
1

Xen and The Art of
Virtualization

Paul Barham, Boris Dragovic, Keir
Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt &
Andrew Warfield

SOSP 2003

Additional source: Ian Pratt on xen (xen source)
www.cl.cam.ac.uk/research/srg/netos/papers/2005-xen-may.ppt

2

Para virtualization

3

Virtualization approaches
Full virtualization

OS sees exact h/w
OS runs unmodified
Requires virtualizable
architecture or work around
Example: Vmware

Para Virtualization
OS knows about VMM
Requires porting (source
code)
Execution overhead
Example Xen, denali

OS

H/W
VMM

OS

H/W
VMM

4

The Xen approach

Support for unmodified binaries (but not OS) essential
Important for app developers
Virtualized system exports has same Application Binary Interface (ABI)

Modify guest OS to be aware of virtualization
Gets around problems of x86 architecture
Allows better performance to be achieved

Expose some effects of virtualization
Translucent VM OS can be used to optimize for performance

Keep hypervisor layer as small and simple as possible
Resource management, Device drivers run in privileged VMM
Enhances security, resource isolation

5

Paravirtualization

Solution to issues with x86 instruction set
Don’t allow guest OS to issue sensitive instructions
Replace those sensitive instructions that don’t trap to ones that will trap

Guest OS makes “hypercalls” (like system calls) to interact with
system resources

Allows hypervisor to provide protection between VMs

Exceptions handled by registering handler table with Xen
Fast handler for OS system calls invoked directly
Page fault handler modified to read address from replica location

Guest OS changes largely confined to arch-specific code
Compile for ARCH=xen instead of ARCH=i686
Original port of Linux required only 1.36% of OS to be modified

5

6

Para-Virtualization in Xen
Arch xen_x86 : like x86, but Xen hypercalls
required for privileged operations

Avoids binary rewriting
Minimize number of privilege transitions into Xen
Modifications relatively simple and self-contained

Modify kernel to understand virtualized
environment.

Wall-clock time vs. virtual processor time
Xen provides both types of alarm timer

Expose real resource availability
Enables OS to optimise behaviour

7

x86 CPU virtualization
Xen runs in ring 0 (most privileged)
Ring 1/2 for guest OS, 3 for user-space

General Processor Fault if guest attempts to use
privileged instruction

Xen lives in top 64MB of linear address space
Segmentation used to protect Xen as switching page
tables too slow on standard x86

Hypercalls jump to Xen in ring 0
Guest OS may install ‘fast trap’ handler

Direct user-space to guest OS system calls
MMU virtualisation: shadow vs. direct-mode

8

rin
g

3

x86_32
Xen reserves top of VA
space
Segmentation protects
Xen from kernel
System call speed
unchanged

Xen 3.0 now supports
>4GB mem with
Processor Address
Extension (64 bit etc)

Kernel

User

4GB

3GB

0GB

Xen

S

S

U rin
g

1
rin

g
0

9

Xen VM interface: CPU

CPU
Guest runs at lower privilege than VMM
Exception handlers must be registered with VMM
Fast system call handler can be serviced without
trapping to VMM
Hardware interrupts replaced by lightweight event
notification system
Timer interface: both real and virtual time

10

Xen virtualizing CPU

Many processor architectures provide only 2
levels (0/1)
Guest and apps in 1, VMM in 0
Run Guest and app as separate processes
Guest OS can use the VMM to pass control
between address spaces
Use of software TLB with address space tags to
minimize CS overhead

11

XEN: virtualizing CPU in x86
x86 provides 4 rings (even VAX processor provided 4)
Leverages availability of multiple “rings”

Intermediate rings have not been used in practice since OS/2; x86-
specific
An O/S written to only use rings 0 and 3 can be ported; needs to modify
kernel to run in ring 1

12

CPU virtualization
Exceptions that are called often:

Software interrupts for system calls
Page faults

Improve Allow “guest” to register a ‘fast’ exception
handler for system calls that can be accessed directly by
CPU in ring 1, without switching to ring-0/Xen

Handler is validated before installing in hardware exception table:
To make sure nothing executed in Ring 0 privilege.
Doesn’t work for Page Fault
Only code in ring 0 can read the faulting address from register

13

Xen

14

Some Xen hypercalls

See http://lxr.xensource.com/lxr/source/xen/include/public/xen.h
#define __HYPERVISOR_set_trap_table 0
#define __HYPERVISOR_mmu_update 1
#define __HYPERVISOR_sysctl 35

#define __HYPERVISOR_domctl 36

14

15

Xen VM interface: Memory

Memory management
Guest cannot install highest privilege level segment
descriptors; top end of linear address space is not
accessible
Guest has direct (not trapped) read access to
hardware page tables; writes are trapped and handled
by the VMM
Physical memory presented to guest is not
necessarily contiguous

16

Memory virtualization choices
TLB: challenging

Software TLB can be virtualized without flushing TLB entries between
VM switches
Hardware TLBs tagged with address space identifiers can also be
leveraged to avoid flushing TLB between switches
x86 is hardware-managed and has no tags…

Decisions:
Guest O/Ss allocate and manage their own hardware page tables with
minimal involvement of Xen for better safety and isolation
Xen VMM exists in a 64MB section at the top of a VM’s address space
that is not accessible from the guest

17

Xen memory management

x86 TLB not tagged
Must optimise context switches: allow VM to see
physical addresses
Xen mapped in each VM’s address space

PV: Guest OS manages own page tables
Allocates new page tables and registers with Xen
Can read directly
Updates batched, then validated, applied by Xen

17

18

Memory virtualization

Guest O/S has direct read access to hardware
page tables, but updates are validated by the
VMM

Through “hypercalls” into Xen
Also for segment descriptor tables
VMM must ensure access to the Xen 64MB section
not allowed
Guest O/S may “batch” update requests to amortize
cost of entering hypervisor

19

rin
g

3

x86_32
Xen reserves top of VA
space
Segmentation protects
Xen from kernel
System call speed
unchanged

Xen 3.0 now supports
>4GB mem with
Processor Address
Extension (64 bit etc)

Kernel

User

4GB

3GB

0GB

Xen

S

S

U rin
g

1
rin

g
0

20

Virtualized memory
management

Each process in each VM has
its own VAS

Guest OS deals with real
(pseudo-physical) pages, Xen
maps physical to machine

For PV, guest OS uses
hypercalls to interact with
memory
For HVM, Xen has shadow
page tables (VT instructions
help)

20

32

21

62

51

32

21

62

51

VM1 VM2

186
175
163
42
96
145
123
82

21

TLB when VM1 is running

?22

?21

?12

?11

PNPIDVP

22

MMU Virtualization: shadow
mode

23

Shadow page table

Hypervisor responsible for trapping access to
virtual page table
Updates need to be propagate back and forth
between Guest OS and VMM
Increases cost of managing page table flags
(modified, accessed bits)
Can view physical memory as contiguous
Needed for full virtualization

24

MMU virtualization: direct
mode

Take advantage of Paravirtualization
OS can be modified to be involved only in page
table updates
Restrict guest OSes to read only access
Classify Page frames into frames that holds
page table
Once registered as page table frame, make the
page frame R_ONLY
Can avoid the use of shadow page tables

25

Single PTE update

26

On write PTE : Emulate

MMU

Guest OS

Xen VMM
Hardware

first guest
write

guest reads

Virtual → Machine

emulate?

yes

27

Bulk update

Useful when creating new Virtual address
spaces
New Process via fork and Context switch
Requires creation of several PTEs
Multipurpose hypercall

Update PTEs
Update virtual to Machine mapping
Flush TLB
Install new PTBR

28

Batched Update Interface

MMU

Guest OS

Xen VMM
Hardware

validation

guest
writes

guest reads
Virtual → Machine

PD

PT PT PT

29

Writeable Page Tables: create
new entries

MMU

Guest OS

Xen VMM
Hardware

guest writes

guest reads

Virtual → MachineX
PT PT PT

PD

30

Writeable Page Tables : First
Use—validate mapping via TLB

MMU

Guest OS

Xen VMM
Hardware

page fault

guest writes

guest reads

Virtual → MachineX

31

Writeable Page Tables : Re-
hook

MMU

Guest OS

Xen VMM
Hardware

validate

guest writes

guest reads

Virtual → Machine

32

Physical memory

Memory allocation for each VM specified at boot
Statically partitioned
No overlap in machine memory
Strong isolation

Non-contiguous (Sparse allocation)
Balloon driver
Add or remove machine memory from guest OS

33

Xen memory management
Xen does not swap out memory allocated to domains

Provides consistent performance for domains
By itself would create inflexible system (static memory allocation)

Balloon driver allows guest memory to grow/shrink
Memory target set as value in the XenStore
If guest above target, free/swap out, then release to Xen
If guest below target, can increase usage

Hypercalls allow guests to see/change state of memory
Physical-real mappings
“Defragment” allocated memory

33

34

Xen VM interface: I/O

I/O
Virtual devices (device descriptors) exposed as
asynchronous I/O rings to guests
Event notification is by means of an upcall as
opposed to interrupts

35

I/O

Handle interrupts
Data transfer
Data written to I/O buffer pools in each domain
These Page frames pinned by Xen

36

Details: I/O

I/O Descriptor Ring:

37

I/O rings
REQUEST PRODUCER (GUEST)

REQUEST CONSUMER (XEN)

RES PRODUCER (XEN)

RESPONSE CONSUMER (GUEST)

38

I/O virtualization

Xen does not emulate hardware devices
Exposes device abstractions for simplicity and
performance
I/O data transferred to/from guest via Xen using
shared-memory buffers
Virtualized interrupts: light-weight event delivery
mechanism from Xen-guest

Update a bitmap in shared memory
Optional call-back handlers registered by O/S

39

Network Virtualization

Xen models a virtual firewall-router (VFR) to
which one or more VIFs of each domain connect
Two I/O rings: one for send and another for
receive
Policy enforced by a special domain

Each direction also has rules of the form (if <pattern>
<action>) that are inserted by domain 0

(management)

40

Network Virtualization

Packet transmission:
Guest adds request to I/O ring
Xen copies packet header, applies matching filter
rules
Round-robin packet scheduler

41

Network Virtualization
Packet reception:

Xen applies pattern-matching rules to determine
destination VIF
Guest O/S required to provide PM for copying packets
received

If no receive frame is available, the packet is dropped
Avoids Xen-guest copies;

42

Disk Virtualization

Uses Split driver approach
Front end, back end drivers
Front end

Guest OSes use a simple generic driver per class
Domain 0 provides the actual driver per device
Back end runs in own VM (domain 0)

43

Disk virtualization
Domain0 has access to physical disks

Currently: SCSI and IDE
All other domains are offerred virtual block
device (VBD) abstraction

Created & configured by management software at
domain0
Accessed via I/O ring mechanism
Possible reordering by Xen based on knowledge
about disk layout

44

Disk virtualization
Xen maintains translation tables for each VBD

Used to map requests for VBD (ID,offset) to
corresponding physical device and sector address
Zero-copy data transfers take place using DMA
between memory pages pinned by requesting domain

Scheduling: batches of requests in round-robin
fashion across domains

45

Advanced features

Support for HVM (hardware virtualisation
support)

Very similar to “classic” VM scenario
Uses emulated devices, shadow page tables
Hypervisor (VMM) still has important role to play
“Hybrid” HVM paravirtualizes components (e.g. device
drivers) to improve performance

Migration of domains between machines
Daemon runs on each Dom0 to support this
Incremental copying used to for live migration (60ms
downtime!)

45

46

Xen 2.0 Architecture

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device
Manager &
Control s/w

VM0

Native
Device
Driver

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

VM2

Front-End
Device Drivers

GuestOS
(XenBSD)

Unmodified
User

Software

VM3

Safe HW IF

Xen Virtual Machine Monitor

Back-End Back-End

47

Xen Today : 2.0 Features

Secure isolation between VMs
Resource control and QoS
Only guest kernel needs to be ported

All user-level apps and libraries run unmodified
Linux 2.4/2.6, NetBSD, FreeBSD, Plan9

Execution performance is close to native
Supports the same hardware as Linux x86
Live Relocation of VMs between Xen nodes

48

Xen 3.0 Architecture

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device
Manager &
Control s/w

VM0

Native
Device
Driver

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

VM2

Front-End
Device Drivers

Unmodified
GuestOS
(WinXP))

Unmodified
User

Software

VM3

Safe HW IF

Xen Virtual Machine Monitor

Back-End Back-End

VT-x

x86_32
x86_64

IA64

AGP
ACPI
PCI

SMP

49

Support for up to 32-way SMP guest
Intel® VT-x and AMD Pacifica hardware virtualization
support
PAE support for 32 bit servers with over 4 GB memory
x86/64 support for both AMD64 and EM64T

Support for up to 32-way SMP guest
Intel® VT-x and AMD Pacifica hardware virtualization
support
PAE support for 32 bit servers with over 4 GB memory
x86/64 support for both AMD64 and EM64T

New easy-to-use CPU scheduler including weights, caps and
automatic load balancing
Much enhanced support for unmodified ('hvm') guests
including windows and legacy linux systems
Support for sparse and copy-on-write disks
High performance networking using segmentation off-load

New easy-to-use CPU scheduler including weights, caps and
automatic load balancing
Much enhanced support for unmodified ('hvm') guests
including windows and legacy linux systems
Support for sparse and copy-on-write disks
High performance networking using segmentation off-load

Xen 3.0 features

50

Xen protection levels in PAE

x86_64 removed rings 1,2
Xen in ring 0

Guest OS and apps in ring 3

50

51

x86_64
Large VA space makes life a
lot easier, but:
No segment limit support
Need to use page-level
protection to protect
hypervisor

Kernel

User

264

0

Xen

U

S

U

Reserved
247

264-247

52

x86_64
Run user-space and kernel in ring
3 using different pagetables

Two PGD’s (PML4’s): one with user
entries; one with user plus kernel
entries

System calls require an additional
syscall/ret via Xen
Per-CPU trampoline to avoid
needing GS in Xen

Kernel

User

Xen

U

S

U

syscall/sysret

r3

r0

r3

53

Additional resources on Xen

“Xen 3.0 and the art of virtualization”, Presentation by
Ian Pratt
Virtual machines by Jim Smith and ravi nair
“The definitive guide to the Xen hypervisor” (Kindle
Edition), David Chisnall
The source code:
http://lxr.xensource.com/lxr/source/xen/

53

