A: set of all possible actions in an environment
- Pa: Transition model (Probability of moving from s to s’)
- Ra: Immediate reward received when agent goes to s’

Reinforcement learning devises a policy 𝝅 which maps states to actions

Optimal policy 𝝅* produces maximum cumulative rewards of all states
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Q-Learning

Q-learning focuses on finding the optimal policy by estimating quality values 
for each state/action combination (known as Q-Values), and updates them
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Q-learning focuses on finding the optimal policy by estimating quality values 
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Policy Update:

For our problem, we have set the QL learning rate as 0.5 and discount factor as 0.95



Framework

Learning Objective: Select best applicable action for a given state

A  = {defensive, aggressive, fast, random, preferRelease}

State Representation: 

- Each piece has (52+5) squares
- Each square state represented by real number (0 - no pieces, 1- four  pieces)
- 4 unary inputs which indicate current player turn
- So, total inputs = (59 X 4) + 4 = 294 inputs

Training and Testing:

- The model was trained using 4 QL players and was tested in 2 scenarios
- 1 QL vs 3 random players
- 1 QL vs 3 expert players



Framework
Rewards: Rewards were designed to pick moves in descending order:

- Win the game 
- Release a piece. 
- Defend a vulnerable piece
- Knock an opponent piece
- Move pieces closest to home
- Form a blockade 

Loss: the agent is penalized in the following situations: 

- Getting one of its pieces knocked in the next turn. 
- Losing the game

Policy:

- The epsilon-greedy policy is used to balance between exploration and 
exploitation with ε = 0.9



Expert Player
Priority of Strategies:

- Defensive - Maximize knocking range from opponents
- Aggressive - Prefer knocking opponent’s piece
- Fast - Move pieces to home location first
- Random



Approaches 

- Implemented with Reinforcement Learning
- Similar approach to the Pac-man game
- Uses Deep Learning which includes our agent and the environment

- Every time the agent performs an action, the environment gives a positive 
or negative reward to the agent 

- Goal: For the agent to learn which actions maximizes the reward 



Results



Research Paper Results



Limitations
- We tried to reproduce the research done in the paper. However due to lack of 

computing power we weren’t able to reproduce it completely.
- The results against random players were comparable to research paper. 

However There were slightly more deviations when tested against expert 
players.

- This game is based on luck (dice rolls) which adds a complexity to evaluation 
of results.



Lessons learned
- Reinforcement learning for AI agent
- Implementation of Q-learning for multiagent AI games
- Effect of learning parameter and discount factor in Q-learning

- Learning becomes better with lower learning rate
- Learning is quicker with higher learning rate
- Low discount factor is quicker because it learned policy that doesn’t consider future states
- High discount factor considers future states and is therefore slower

- Effect of learning against expert vs random players
- Algorithm performs better with random players as compared to expert players



Future Work

- Can be applied to other games such as 
Chess, Minecraft, Pac-man

- Explore deeper game search like TF tree
- Improve QL player by optimizing reward
- Analyze Expert player mover to enhance 

performance



Questions?


