

StarGAN: the Advanced Appearance Simulator

JO-YU LIAO (MENG CS), YUAN MA (MENG CS) TING-JUI HSU(MENG CS), HSIN-YU CHIEN(MENG CS)

APRIL 21, 2022

How would that hairstyle look on me?

- Yes, it is perfect!
- Not bad, but I thought it could be better.
- No!!! It is a disaster!!! I need to hide my hair for a while.

01 / Problem Description

We need an effective way to predict the hairstyle on us

- Copy & paste: the easiest solution (many mobile apps)
- Landmark detection: the mainstream solutions (Photoshop, Dlib library, ...)
- Generative adversarial network: the latest solution (GauGAN, StarGAN, ...)

Generative Adversarial Network (GAN)

- Two neural networks
 generator & discriminator
- Two neural networks do zero-sum games.
- The generator wins if it can cheat discriminator. Otherwise, the discriminator wins.
- Update both networks and continue the next round.

Conditional GAN

- The generator in GAN can generate any image
- The conditional GANs restrict the type of image to be generated

Image-to-image translation

- Transfer the input image into targeted domain image
- The neural networks use the output images to learn
- StarGAN introduces multi-domain imageto-image translation

Two training datasets for StarGAN

CelebA datasets

contains 202,599 face images of celebrities, each annotated with 40 binary attributes

000

RafD datesets

consists of 4,824 images collected from 67 participants. Each participant makes eight facial expressions in three different gaze directions

010101001

The implementation

Phase I: using CelebA datasets

- Multi-step translations to generate images with multiple attributes
- Change the argument of the selected feature and apply more attributes to train the discriminator

Phase II: including RafD datasets

- Split images into training & test data, the discriminator wins
- Crop all images to assure that all images are valid and display faces at the center

02 / APPROACH

The training results from CelebA dataset – part I

The selected attributes

- Black hair
- Blond hair
- Brown hair
- Male
- Young

03 / RESULTS

The training results from CelebA dataset – part II

The selected attributes

- Black hair
- Blond hair
- Brown hair
- Male
- Young

03 / RESULTS

Perceptual evaluation - StarGAN vs others

The diagram at left displays the perceptual evaluation for ranking different model on a single attribute

03/RESULTS

Lesson Learned

- GANs can achieve higher accuracy since it includes the advantages of CNNs and indirect training features
- Image-to-image translation engines can drastically affect the training results by comparing StarGAN with other GANs

Future Work

- Use StarGAN to generate more images with different facial features
- Integrate the RafD dataset to train images with more subtle expressions

Questions from Audience

