
From L3 to seL4 What Have
We Learnt in 20 Years of L4

Microkernels?
Kevin Elphinstone and Gernot Heiser

Presented by: Yuzhong Wen

What is L4?
- Invented by Jochen Liedtke
- A family of microkernels

- Active: seL4, NOVA, OKL4, Fiasco.OC
- Deactive: L4Ka::Pistachio, NICTA::Pistachio-embedded, L4Ka::

Hazelnut, L4/Alpha, L4/MIPS...
- Widely used

- Real-time systems
- Resource limited systems
- Security related systems

What is L4?
- Invented by Jochen Liedtke
- A family of microkernels

- Active: seL4, NOVA, OKL4, Fiasco.OC
- Deactive: L4Ka::Pistachio, NICTA::Pistachio-embedded, L4Ka::

Hazelnut, L4/Alpha, L4/MIPS...
- Widely used

- Real-time systems
- Resource limited systems
- Security related systems

Verification

What is L4?
-

What is L4?
- System design

- The kernel is “micro”
- Device drivers, network stack are in userspace

What is L4?
- System design

- The kernel is “micro”
- Device drivers, network stack are in userspace

Minimality

High performance IPC

What is L4?
- Beyond the kernel

- OS layer as userspace process

The problem?
- IPC design
- Hardware resource management
- Process management
- Programmability

IPC design

Synchronous IPC
- Synchronous IPC

- Essential for L4 implementation
- Not flexible for handling interrupts
- Not scalable

- Synchronous + Asynchronous IPC
- Asynchronous endpoints
- Violate minimality!

- Pure asynchronous

Synchronous IPC
- Synchronous IPC

- Essential for L4 implementation
- Not flexible for handling interrupts
- Not scalable

- Synchronous + Asynchronous IPC
- Asynchronous endpoints
- Violate minimality!

- Pure asynchronous

From synchronous to asynchronous

IPC message structure
- In register messages(short message)

- Physical register based messages
- Limited by architecture

- Virtual message registers
- Fixed size
- Flexible

IPC message structure
- In register messages(short message)

- Physical register based messages
- Limited by architecture

- Virtual message registers
- Fixed size
- Flexible

From physical to virtual

IPC message structure
- Long IPC

- Triggers massive page faults
- Rarely used (mainly used by legacy POSIX interface)
- Hard to do verification
- Violate minimality!

Abandon Long IPC

IPC destination
- Thread ID as destination

- Expose one thread’s internal to another
- Unflexible

- IPC endpoint as destination
- Asynchronous Endpoints
- Synchronous Endpoints
- Better management

From Thread ID to IPC endpoint

IPC timeout
- Blocking IPC

- Suffers from DOS attack

- IPC timeout
- Doesn’t help at all

- No timeout at all!
- A flag to indicate using polling or blocking

Abandon timeout

Communication Control
- “Chief and clans”

- Provides access control
- Overhead in inter-clan communication

- Capability control
- Access control based on kernel objects

Abandon chief and clans

Hardware resource management

Resource management
- Recursive page mappings

- Flexible page mapping between threads
- Map from virtual pages
- Map from physical frames

memory(frame)

page

page

Page mapping
- Recursive page mappings

- Flexible page mapping between threads
- Map from virtual pages
- Map from physical frames

memory(frame)

page

page

Retain the mapping from pages

Map from physical frames

Kernel memory
- Allocate objects directly from free memory

- Not safe
- Hidden from userspace

- Allocate objects from untyped objects
- Untyped objects are well controlled
- All objects are controlled by capabilities

User-level memory control

Time (clock source)
- Time multiplexing

- The key of scheduling
- Has to be done in kernel
- Violate minimality!

Unsolved (may be removed from kernel)

Multicore
- Biglock

- Bad scalability
- Multikernel

- One kernel one core

Unsolved (concurrency is hard to verify)

Process management

TCB management
- Virtual TCB array

- Indexed by thread id
- Each thread(TCB) has a kernel stack
- Easy to find the stack from TCB
- Large memory overhead
- Large cache footprint TCB TCB TCB TCB

S
T
A
C
K

S
T
A
C
K

S
T
A
C
K

S
T
A
C
K

TCB management
- Virtual TCB array

- Indexed by thread id
- Each thread(TCB) has a kernel stack
- Easy to find the stack from TCB
- Large memory overhead
- Large cache footprint

- Single physically-allocated stack
- Few IPC performance overhead

Abandon Virtual TCB array

Scheduling
- Lazy scheduling

Scheduling
- Lazy scheduling

- Just put the blocking thread back into runnable queue
- Performance is bad on real-time systems

- Benno scheduling
- Every thread on the queue is

 runnable

From lazy scheduling to Benno scheduling

Programmability

Programmability
- Language

- Assembler
- Hard to maintain

- C++
- No good compiler
- Can’t be verified

- Calling convention
- Hard to port or verify without good calling convention

Abandon assembler and C++

Abandon non-standard calling conventions

Programmability
- No portability!?

- L4 was coded to directly talk to hardware
- Portability

- Glue layer for different architecture

Introduce glue layer for portability

Thanks!

