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Problem statement

 Build a globally-distributed database that
supports consistent distributed transactions
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Challenges

« DBMS ensure consistency

* Any read sees all effects of all writes before it

« Scalability Is a challenge
 Traditional DBMS solution is pay up or go home
 Disclaimer: This is changing rapidly in recent years



Motivation:
Google’s earlier solutions

 BigTable — Google’s distributed key-value store

« Eventually consistent

* Megastore — SQL-like joins on top of BigTable

* Slow write throughput



Solution: Spanner

« Spanner Is
 Externally consistent
 Globally-distributed
* Provides SQL-like data motel
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« Spanner architecture



Spanner architecture
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Spanservers

« Spanserver maintains data and serves client
requests

» Data are key-value pairs
(key:string, timestamp:int64) ->
string

 Data Is replicated across spanservers (could
be In different datacenters) in the unit of tablets

* SQL-like data model is also supported



Consistent replication via
Paxos

» Spanner uses Paxos To maintain consistency
between tablet replicas

« Spanner maintains a Paxos state machine per
tablet per spanserver

» Paxos group: the set of all replicas of a tablet



Paxos

* Paxos Is a consensus protocol

Consider a system of n participants

» Each participant can send message to each
other to exchange some state

 Participant states must be consistent for each
one to have a consistent view of system state



Paxos

 Participants elect a leader

 Leader Is responsible for achieving the
consensus

« A majority of participants have to agree on a
state for it be “chosen™ as consistent

» Paxos maintains consistency while maintaining
availability



Spanserver architecuture
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Transaction manager

* Transaction manager (TM) runs on every
Paxos leader

* Paxos leader becomes a participant leader

* All the replicas become participants in the
transactions

 Transactions involving just one Paxos group
are not handled by the TM
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TrueTime

* API for syncing timestamps and time intervals
across global data centers

« Exposes clock uncertainty to application

* TT.now.earliest <t_.(now) < TT.now.latest

TT.now() TTinterval = [earliest: TTstamp, latest: TTstamp]

TT.after(t: TTstamp) true if t has definitely passed

TT.before(t: TTstamp) true if t has definitely not arrived



TrueTime: implementation

 Time references
« GPS

« Antenna/receiver faults
« Radio interference
« System outages
« Atomic clocks
» Clock drift

 Atomic clock failures uncorrelated to GPS failures
and vice versa



TrueTime: implementation

* Time masters in each data center
» Equipped with GPS or atomic clocks (Armageddon masters)

« Sync time with each other

« Advertise an uncertainty during syncs - based on worst-case
clock drift

* Timeslave daemon on every machine
« Polls the time masters in nearby and farther datacenters

« Time uncertainty ¢ is derived from local clock drift, time-master
uncertainty and communication delays

« £is a sawtooth; 1 to 7 ms (6 ms from drift, 1 ms from delays)
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Concurrency control

 Enabled by TrueTime — leads to global
consistency

« Supports the following features
« Externally consistent transactions
» Lock-free read-only transactions
« Non-blocking snapshot reads

7

« Snapshot reads are “reads from the past
 Client can provide timestamp
 Client can provide a bound on staleness



Transactions In Spanner

Operation Concurrency control

Read-write transaction Two-phase

Read-only transaction Lock-free

Snapshot read Lock-free



Two-phase commit
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Paxos leader leases

» Spanserver sends request for timed lease
votes

 Leadership is granted when it receives
acknowledgements from a quorum

e | ease Is extended on successful writes

* Disjoint leases are invariant within the same
Paxos group




Read-write transactions

« Each transaction must assigned a timestamp

* Time-stamp invariants

1. Timestamps must be assigned in monotonically
Increasing order.

« Leader must only assign timestamps within the interval of
its leader lease.

2. If transaction T, commits before T, starts, T,'s
timestamp must be greater than T,'s

« External consistency



Read-write transactions

« Two-phase commit (cross-group transactions)

 Participant leaders choose prepare timestamps
and send prepare messages through Paxos to the

coordinator

» Coordinator assigns a commit timestamp s; no less
than all prepare timestamps and TT.now().latest
(computed when receiving the request)

» Coordinator ensures that clients cannot see any
data commited by T, until TT.after(s;) Is true (this Is
done by waiting until absolute time > s, to commit)



Snapshot read transaction

« Safe time: a timestamp at which the replica is
up-to-date

* Replicas are not up-to-date If they In the
prepare phase or in-between prepare and
commit phases

 Each replica tracks a safe time t_, . "axcs
- Each participant leader has a safe time t ™
» To read snapshot at t, t < min(tg,;.P2°s, t_.™)



Read-only transactions

* Leader assigns a timestamp to the read
operation (derived from TT.now.latest)

* Then it does a snapshot read on any replica

« External consistency requires the read to see
all transactions committed before the read
starts - timestamp of the read must be no less
than that of any committed writes
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Microbenchmarks

* Measure latency and throughput read-write,
read-only and snapshot transactions (4 KB)
iIndividually

latency (ms) throughput (Kops/sec)
replicas write read-only transaction | snapshot read write read-only transaction | snapshot read
4.0+.3
1 14.4+1.0 1.4=+.1 1.3+.1 4.1+£.05 10.9+.4 13.5+.1
3 13.9+.6 1.3=.1 1.2+.1 2.2+.5 13.8+3.2 38.5+.3
5 14454 1.4+.05 1.3£.04 2.8+.3 25.345.2 50.0+1.1




Avallability

* Replicas manually killed to measure effect on
read throughput
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Thank You!



