Comparing ML Techniques for Authenticating Banknotes

Ajinkya Fotedar

Overview

- Paper money remains one of the main options for exchanging products and services.
- Protection against forgery is an important concern of the money economy.
- State-of-the-art devices used for counterfeit detection tasks are often expensive.
- Classical computer vision techniques suffer from low generalization of new examples and low accuracy rates.

Machine Learning

- An agent has access to information in the form of data or patterns. The goal is to learn and understand that data to perform a future task.
- Supervised Learning: given a data set of input-output pairs, agent learns a function to map inputs to outputs.
- Classification:
 - The task of figuring out a function mapping an input point to a discrete category
 - Entails human involvement during the data set creation process
 - Data points are labelled (class) before the data set can serve as input to a model
- Deep Learning:
 - Subset of ML
 - Artificial Neural Network used as the primary unit for statistical modeling
 - Inspired by modeling agent learning off of human learning (neurons)

Data Set

- The paper's [1] authentication approach makes four passes per banknote image digitization, preprocessing, feature extraction, and classification.
- Image preprocessed using a wavelet transform tool for extracting spectral components (edges and textures).
- Features are then extracted using the wavelet coefficient.
 - Variance
 - Skewness
 - Curtosis
 - Entropy
- The data set [2], taken from the UC Irvine Machine Learning Repository, has features from 1372 banknotes.

Fig. 1. Different printing techniques for banknote reproduction: (a) Genuine, (b) High-Quality Forgery and (c) Low-Quality Forgery.

[https://www.researchgate.net/publication/266673146_Banknote_Authentication]

Exploratory Analysis

- It's a balanced data set.
- There are no missing values.
- An even distribution of authentic and counterfeit banknotes.

[25]:	data.	ta.describe()					
[25]:		variance	skewness	curtosis	entropy	class	
	count	1372.000000	1372.000000	1372.000000	1372.000000	1372.000000	
	mean	0.433735	1.922353	1.397627	-1.191657	0.444606	
	std	2.842763	5.869047	4.310030	2.101013	0.497103	
	min	-7.042100	-13.773100	-5.286100	-8.548200	0.000000	
	25%	-1.773000	-1.708200	-1.574975	-2.413450	0.000000	
	50%	0.496180	2.319650	0.616630	-0.586650	0.000000	
	75%	2.821475	6.814625	3.179250	0.394810	1.000000	
	max	6.824800	12.951600	17.927400	2.449500	1.000000	

[28] :	<pre>data.isna().sum()</pre>			
[28]:	variance skewness curtosis entropy class	0 0 0 0		
	dtype: int	64		

Correlation Heatmap

- Kurtosis and skewness are negatively correlated.
- High correlation between kurtosis and entropy.

Scatter Plots

- The classes are distinct and separate.
- Variance distribution is very discriminative compared to other features indicating that it might the most influential variable.

Results

- 50/50 split between training and testing.
- Support Vector Machine performs the best.
- But with the nearest neighbors parameter of KNN set to 3 (default = 1), the accuracy rate is consistently 100%.
- Naive Bayes classifier consistently had the lowest accuracy.

	Model	Correct	Incorrect	Accuracy
0	LogisticRegression	680	6	99.13%
1	Perceptron	676	10	98.54%
2	GaussianNB	585	101	85.28%
3	KNeighborsClassifier	681	5	99.27%
4	DecisionTreeClassifier	674	12	98.25%
5	SVC	686	0	100.00%

Confusion Matrix

- A closer look at the misclassifications a.k.a false positives and false negatives.

ANN Results

[0.09	525473415851593, 0.9839650392532349]	
22/22	- 0s - loss: 0.0953 - accuracy: 0.9840	1
22/22	[========================] - 0s 670us/step - loss: 0.1059 - accuracy:	0.9854
Epoch	20/20	013023
22/22	[] _ 0s 659us/step _ loss: 0.1128 _ accuracy:	0-9825
Enoch	[0.9/90
22/22	[] _ 05 658us/step _ loss: 0 1206 _ accuracy:	0 0706
22/22 Epoch	[===============================] = 05 6550s/step = loss: 0.1293 = accuracy:	0.9/52
Epoch	1//20	0 0752
22/22	[==================] - 05 638us/step - loss: 0.1390 - accuracy:	0.9738
Epoch	16/20	
22/22	[======] - 0s 664us/step - loss: 0.1495 - accuracy:	0.9694
Epoch	15/20	
22/22	[=================] - 0s 664us/step - loss: 0.1612 - accuracy:	0.9694
Epoch	14/20	
22/22	[==================] - 0s 673us/step - loss: 0.1732 - accuracy:	0.9636
Enoch	13/20	0.9592
Epoch	12/20	A 0502
22/22	[========================] – 0s 663us/step – loss: 0.1996 – accuracy:	0.9548
Epoch	11/20	0.0540
22/22	[=======================] - 0s 659us/step - loss: 0.2145 - accuracy:	0.9475
Epoch	10/20	
22/22	[==================] - 0s 689us/step - loss: 0.2300 - accuracy:	0.9417
Epoch	9/20	
22/22	[======] - 0s 642us/step - loss: 0.2482 - accuracy:	0.9329
Epoch	8/20	
22/22	[=====================================	0.9257
Enoch	7/20	0.9109
Epoch	6/20	0 0160
22/22	[==================] - Øs 666us/step - loss: 0.3255 - accuracy:	0.8834
Epoch	5/20	
22/22	[=====] - 0s 663us/step - loss: 0.3633 - accuracy:	0.8411
Epoch	4/20	
22/22	[===============] - 0s 664us/step - loss: 0.4164 - accuracy:	0.8076
Epoch	3/20	
22/22	[=======================] = 0s 634us/step = loss: 0.4811 = accuracy:	0.7493
Enoch	2/20	0.7055
Epoch	1/20	0 7055

[178

Summary

- Future Work:
 - Retrieving additional features from the spectral components of the print surface for a potentially better data set.
 - Extending the wavelet transform method to adapt automatically to unknown denominations.
- Libraries:
 - Scikit-learn (ML models)
 - TensorFlow (Neural Networks)
 - Seaborn (Visualization)
 - Pandas (Data preprocessing)
- References:
 - [1] https://www.researchgate.net/publication/266673146_Banknote_Authentication
 - [2] https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Thank you!