End-to-End Arguments in
System Design

J. H. Saltzer, D. P. Reed, and D. D. Clark

ACM Transactions on Computer Systems, Vol. 2, No. 4,

Nov. 1984

E2EA

* Aset of best practices when designing a

system

* Atany given level in a system, only

implement functionality which can be

effectively utilized by all higher levels in the

system

Careful File Transfer (Computer A)

App asks OS or
Disk returns communications

Requested data program to send data

Data is moved from CPU

buffers to comm device
App requests file buffers

_HM‘

Data is sent across network to computer B

Careful File Transfer (Computer B)

OS or dedicated

communications program
delivers data to app - ‘

App writes data to disk
Received
communications data
buffers sent to CPU

Data is sent across network to computer B 3

Where can things go wrong?

Where can things go wrong?

An entire system could
crash during the transfer

Transient errors in the
CPU or RAM subsystems
could cause buffers to
be corrupted

Check at the endpoints

|

Verify data in low level systems

Verifying each packet

* Encapsulate a 20KB file transfer using the XMODEM protocol and transfer at 9,600 bps

XMODEM Packet Structure:

SOH | Frame # | Frame # Byte 128

Determine total size of XMODEM transfer time XMODEM

data including container b s : Overhead
20.78125KB x ~— x =17.73

frame B 9,600b 17.73s

_ — —-1=0.0390625 =
20KB x T 160frames 17.06s

= Raw data transfer time o
160 Frames _800B S _ l" /0
frame 20KB x — x =17.06s

20KB +800B =20.78125KB B 9,600b

Other errors can defeat packet
Inspections

Checking packets at each hop

Let the application decide what
error checking and recovery is

& needed 3

< (=
®“

11

What do you think?

Multicast

Unicast requires a dedicated message for each client

Can be bandwidth intensive, since identical content may be sent across the network to different

users

Multicast allows users to register to receive messages from a particular source
Allows the sender to send one message, which is duplicated at a node with multiple interested

clients attached

Source: T Moore. A critical review of “End-to-end arguments in system design”. In IEEE ICC 2002. vol 2. pp 1214-1219. August 2002.

Sorting Libraries

gsort (void * base,
size_t num,
size_t size,

>int ('* comparator) (const void *, const void *) J;

The endpoint is an application which requires sorted data sets

The sort function doesn’t have enough information about how to
compare items

— It's a partial implementation

The calling application provides the rest of the implementation

using a comparator

15

Questions?

Time, Clocks, and the Ordering of
Events in a Distributed System

by L. Lamport

CS 5204 Operating Systems
Viadimir Glina

Fall 2005

9/14/2005

Overview

e Key Points

e Background

e Partial Ordering

e Extension for Total Ordering
e Further Work

e Key Points Reiteration

e Evaluation

e Discussion

9/14/2005

Key Points

1. The “"happens before” relation on the system
event set

2. The events partial ordering on the base of the
relation

3. The distributed algorithm for logical clock
synchronization

4. The algorithm extension to the case of total
events ordering

5. The algorithm application for physical clock
synchronization

9/14/2005 3

Background: Distributed
System Features

e Spatially separated processes
e Processes communicate through messages
e Message delays are considerable

e Absence of the single timer leads to
synchronization problems

Example: totally ordered multicast

9/14/2005 4

Background: Synchronization
Approaches

e Physical Clock Adjustment

All clocks show the same actual time

Problems:
Most important: backward time flow possible
Sophisticated time services (i.e. WWV); or
Reliance on a human operator

e Logical Clock Adjustment
Consistency is important, not actual time

9/14/2005 5

Partial Ordering: Basics

e A system is a set of processes P,

e A process is a set of events g, b, ...
with total ordering
e “Happened before” (—) relation:

(a €P) && (b € P) && (a comes before b) =a — b
(P;sends ato P,) && (b is the receipt of P, fora) =a — b
(@a—b)&&(b—c)=a—c

e l(a— b) && /(b — a) = a and b are concurrent

e !(a— a)V a, so “happened before " is an irreflexive
partial ordering on the set of all the system events

9/14/2005 6

Partial Ordering: Example

a b C d f
P1
g i | K m
P2
n o) o) q r S
P3

a—f b—s cC—m dl||s 1] g K| r

9/14/2005 7

Partial Ordering:
Synchronization

e Logical clock: C(a)= Cya)if a € P,
e Check condition: for VY a, b

a — b = C(a) < C(b) (not vice versa)
e The check condition is satisfied if

C1. (a, b €P,) && (a comes before b)
= C(a)<C(b)
C2. (P;sends a to P) && (b is the receipt of P, to a)
= C(a)< Cj<b)
e C never decreases!

9/14/2005 8

Partial Ordering:
Implementation Rules

e IR1. Each P;increments C,;between any two
successive events.

o IR2.

If a is the sending of a message m by P, then m
contains a timestamp T, = C,(a); and

Upon receiving m, P,; sets C; greater than or
equal to its present value and greater than T,

9/14/2005 9

Partial Ordering: Unregulated
Clocks

o 1 o 1 0
6 A 8 10
7 [£ z
18 24 B 30
2 NN 2 O L
30 | 40 50
36 48 C 60
I B 3 o
48 D 64 80
54 = 72 90
60 80 100

9/14/2005 10

Partial Ordering: Corrected
Clocks

o 1 o 1 0
6 A 8 10
72 B s
18 24 B 30
e BONN 2 O £
30 | 40 50
36 48 o 60
2 B N OOl i
48 D 69 80
70 // 77 90
76 85 100

9/14/2005 11

Total Ordering: Definition

e ¢ is an arbitrary total ordering of processes

e “Happen before” for total ordering=):
(@eP) && (beP)=a=biff
C(a)<C(b), or
P, <P
e The total ordering depends on C. and is not
unigue

9/14/2005 12

Total Ordering:
Synchronization

1. P, broadcasts the message T, :P; (request resource) and puts it on
its request queue.

2. When P, receives T,:P, it puts the message on its request queue
and sends the acknowledgment to P..

3. Torelease the resource, P, removes T,:P, from its queue,
broadcasts a timestamped release message.

4. When P, receives the release message, it removes T:P; from its
queue.

5. P, is granted the resource when

It has T,,:P; in its queue ordered before any other request in the
queue by the relation => ; and

P. has received a message from every other process
timestamped later than T_,.

9/14/2005 13

Further Work: Vector
Timestamps

e Lamport clock is:
Consistent: a — b = C(a) < C(b)
Not: C(a) < C(b) < a — b (not strongly consistent)

e Vector timestamps (VT) are strongly consistent

e VT address potential causality
Allow to say if a happened before b, but not if a caused b

e VT say how many events have occurred so far at all
processes

e VT solve the totally-ordered multicasting problem

9/14/2005 14

Lack of Strong Consistency

a b C d f
P1 2 3 5 7
[2]
Bl /14 [6]
g i j k | m
P2 1 3 4 5 6 7
1 3
[1] 3 -
n 0 o q r S
P3 4 2 3 4 5 6
d|| s qlli K|l r
5<6 4 >3 5=5

9/14/2005 15

Vector Clocks (1)

a b C d f
P1° 1Mool [20V9] 13\0 0] [4 3 0] [5 5 3]
200
12001 [300] /123 0] [2 53]
g i J K | m

P2 1010 [2 2 0] [243] 253 [36 5]
[010] [013] 315
n 0 p r S
P3 001 [012] [013] 131 4] [3 1 5] 131 6]
a—f b—s cC—m

[100] <[553] [200]<[316] [300] <[36 9]

9/14/2005 16

Vector Clocks (2)

a b C d f
P1° 1Mool [20V9] 13\0 0] [4 3 0] [5 5 3]
200
12001 [300] /123 0] [2 53]
g i J K | m

P2 1010 [2 2 0] [243] 253 [36 5]
[010] [013] 315
n 0 p r S
P3 1001 1[012] [013] 13 14] [315] [316]
dils qlli k|l r

[430] <[316] [314]<[220] [243]<[315]

9/14/2005 17

Key Points Reiteration

1.

9/14/2005

The “happens before” relation on the system
event set

The events partial ordering on the base of the
relation

The distributed algorithm for logical clock
synchronization

The algorithm extension to a case of total
events ordering

The algorithm application for physical clock
synchronization

18

Evaluation

e The logical clocks idea is very appealing
e Virtually no revision on previous work

e Nice to have more mathematically strict
extension on total ordering, if possible

9/14/2005 19

Discussion

Thank you!

Any questions?

9/14/2005 20

