
Applying Deep Q-learning approach
to

Pacman problem

Rana Genedy, grana@vt.edu

Rhea Saxena, rhea2809@vt.edu

Pac-man is a popular control problem in the field of AI, it’s simple

enough to understand but complex enough that it requires

implementation of various strategies to find optimal solutions.

We use the original Berkeley code base to implement the base Pac-

man game and implement simple Q-learning and Deep Q-Learning

to compare results.

Pacman

Reinforcement learning (RL) is an area of machine learning

that is concerned with using intelligent agents (e.g., robots)

that interact with their surrounding environment. These

interactions generate rewards that influence the agents and

steer their behavior till they take the optimum actions that

maximize the cumulative rewards.

Reinforcement Learning

Q-Learning

Q-Learning is a off-policy learning algorithm that learns the value of

an action in a particular state.

There is a finite state and action space to maintain a table lookup

that maintains the current estimate of the Q-value. Howerwer, with

fairly large or infinite state space, it becomes impossible to use a

table.

Deep Q-Learning

Using deep Q-learning instead of deep
supervised learning

Supervised deep learning

❏ Requires large amounts of labelled
training data

❏ Assumes the data samples are
independent

❏ Assumes a fixed underlying distribution
❏ Learns by exploitation

Deep Q-learning can overcome the challenges of the supervised deep learning and
reinforcement learning to learn successful control policies from raw video data in complex RL
environments

Reinforcement learning
❏ Learns from a scalar reward signal that is

frequently sparse, noisy and delayed
❏ Encounters sequences of highly

correlated state
❏ the data distribution changes as the

algorithm learns new behaviors
❏ Slow learning

Applying it to PacMan problem

Neural Network Agent

➢ Initialize the replay memory (training dataset)

➢ For each time step in the episode (episode = full game),

select either a random action (explore), or the currently

known, best action (exploit).

➢ Execute the chosen action and store the (processed)

observed transition in the replay memory

➢ Experience replay: Sample a random minibatch of

transitions from replay memory and perform gradient

descent step on Q

Neural Network Agent

➢ We have two identical Q approximators (DNN), Main Q
and target Q̂ model.

➢ Once every several steps set the target function, Q̂ to
equal Q (The target model have the same weights as the
main model. It predicts with the target model every
multiple steps (not every step). This gonna make the
predictions more consistent and not all over the place.

Applying it to PacMan problem

Results

Results

Future Work

▪ Fine tune existing DQN networks for better results

▪ Compare results with other q-learning variants like

Double Q-learning, Approximate Q-learning,

Distributional Q-learning, Greedy GQ etc., to analyse

the trade off between the benefits and disadvantages

of the various alternatives

Questions
?

