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Pac-man is a popular control problem in the field of AI, it’s simple 

enough to understand but complex enough that it requires 

implementation of various strategies to find optimal solutions. 

We use the original Berkeley code base to implement the base Pac-

man game and implement simple Q-learning and Deep Q-Learning 

to compare results.

Pacman



Reinforcement learning (RL) is an area of machine learning 

that is concerned with using intelligent agents (e.g., robots) 

that interact with their surrounding environment. These 

interactions generate rewards that influence the agents and 

steer their behavior till they take the optimum actions that 

maximize the cumulative rewards. 

Reinforcement Learning



Q-Learning

Q-Learning is a off-policy learning algorithm that learns the value of 

an action in a particular state. 

There is a finite state and action space to maintain a table lookup 

that maintains the current estimate of the Q-value. Howerwer, with 

fairly large or infinite state space, it becomes impossible to use a 

table. 



Deep Q-Learning 



Using deep Q-learning instead of deep 
supervised learning 

Supervised deep learning 

❏ Requires large amounts of labelled 
training data

❏ Assumes the data samples are 
independent

❏ Assumes a fixed underlying distribution
❏ Learns by exploitation 

Deep Q-learning  can overcome the challenges of the supervised deep learning and 
reinforcement learning to learn successful control policies from raw video data in complex RL 
environments

Reinforcement learning 
❏ Learns from a scalar reward signal that is 

frequently sparse, noisy and delayed
❏ Encounters sequences of highly 

correlated state
❏ the data distribution changes as the 

algorithm learns new behaviors
❏ Slow learning 



Applying it to PacMan problem 



Neural Network Agent

➢ Initialize the replay memory (training dataset)

➢ For each time step in the episode (episode = full game), 

select either a random action (explore), or the currently 

known, best action (exploit).

➢ Execute the chosen action and store the (processed) 

observed transition in the replay memory 

➢ Experience replay: Sample a random minibatch of 

transitions from replay memory and perform gradient 

descent step on Q



Neural Network Agent

➢ We have two identical Q approximators (DNN), Main Q 
and target Q̂ model.

➢ Once every several steps set the target function, Q̂ to 
equal Q (The target model have the same weights as the 
main model.  It predicts with the target model every 
multiple steps (not every step). This gonna make the 
predictions more consistent and not all over the place.
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Results



Results



Future Work

▪ Fine tune existing DQN networks for better results

▪ Compare results with other q-learning variants like 

Double Q-learning, Approximate Q-learning, 

Distributional Q-learning, Greedy GQ etc., to analyse 

the trade off between the benefits and disadvantages 

of the various alternatives



Questions 
?


