
Parrot: A Practical Runtime for

Deterministic, Stable, and

Reliable threads
HEMING CUI, YI-HONG LIN, HAO LI, XINAN XU, JUNFENG YANG,

JIRI SIMSA, BEN BLUM, GARTH A. GIBSON, AND RANDAL E. BRYANT.

Presented by Ramachandra Pai

Outline

 Motivation

 Traditional and deterministic multithreading models

 What is stable multithreading models?

 PARROT: A Practical StableMT system

 How to use PARROT?

 Architecture

 Performance

 Evaluation

2

The one core era: Good times 3

Multiprocessor era

Parallelism gives improved performance but at cost of

introducing complexity

 Deadlocks

 Race conditions

 Multiple threads accessing CS

 Non-determinism

4

Motivation

 Reliable parallelism is considered “something of a black art”

because they are so hard to get right!

5

Traditional multithreading

 Many to Many mapping

 Hard to find concurrency bugs even if the buggy schedule is

reproduced

6

How to reduce the order of

threads?

 Deterministic Multithreading

 Examples: Dthreads, Peregrine

7

Is non-determinism the real culprit

for all the problems?

 Same input + same program -> same output.

 But what if the program changes slightly?

 We need stability for more reliable code. Hence we move to Stable

multithreading models.

8

What is stable multithreading

models?

 Reduces the number of schedules for all inputs

 Does so at the cost of performance.

9

PARROT: A StableMT model

 Reduction in schedules

 Round robin scheduling.

 How do we get performance?

 Soft barriers: “parallel scheduling of chosen computations”

 Performance critical sections: “Ignore determinism”

 Integrated with DBUG

10

Performance hints

 Soft Barriers:

 Encourages scheduler to co-schedule a group of threads

 Scheduler may ignore it if it affects correctness

void soba_init(int groupsize, void *key, int timeout);

void soba_wait(void *key);

 Performance Critical section:

 Removes the round robin scheduling

 Allows OS to schedule this part of code.

 Introduces non-determinism.

11

Example: 12

Example: total order of events 13

How to use PARROT? 14

Total order of events 15

What is DBUG?

 Model checking model : checks all the states of a system

 Mutually beneficial to both systems

 Parrot Reduces the number of schedules. Hence reducing the checking

sample space.

 DBUG helps check schedules that matter to Parrot and developers.

16

Architecture:

 Deterministic Scheduler

 Performance hints

 Wrapper functions for pthread

 Network

 Timeout

17

How does parrot perform in the real

world?

 55 Real world programs

 BerkleyDB, database Library

 OpenLDAP, server with Lightweight directory Access protocol

 Mplayer, video encoder/decoder and player

 Pbzip2, a parallel compression utility etc.

 53 programs used in benchmarks

 15 program in PARSEC

 14 in phoenix etc.

18

Performance charts 19

Effects of Soft barriers and

Performance critical sections

 Reduction of overhead from 510% to 11.9%

20

Evaluation

 Easy to use

 Performance takes a hit, and sometimes its too bad.

 Better than its predecessors in terms of stability and performance.

e.g.: Dthreads, Peregrine

 Deterministic

 Does not solve data races

 Easily deployable

 Replay Debugging

21

Thank you. Any Questions? 22

