From L3 to seL4 What Have
We Learnt in 20 Years of L4
Microkernels?

Kevin Elphinstone and Gernot Heiser

Presented by: Yuzhong Wen

What is 147

- Invented by Jochen Liedtke

- A family of microkernels
- Active: selL4, NOVA, OKL4, Fiasco.OC
- Deactive: L4Ka::Pistachio, NICTA::Pistachio-embedded, L
Hazelnut, L4/Alpha, L4/MIPS...

- Widely used

- Real-time systems ‘ 4,
- Resource limited systems o) 4
- Security related systems

What is 147

- Invented by Jochen Liedtke

- A family of microkernels
- Active: selL4, NOVA, OKL4, Fiasco.OC
- Deactive: L4Ka::Pistachio, NICTA::Pistachio-embedded, L
Hazelnut, L4/Alpha, L4/MIPS...

- Widely used

- Real-time systems ‘ 4,
- Resource limited systems o) 4
- Security related systems

What is 14?7

L4-embed.

| LAUMIPS

[Commercial Clone |

P4 . PikeOS)

P93 Voq Vo5 Tog 197 a8 Y99 100 "o1 Y02 Vo3 Yos Tos Tos Yo7 Yos Yoo Tao V11 V42 Tea

What is 147

- System design
- The kernel is “micro”
- Device drivers, network stack are in userspace

) (=]

|
\
\ 4 Stack
Fs &
\ Device
Driver

Supervisor mode System call : open_File

Thread Control
H/W management

What is 147

- System design
- The kernel is “micro”
- Device drivers, network stack are in userspace

) =]

What is 147

- Beyond the kernel

OS layer as userspace process

Telephony
Services

Wireless Stacks:

GSM/GPRS
Edge/UMTS

Applications

)

PIM
Internet
Games
Multimedia

Cleaning.

Setting the System Clock using the Hardware Clock as reference...
Systen Clock set. Local time: Sun Oct 26 21:00:10 UTC 2014

Initializing random number generator...done.

Recovering nui editor sessions... done.

Setting up X server socket directory stmps. X11-unix...done.
Setting up ICE socket directory ~tmp/.ICE-unix...done.
INIT: Entering runlevel: 2
Starting system log daemon:
Starting kernel log daemon: klogd.

Starting internet superserver: inetd.

Starting mail-transport-agent: nullmailer.

Starting OpenBSD Secure Shell server: sshd

Setting up X font server socket directory /tnp/ font-unix...done.
Starting X font server: xfs.

Starting Xprint seruvers: Xprt.

Starting deferred execution scheduler: atd.

Starting periodic command scheduler: cron.

25 [pavise] [0 release mouse
sysfiggiPase!

Not starting X display mamager (xdm); it is not the default display manager.

Debian GNU-Limux 3.1 boxoncd ttyl

boxoncd login:

Q, Gongle
ki

The problem?

- IPC design

- Hardware resource management
- Process management

- Programmability

IPC design

Synchronous IPC

- Synchronous IPC
- Essential for L4 implementation
- Not flexible for handling interrupts
- Not scalable

- Synchronous + Asynchronous IPC
- Asynchronous endpoints
- Violate minimality!

- Pure asynchronous

Synchronous IPC

- Synchronous IPC
- Essential for L4 implementation
- Not flexible for handling interrupts
- Not scalable

- Synchronous + Asynchronous IPC
- Asynchronous endpoints
- Violate minimality!

- Pure asynchronous

[From synchronous to asynchronous T

IPC message structure

- In register messages(short message)
- Physical register based messages
- Limited by architecture
- Virtual message registers
- Fixed size struct (label, Word [2] w)
- Flexible Word wa =2/60) MR

label (16 /48) flags t=0 u=2 MR

IPC message structure

- In register messages(short message)
Physical register based messages

Limited by architecture

Virtual message registers

Fixed size
Flexible

struct (label, Word [2] w)

Word w2 (32/64)

Word w; (32/64)

label (16/48)

flags

From physical to virtual

MR 2

MR,

MR g

IPC message structure

- Long IPC

- Triggers massive page faults

- Rarely used (mainly used by legacy POSIX interface)
- Hard to do verification

- Violate minimality!

[Abandon Long IPC T

IPC destination

- Thread ID as destination
- Expose one thread’s internal to another

- Unflexible
- IPC endpoint as destination Object Object Size
- Asynchronous Endpoints ot CNed. L6 bytes (where n 2 2
- SynChronOUS EndeintS Synchronous Endpoint 16 byg(ﬁ -
B Asynchronous Endpoint 16 bytes
- better management IRQ Control
IRQ Handler

From Thread ID to IPC endpoint

IPC timeout

- Blocking IPC

- Suffers from DOS attack

. TPC timeout

- Doesn’t help at all

- No timeout at all!
- Aflag to indicate using polling or blocking

[Abandon timeout T

Communication Control

- “Chief and clans”

- Provides access control O
- Overhead in inter-clan communication

(@) -0
- Capability control l/ \ | w
- Access control based on kernel objects O O O)

[Abandon chief and clans T

Hardware resource management

Resource management

- Recursive page mappings
- Flexible page mapping between threads

- Map from virtual pages
- Map from physical frames

Page mapping

- Recursive page mappings
- Flexible page mapping between threads
- Map from virtual pages
- Map from physical frames

Retain the mapping from pages

Map from physical frames

Kernel memory

- Allocate objects directly from free memory
- Not safe
- Hidden from userspace " Object | Description

ce Thread control block

- Allocate objects from untyped objects & Gy o
- Untyped objects are well controlled
- All objects are controlled by capabilities

Endpoint chronous IPC
| Asyne hronous, Port-like object for asynchronous ‘

Endpoint notification

Page | Top-level page table for ARM and '

Directory IA-32 virtual memory

Page Table | Leaf page table for ARM and [A-32 '
virtual memory

Frame 4KiB, 64KiB, | MiB and 16 MiB
objects that can be mapped by page

US er_level memor CO ntrol | tables 10 _l'mm v il.lll.ll memory |
y Untyped Power-of-2 region of physical
Memory memory from which other kernel
| objects can be allocated

Table 3: sel4 kernel objects.

Time (clock source)

- Time multiplexing
- The key of scheduling
- Has to be done in kernel
- Violate minimality!

[Unsolved (may be removed from kernel) T

Multicore

- Biglock
- Bad scalability

- Multikernel

- One kernel one core

[Unsolved (concurrency is hard to verify) T

Process management

TCB management

- Vlrtual TCB array
Indexed by thread id
- Each thread(TCB) has a kernel stack
- Easy to find the stack from TCB

- Large memory overhead I’

- Large cache footprint

~0>r-0m

~0>»-0m

~0>r»r-w

~0>»r—-w0m

TCB

TCB

TCB

TCB

32 INLINE word_t * tcb_t:: get_stack_top ()
{

return (word_t*)addr_offset(this, KTCB_SIZE);

}

TCB management

- Virtual TCB array

- Indexed by thread id
Each thread(TCB) has a kernel stack
Easy to find the stack from TCB
Large memory overhead o -
Large cache footprint ne PPTR_KERNEL_STACK @)
- Single physically-allocated stack

- Few IPC performance overhead

[Abandon Virtual TCB array T

Scheduling

- Lazy scheduling

tcb t chooseThread(void) {
foreach prio € prios
foreach thread € runQueue[prio]
if runnable(thread)
return thread
else
schedDequeue (thread)

Scheduling

- Lazy scheduling
- Just put the blocking thread back into runnable queue
- Performance is bad on real-time systems

- Benno scheduling

_ jEverythread(nlthe<1ueueis tcb_t chooseThread(void) {
foreach prio € prios
runnable thread = runQueue[prio].head
{if thread != NULL
return thread

}

[From lazy scheduling to Benno scheduling T

Programmability

Programmability

- Language
- Assembler [

- Hard to maintain

- C++
- No good compiler
- Can’t be verified

- Calling convention
- Hard to port or verify without good calling convention

Abandon assembler and C++ T

[Abandon non-standard calling conventions T

Programmability

- No portability!?
- L4 was coded to directly talk to hardware
- Portability

- Glue layer for different architecture

[Introduce glue layer for portability T

Thanks!

