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Abstract

High performance parallel programs are currently difficaltvrite
and debug. One major source of difficulty is protecting corent
accesses to shared data with an appropriate synchromzagoh-

anism. Locks are the most common mechanism but they have a

number of disadvantages, including possibly unnecessaigliza-
tion, and possible deadlock. Transactional memory is @nredtive
mechanism that makes parallel programming easier. Witisae
tional memory, a transaction provides atomic and seridlé&zaper-
ations on an arbitrary set of memory locations. When a tcitsa
commits, all operations within the transaction becomebiésio
other threads. When it aborts, all operations in the traitsaare
rolled back.

Transactional memory can be implemented in either hardware

or software. A straightforward hardware approach can hage h
performance, but imposes strict limits on the amount of degta
dated in each transaction. A software approach removes times
its, but incurs high overhead. We propose a novel hybridware-
software transactional memory scheme that approachestf@p

mance of a hardware scheme when resources are not exhaodted a

gracefully falls back to a software scheme otherwise.

Categories and Subject Descriptors  D.1.3 [Programming Tech-
niques]: Concurrent Programming — Parallel programming

General Terms  Algorithms, Languages, Performance
Keywords Transactional Memory, Transactions, Architecture
Support, Nonblocking

1. Introduction

Parallel programming is a challenging task because pagaite
grams that achieve good parallel speedups are difficult ite &nd

debug. Programmers must consider a number of issues that may

impact the performance and correctness of parallel progir&me
major issue is protecting accesses to shared data by usaypao-
priate synchronization mechanism, the most popular of wigc
locks. However, lock-based programs have a number of disadv
tages. These disadvantages pose a high hurdle to widesstzie
tion of parallel programming and motivate the need for aerah-
tive synchronization mechanism.

Some of the disadvantages of locks are as follows. Firsk-loc
based modules do not compose well [4]. In addition, prograrsm
must keep track of the implicit association between eack ¢od
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the data it guards. Second, locks serialize executiontatalrsec-
tions even when there are no conflicting data accesses. , inod
grammers need to balance the granularity of locks to aclgeve
performance with a reasonable increase in programming lexmp
ity. Additionally, while finer-grained locks may expose raqraral-
lelism, they can increase overhead when multiple locks teée
obtained simultaneously. Fourth, lock-based programs tabe
written carefully to avoid deadlocks. Fifth, locks can aapsiority
inversion and convoying. Finally, if one process dies whitéd-
ing a lock, the other processes that need the lock might gekéet
forever waiting for the lock to be released.

In 1993, Herlihy et al. [16] proposed transactional memay a
an efficient method for programmers to implement lock-fratad
structures. Transactional memory is an alternative wayratept
shared data that avoids many of the problems of lock-based pr
grams. A transaction provides atomic and serializable aijmers
on an arbitrary set of memory locations [8]. Transactionaimory
borrows the notion of transactions from databases. A trditsais
a code sequence that guarantees an all-or-nothing scenhais,
if it commits, all operations within a transaction becomsilvie to
other threads. If it aborts, none of the operations are peed. In
addition, transactional memory guarantees that a setrgdrions
executed in concurrent threads are guaranteed to appearterb
formed in some serial order. This makes them very intuitioenfa
programmer’s perspective.

Transactional memory addresses the problems associatied wi
locks [14]. The benefits of transactional memory include:

1. Easier to write correct parallel programs. Transaction-based
programs compose naturally [13]. Also, programmers do not
need to keep track of the association between locks and data.

2. Easier to get good parallel performanceProgrammers do not
need to worry about the granularity of locks. Unlike locks; s
rialization of transactions depends only on whether theyaar
cessing the same data. This gives transactional memory pro-
grams the benefit of fine grain locking automatically.

3. Eliminates deadlocks.Transactions can be aborted at any time,
for any reason. Therefore, deadlocks in parallel prograams c
be avoided by aborting one or more transactions that depend o
each other and automatically restarting them.

4. Easier to maintain data in a consistent stateA transaction
can be aborted at any point until it is committed. When a
transaction is aborted, all changes made within the traiosac
are automatically discarded.

5. Avoids priority inversion and convoying. If a thread executing
atransaction blocks other threads (because they try taatoe
same data), the transaction can be aborted if that tranedtds
a low priority or if it is blocked on a long-latency operation

6. Fault tolerance. If a thread dies while executing a transaction,
the transaction is automatically aborted leaving the shdega
in a consistent state.

Herlihy et al. originally proposed a hardware transactiona
memory implementation that allowed transactional (atoamd
serializable) accesses to a small, bounded number of mdoway



tions [16]. The proposal included new instructions to staoinmit,
and abort transactions, and instructions to transactioaalcess
memory. Transactional data is stored in a transactiondiecao-
til commit. This cache detects conflicting accesses to aetitnal
data and aborts a transaction when such conflicts occur.afhis
proach incurs low execution time overhead but has striciuies
limits—the number of locations that can be accessed in @&@n
tional way. The resource limits makes transactional menalifry
ficult to use and restricts its use to programmers who impheme
optimized libraries. It cannot be used by general purposgram-
mers who write modular programs.

Shavit et al. [25] were the first to propose a software transac
tional memory. More recently, Herlihy et al. [15] proposedadt-
ware scheme that includes an API to make transactions biaila
to general-purpose programmers. The implementation emso
level of indirection to transactional objects so that a nession
can be atomically “swapped in” on a commit. It also requirekm
ing a copy of all transactional objects modified during a $eam
tion so that they can be discarded on abort. The benefit of this
approach is that it is implementable on current systemsowtth
any additional hardware and it has no resource limits. Hewev
the execution time overhead of manipulating transactiobgcts
and maintaining multiple versions of transactional dataiggif-
icant (frequently an order of magnitude slower than locRs$)is
high overhead makes this scheme unusable in practice feraien
purpose parallel programs.

There are several proposals [1, 11, 19, 22] that addres®the r
source limit of hardware transactional memory using a coatimn
of software and hardware (Discussed in more detail in Se&)jo

Our approach We propose a novel hybrid hardware-software
transactional memory scheme that uses a hardware mechasism
long as transactions do not exceed resource limits and fgigce
falls back to a software mechanism when those limits areeshex:
This approach combines the performance benefits of a pude har
ware scheme with the flexibility of a pure software scheme.

A simple approach to supporting a hybrid scheme is to require
all concurrent transactions to use the same mode (eithénihae
or software) at a given point in time. In such a scheme, altaon
rent threads would try to execute transactions in a hardwarde
as long as all transactions stay within the resource linAisssoon
as any transaction exceeds the limits, all threads woutditian to
a software mode. This naive approach is not scalable—fadlph
programs with many threads, a single long transaction casecall
the threads in the program to incur large overheads.

To enable scalability, our scheme allows each transaatiam-t
dependently choose an execution mode. This is challengéag b
cause the hardware and software modes employ very differetmt
niques to implement transactions. The fundamental diffezebe-

Instruction Description

XBA Begin Transaction All — all memory accesses are
transactional by default

XBS Begin Transaction Select — all memory accesses
are non-transactional by default

XC Commit Transaction

XA Abort Transaction

LDX/STX Transactional Load/Store (overrides the
default)

LDR/STR Regular (Non-Transactional) Load/Store
(overrides the default)

SSTATE Checkpoint the register state

RSTATE Restore the register state to the checkpointed
state

XHAND Specifies the handler to be executed if a
transaction is aborted due to data conflict

Table 1. ISA Extensions for Transactional Memory

bounded number of memory locations. Our scheme is based on
Herlihy et al.'s software scheme [15].

We compare the behavior of our hybrid transactional mgmor
scheme to fine-grained locking, and to pure software and hard
ware schemes on a set of microbenchmarks that represent some
very common scenarios where synchronization is important.
We find that our hybrid scheme greatly accelerates the softwa
scheme, even in the presence of a high number of conflicts.

3.

2. Proposed Architectural Support for Hybrid

Transactional Memory

This section discusses our proposed architectural sufgpaathy-
brid transactional memory scheme. Our scheme supportsdhybr
transactional memory for simultaneous-multithreadedc:gseors,
multiprocessor systems, and a combination of the two. Oor pr
posed hardware is only slightly more complex than a soluto
pure hardware transactional memory system.

To support transactional memory in hardware, applicatiouast
execute special instructions at the beginning and end ¢f gans-
action to indicate the boundaries of the transaction. Hardweeds
to do the following to support transactional memory: 1) stgpec-
ulative results produced during transactions, 2) deteafiicts be-
tween transactional data accesses, and 3) allow for agdrans-
actions or atomically committing them.

In this work we consider a chip multiprocessor system (CMP),
where each processor is capable of running multiple thrsiaaisl-
taneously. Each processor has a private L1 cache, and tbespro
sors share a large L2 cache that is broken into multiple bankls

tween the two modes is that the hardware mode detects data condistributed across a network fabric. Our scheme is apdectd

flicts at the cache line granularity while the software modedts

data conflicts at the object granularity.

Our work makes the following contributions:

We propose transactional memory hardware that is jugdtthfi

more complex in terms of chip area and design complexity than

Herlihy et al.’s original proposal [16]. Unlike the origihpro-

posal, our proposal can efficiently support the hybrid sahem

described in this paper. We also use a buffer to hold transac-

tional data, and make extensions to the ISA for flexibilitgwA

ever, we rely on a standard cache coherence protocol totdetec

conflicts with both software and hardware transactionstheny

our hardware supports simultaneous-multithreaded psocgs

multiprocessor systems, and the combination of the two.

. We present a hybrid transactional memory scheme that com-
bines the best of both hardware and software transactional
memory: low performance overhead as well as access to un-

1.

traditional multiple-chip multiprocessor systems as well

2.1

New transactional memory instructions are added to the @A (
ble 1). These instructions are based on those proposed liyyHer
et al. [16] but have been extended to make them more flexibis. T
ISA extension not only enables our hybrid transactional wrgm
scheme but can also be used to speed up locks using techniques
similar to those proposed recently [21, 17].

Transactions running in hardware mode assume by defaalt tha
memory accesses during the transaction are speculatvetfiey
use XBA). Transactions in software mode assume by defaadt th
memory accesses during the transaction are not specu(agve
they use XBS). In some cases it is necessary to override these
defaults; thus, we provide memory access instructions anet
explicitly speculative (LDX/STX) or non-speculative (LERTR).

ISA Extensions



The SSTATE and RSTATE instructions provide fast support
for register checkpointing—with these, register state lwamolled
back to just before a transaction began in case it is abofteese
instructions are relatively cheap to implement in modentpssors
because such rollback mechanisms are already incorpofated
other reasons (e.g., branch misprediction recovery).

Our hardware abort mechanism involves raising an exception
when a conflict is detected or when the capacity or assoitiativ
of the buffer holding speculative memory state is exceedée.
XHAND instruction allows the exception handler to be specifi

2.2 Storing Speculative Results

There is a large body of work on buffering speculative memory
state [1, 3, 5, 7, 10, 11, 16, 19, 20, 21, 22, 26, 27]. The keigdes
decisions for a transactional memory system are where terbuf
speculative memory state and how to handle buffer overflows.

Most schemes involve buffering state in the data caches B, 3
7,11, 20, 21, 22, 26, 27], but some schemes buffer speceilstiie
in a special buffer [16, 10]. A third option is to store spextivie
memory state directly in main memory (with an undo log) [19].
We discuss the design tradeoffs between the first two opfamres
transactional memory system later (Section 2.7).

For transactional memory schemes that buffer speculatgra-m
ory state in a finite buffer or cache, another key design decis
how to handle buffer overflows, i.e., what should be donesgfak-
sociativity or capacity of the buffer or cache holding spative
data is exceeded. Thread-level speculation systems tlypétall a
speculative thread until it becomes non-speculative; kewehis
approach will not work for transactional memory becausesaa-
tions only become non-speculative when they commit. Soamestr
actional memory systems allow data to overflow into main mem-
ory [1, 22], but need special support to track this spilleatest
Schemes that do not include this support either need thegreg
mer to be aware of the transactional buffering limitationd aever
exceed them [16] or need another fallback mechanism [21].

Garzaran et al. discuss the speculative buffering desigoesin
more detail in the context of thread-level speculation [6].

has read or written speculatively and has not yet commitbed,
when a thread reads a line that another thread has speelyjativ
written and has not yet committed.

To detect conflicts, we leverage ideas from Herlihy et al].[16
We use the cache coherence mechanism to enforce two policies
1) no more than one processor has permission to write to atine
a time, and 2) there can be no readers of a line if a processor ha
permission to write to it. These policies ensure that if acpesor
has speculatively read or written a line, it will be notifiddai
thread on another processor wants to write the line. Likewfsa
thread has speculatively written a line, it will be notifiédunother
thread wants to read the line. Hardware will automaticatgw if
simultaneously executing threads on the same processesstie
same line as long as the hardware context id is communicated t
the memory system with all loads and stores. However, haelwa
must still track which lines have been speculatively readitten
by a thread to know if a conflict has in fact occurred.

To this end, we provide two bit vectors for each line, with bite
per hardware context on a processor, one vector for wiitassac-
tional write vector) and one for readgr@ansactional read vector).

A bit is set to indicate that the thread running on the cowasing
hardware context has speculatively written (or read) the.lWe
also need to track whether each thread executing on a poydess
currently executing a transaction or not, and if so, in whinbde

it is executing. It could be executing in hardware (ALL) mode

an XBA instruction (where all memory accesses are transae,

or software (SELECT) mode via an XBS instruction (where only
selected accesses are transactional). This can be donevwitiits
per hardware context (seéeansactional state table in Figure 1).
This field is set at the beginning of a transaction and cleared
an abort or commit. For every access to the cache, the hagdwar
will check if the thread that issued the read or write is cotlye
executing a transaction, what mode the transaction is, fatitk
instruction is explicitly speculative or non-speculatiead if ap-
propriate, set the corresponding read or write vector hguife 1
shows the design of a processor with transactional memasy su
port. Hardware for transactional memory includes a traitsaeal

Figure 1 shows a processor with four hardware contexts and State table and a transactional buffer. The transactidate gable

our proposed hybrid transactional memory hardware suppbg
processor has an L1 data cache in parallel wittiaasactional
buffer, a highly associative buffer that holds speculatively ased
data from transactions. Each entry in the transactiondébhblds
both the latest committed version of a line (Old) and any sf@ec
tive version it is currently working with (New), bit vectots in-
dicate which hardware contexts have speculatively readribtew
the line (transactional read/write vectors), and the cotiwaal tag
and state information. We discuss the transactional sihte tater.
When a previously non-speculative line is speculativelittem
to, a copy is made and that copy is updated with the new data. Th
buffer makes a copy and holds both versions because thabwers
of the line is the only guaranteed up-to-date copy of the ufetfae

provides an entry for each hardware context on the proceesor
track the mode of transactional execution of that hardwantext.
The transactional buffer provides a bounded number ofenfdr
speculatively accessed data. Each entry buffers two vessibdata
and tracks which hardware context has speculatively readitien
that piece of data.

2.4 Resolving Conflicts

When a conflict is detected, it must be resolved. If the canilic
between a transaction and non-transactional code, theartion
is aborted (we discuss the abort mechanism below). If th#licon
is between two transactions, the hardware always decidesan
of the transaction currently requesting the data. This reehee-

memory system—on an abort we must be able to revert back to quires no changes to the cache coherence protocol. Regcibuld

that version. Further speculative writes modify the copthefline.
The state of the line indicates which version should be netdir
on each access. Lines that have been speculatively readttanwr
and not yet committed cannot be evicted from the transaation
buffer for correctness reasons. Therefore, if the trafmzaitbuffer
attempts to evict such a line for capacity or associativégsons,
the transaction aborts and the application is notified thetatbort

is due to resource limits.

2.3 Detecting Conflicts

Conflicts that hardware is responsible for detecting aredftbat
occur between transactions (or between a transaction and no
transactional code) when a thread writes a line that andtinead

be assigned to the transactions, and the conflict resolatoid
proceed strictly by priority. However, existing schemesHtonor-
ing priorities require significant changes to the cohergogocol
to prevent deadlock [21].

2.5 Aborting and Committing

To abort a transaction, the hardware invalidates all sp¢iwaly
written data in the transactional buffer, and clears alhefread and
write vector bits for that hardware context. Lines that wapecu-
latively read, but not speculatively written will remainligain the
transactional buffer. It also sets an exception flag in thedac-
tional state table (Figure 1) for that hardware context ticate
that the transaction has aborted. The transaction willicoatto



Address

Processor L1 Data Cache

HW context id

Hardware for Transactional Memory

Transactional State Table

Transaction state Exception flap
Invalid 0
- SELECT 0
Invalid 0
ALL 0

Transactional Buffer

Tag Data State | Trans. read vector] Trans. write vector
Old | New
X read-only 0 1 0 1 0 0 0 0
B |y y dty Jo|o0o [0 |1 Jo0 |0 |0 |1
z z dirty 0 0 0 0 0 0 0 0

Figure 1. A processor with transactional memory hardware sup-
port. The transactional state table and the transactiarfédricon-
tain states for four hardware contexts on the processor.

run until it executes another load or store, or it attemptscim-
mit. If the exception flag for a thread is set, the next loadtoresit
executes will raise an exception. This is because we canngeio
guarantee that the data seen by the thread will be consiJteat
exception will trigger a software exception handler, whishre-
sponsible for any necessary clean-up, and for restartiegréms-
action if desired. If a thread tries to commit a transactiath\is
exception flag set, the commit will fail, and software is @sgble
for restarting the transaction if desired.

To commit a transaction, the transactional read and wriissfoi
the corresponding hardware context are cleared from aflesrnin
the transactional buffer. This will atomically make all sptatively
written lines visible to the coherence mechanism, and @tsia-
tively read lines invisible to the conflict detection mecisam This
process may take multiple cycles if the buffer is large emoU®
guarantee atomicity, the transactional buffer delaysegjliests, in-
cluding coherence requests, until the commit is complete.

2.6 Example System

Figure 1 shows a processor with four hardware contexts amd-tr
actional memory hardware support. Looking at the transaati
state table, we see that two of the contexts (the second amithfo
are currently executing threads that are running trarmastione
in SELECT mode, and one in ALL mode, and neither has its ex-
ception flag set. Examining the transactional buffer, wefsam
the transactional read and write vectors that both threatisuns-
actions have speculatively read line A, and thread four pasis
latively read and written line B. Additionally, line C wasesqula-
tively written by a thread that has since committed since inia
dirty state, but has no read or write vector bits set. We noseidee

a few possible scenarios and how the hardware would behave in

those situations. These scenarios are also applicables@ad$ run-
ning on different processors in a multiprocessor systethpagh

each processor would have its own L1 cache, transacticntstae,
and transactional buffer.

Scenario 1:If the fourth thread were to write to line A, the
hardware would abort the second thread’s transactionicteés
read vector bit for that line and setting its exception flalge Write
would also need to wait for permission from the L2 cache sthee
line is in a read-only state.

Scenario 2: If the fourth thread were to write to line C, the
corresponding write vector bit would be set. The data in thew”
field (z') would be copied to the “Old” field, and then the write
would happen in the “New” field since the line is already dirty
in the transactional buffer — permission from the L2 cacheads
required.

Scenario 3:1f the second thread were to read line B, the hard-
ware would abort the fourth thread’s transaction, cleattiregfourth
bit of all read and write vectors, invalidating the spedutatopy
of line B, and setting the fourth thread’s exception flagh¥ tead
was explicitly speculative the hardware would set the sécead
vector bit for line B. Finally, the non-speculative versioiline B
would be returned.

2.7 Advantages and Disadvantages

There are many tradeoffs in the design of hardware support fo
transactional memory. Our proposal has the following keyaad
tages and disadvantages compared to the clear alternatives

1. Keeping a non-speculative copy of each speculativelyimod
fied line in the transactional buffer allows us to retain ttens
dard coherence protocol. If instead we kept only one version
of a line in the buffer, we would need to ensure that a non-
speculative copy was in the L2 cache, which would likely re-
quire changes to the coherence protocol. However, our sshem
comes at the cost of additional space requirements forahe-tr
actional buffer.

2. Keeping the read and write sets (list of speculativelyeased
lines) in a highly associative buffer separate from the L1 de
creases the chances of aborting a transaction due to conflict
misses. It also allows transaction commits and aborts tpérap
quickly since there are only a small number of read and write
vector bits to clear. However, keeping the read and write set
in the L1 cache directly would provide more space for them,
and would increase the amount of cache space available to non
transactional code (since otherwise some space is restnved
the buffer). One way to make the transactional buffer spaee u
ful for non-transactional code would be to make it availadse
a victim cache — invalid or committed lines could be replaced
with victims from L1 evictions.

3. Tracking which hardware contexts have speculatively @a
written a line using bit vectors allows for fast commit anadeb
However, the hardware cost may be significant if there aregman
hardware contexts per processor. Since we do not anticipate
this number scaling very high, we believe this cost will rama
small.

3. Hybrid Transactional Memory

In addition to the architectural support described in $ec8, our
hybrid scheme also relies on algorithmic changes to thesaan
tional memory implementation. In the following sections de-
scribe Herlihy’s pure software scheme [15] and how we extend
its Transactional Memory Object to facilitate our hybricheme.
Then, we detail how our hybrid scheme operates.

3.1 Dynamic Software Transactional Memory

Herlihy et al. proposed an API, called Dynamic Software Sean
tional Memory (DSTM) [15], which eases the process for paogr



TMObject Locator
Old Object
New Object

Figure 2. A TMObject in DSTM.

mers to create and use transactions by eliminating the restm-
itations of a purely hardware transactional memory sch&8d.M

is a pure software implementation, and thus needs no additio
hardware support from the processor. DSTM is dynamic in two
ways: it allows transactional objects to be dynamicallyated; and
the set of objects accessed transactionally does not néedsgoec-
ified at the beginning of a transaction.

3.1.1 DSTMAPI

The DSTM API requires objects for which transactional prtips
are desired to be encapsulated by wrapper objectSNi@bject).

To access an object within a transaction, a correspondiager
object needs to be opened (using the open API call) for rgadin
or writing before accessing it. The transaction can be testeid

by calling the commit or abort API function. Two points arento
noting here. First, non-transactional objects retainrthedified
values even on transaction aborts; this allows programtoensike
appropriate decisions when a transaction is aborted. Seonce

an object is opened, it looks like a regular object that capassed

to other modules and legacy libraries that are not transaetivare.
While DSTM'’s API can be a little tedious to use, type system en
hancements should simplify the use of DSTM by using a compile
to insert the API calls.

3.1.2 DSTM Implementation

DSTM uses &ate object for each dynamically started transaction.
It stores the state of the transaction, which is either ACH,IV
COMMITTED, or ABORTED. All transactional objects that are
opened by a transaction have pointers to $tate object of that
transaction. This is a key feature because it allows a tciiosato

be committed or aborted by a single atomic write tc&tte object.

Fundamentally, DSTM relies on two main techniques to suppor
transactions: indirection and object copying. It uses ahjepying
to keep the old version of the object around while it is madifythe
copy within a transaction. If the transaction is abortedlistards
the new version. If the transaction is committed, it repéatte old
version with the new version. To allow replacing the objeuder
the covers, it uses indirection.

DSTM employs Transactional Memory Objec®\Object) to
introduce the indirection. Figure 2 shows the fields G\Object
and how they relate to the data. lAocator object contains three
fields: Sate, Old Object, andNew Object. The State field stores a
pointer to theState object of the last transaction that opened the
object for writing. The twdObject fields point to old and new ver-
sions of the data. There is always one current data objetigha
determined by th&ate field. If the Sate field is ACTIVE, a trans-
action is currently working on the data pointed to Ngw Object.
Since the transaction has not yet committed, the data pbtotby
Old Object is kept in case the transaction is aborted. WherStae
field is ABORTED, a transaction failed the commit, thus théada
pointed to byNew Object is invalid andOld Object points to the
current version. Finally, when tt#gate field is COMMITTED, the
data pointed to bjNew Object is the current version.

Transaction 1

TMObject Locator 1

O

State
Old Object

New Object

Transaction 2 [} \

N Locator 2 /\\/v
=T /
Swap Pointer State ) 7

0Old Object

\
|
/

/

-
-
N
~
o
o
T
<

New Object |

Figure 3. Opening a committedMODbject in DSTM.

Opening aTMObject for reading involves finding the current
version of the object and recording (locally in a per-thréagh
table) the version of the object—if at commit time the vensis
detected to have changed, the transaction will abort idstea

Opening aTMObject for writing is more involved and requires
modifying the TMObject. Figure 3 shows an example. Suppose
Transaction 1 has already committed a version of the object in the
figure, and nowlransaction 2 wishes to open that object for writ-
ing. Transaction 2 first creates a newocator object (ocator 2).
Then, based on th&ate field in Locator 1, it can set the pointers
and copy data. If th&ate field is COMMITTED, Locator 2 sets
its Old Object pointer to theData pointed to byLocator 1's New
Object, which is the correct version of the data. Thieocator 2
makes a copy of the data fdransaction 2 to modify transaction-
ally. Similarly, if Locator 1's Sate field was ABORTED, the same
process is run except the correct version of the data is ittt
by Locator 1's Old Object. After Locator 2 has been created, a
compare-and-swap (CAS) operation is used to safely chamge t
TMODbject pointer fromLocator 1 to Locator 2. If the CAS fails,
another transaction has opened the object for writing whilea-
tor 2 was being set up; thus, the process of settind-ogator 2
must be repeated.

When a transaction tries to openT®&Object for writing and
finds it in ACTIVE state (i.e., currently being modified by dner
transaction), one of these two transactions has to be abtote
resolve the conflict. The decision about which transacgabbrted
is made by the Contention Manager (3.2.4). A transactiorabant
any transaction (including itself) by atomically replagiACTIVE
by ABORTED (using CAS) in th&ate object for that transaction.

Transactions commit themselves by atomically replacing AC
TIVE with COMMITTED (using CAS) in itsSate object after
checking to make sure that objects opened for reading diréhsti
same version. Committing automatically updates the ctivert
sion of all objects written during the transaction (since trrent
version for any transactional object is defined by the valuthe
Sate object to which it points). This will (eventually) abort any
transactions that opened those objects for reading.

While DSTM is a simple and a pure software method to pro-
vide transactional memory semantics to programmers, itesoat
the expense of requiring versioning overhead. This ovetuea
become a significant performance bottleneck, since evesy &qr
writing involves an allocation and copy of data aridogator. How-
ever, in contrast to a hardware method, DSTM allows for an un-
bounded number of transactional locations.



TMObject Locator and versioning overhead similar to DSTM. Opening in haréwar

mode is much simpler and requires no memory allocation shee

O—' Valid Field hardware mode modifié3ata in-place. |
Write State When a transactior-epens-an-ebject in software mode, itesl be;ins |
Read State its own State (beginning as ACTIVE) and transactionally loads the
o memory Iocatio_n of th(S_ate obj_ect. In this_ mode, th&ate object
is the only location that is required to be in the transactidnuffer.
New Object This ensures that the transactional buffer resource liangsnever
Object Size exceeded in the software mode. After creating$tate object, the

software mode uses a load-transactional (U&biy instruction in
Table 1) on that location to bring it into the transactionaffér.
The rest of the hybrid technique relies on this location hgwieen
read transactionally; whenever another transaction {ireemode)
writes to thatSate location, the transactional buffer will detect a
) i conflict and abort the transaction—B©therwise, opening gecbin
The most obvious difference between the hardware and s@ftwa the software mode works very similarly to DSTM as descriled i

schemes described earlier are the resource constraintbaade Section 3.1. The software-mode open of ThObject first checks
ware cost of the hardware scheme and the performance oderhea g see if any other software-mode transactions need to hreeabo

of the software scheme. In addition, the two schemes det#et ¢ Thijsis done by checking the write and resete fields of theL oca-

Figure 4. The hybrid modelTMObject.

3.2 Hybrid Transactional Memory

flicts at different granularities: the hardware schemeksa@nsac-
tionally accessed data at the cache line granularity, wihéesoft-
ware scheme tracks it at the object granularity. Each cas®ige
efficient for certain classes of access patterns. Idealtyarssac-
tional memory implementation would have the speed of a harew
scheme, lack resource constraints like a software scheseethe

tor for conflicts. We discuss how software-mode transactionstab
conflicting hardware-mode transactions later. At this paiimilar
to DSTM, alLocator object is allocated, initialized, and tA&1Ob-

ject is atomically switched to point to this nelocator using a

CAS instruction. However, Hybrid TM has to honor an addiéibn
ordering constraint. When opening an object for writing topy

most appropriate granularity for tracking transactionaltcessed o create a duplicatBata can be performed only after tiéVOb-

data, and have little hardware cost. Our proposed hybrhhigoe ject has been switched. This is because transactions execating i

is able to combine the benefits of both techniques by using the hardware mode modifpata in-place.

DSTM API, but allowing the transactional processingTéfiOb- In hardware mode, opening an object is much simpler. Similar

jects to be used in either a hardware or software manner. to the software mode, the hardware mode first checks for aordisab

_ Thecorrectness of DSTM relies on thata object never chang-  conflicting software-mode transactions. To do this, it Eedle

ing once the transaction that created it has committed. Meweo Sate fields of theLocator and see if any are currently ACTIVE,

avoid overhead of allocation and copying, our hybrid scherodi- and atomically replace them with ABORTED. The write causes

fies theData objects in-place in hardware-mode transactions. Con- gp, abort, as this location was loaded into the transactiouir

sequentl_y, the DSTM algorithm needs to be_ modified to support by the corresponding software-mode transactions. Aftertaty

our hybrid scheme. It should be noted that, like DSTNLoaator conflicting software-mode transactions, the hardwareenmgen

object is never modified after initialization in our hybricheme. can return the current validata. In contrast to the software mode,
Figure 4 shows the extensions made to the DSTddator for the hardware mode does not perform any memory allocation or

our hybrid scheme. The main change is that we usel tioator copying. Also, it does not have leocator associated with it. A

to track readers (and writers) instead of using per-threashh  pargware-mode transaction can be aborted by other tramssct

tables. This change is crucial for our hybrid scheme. It alkaws (both hardware-mode and software-mode) totally in harewar
reader conflicts to be detected early and may accelerate temm

In DSTM, commiits require verification of the version of alljetts
that were opened for reading. In our scheme, writers dirediort
readers when they open the object, so transactions no |oeger
to verify versions on commit. To support this change, ltbeator
includes a newalid Field field that indicates wheth@MObject is
currently open for read-only or for writing. In addition, olybrid
Locator now includes separat@tite Sate and Read Sate fields.

At any point in time, there can be at most one writer or mutipl
readers. Thé/alid Field indicates which of the tw&ate fields

is valid'. Finally, the Object Size field remembers the size of the
transactional object (i.d®ata). This is needed to create duplicates
of theData. In contrast, DSTM requires the programmer to provide
adup method on transactional objects for this purpose.

3.2.2 Hybrid Abort Transaction

With a purely hardware transactional memory techniquertatzp
another transaction is as simple as writing to a cache liaettte
other transaction is using. The transactional buffer keeguk of
the readers and writers of each cache line and can abortitestr-
tions when necessary. With a software technique, trarmsaaborts
are accomplished by checking tBete fields of theLocators and
setting them to ABORTED and through changing the versiomof a
object. By combining hardware and software techniques irhgu
brid model, aborting other transactions which could corenity
be in either hardware or software modes seemingly beconras co
plex. However, because of how the transactional buffer isaged
in both modes, an elegant solution arises for managingdcaioss.
There are a total of four different cases in which one mode
of transaction can try and abort another. Figure 5 is useclp h
illustrate these four cases.

3.2.1 Hybrid Open TMObject

In our hybrid scheme, anyMObject can be opened in either hard-
ware or software mode. All objects within a transaction grereed . .
in the same mode; the mode is picked at the start of each transa 1. Hardware aborts Hardware. When a transaction wishes to

tion (Section 3.2.3). These two methods for openingvObject open aTMObject in hardware mode and another hardware-

act very differently. Opening in software mode requiresation mode transaction already has the object open, the fornmes-tra
action will always get the current valid data. As soon as this

transaction performs a load or store on that data (by default
transactional), the other transaction will be aborted leyttans-
actional buffer if this is a conflicting access. Any changg e

1Since only one of the two fields is valid at any time, we reabynot need
two separate fields ihocator. However, for simplifying this discussion, we
show them separately.


skuma16
Line

skuma16
Line

skuma16
Text Box
begins


TMObject

(a)—>

Locator

Valid Field

Write State

Read State B n n
Old Object —’@
New Object m
Object Size \-

Figure 5. Aborting Transactions in the Hybrid Technique.

aborted transaction will be discarded. Thus, any accessitto C
Figure 5 by a hardware transaction may automatically alvert a

other hardware transaction.

2. Hardware aborts Software. A hardware-mode transaction can
easily abort a software-mode transaction by writing ABORTE

to the transaction'State field (B in Figure 5). Whenever a
software-mode transaction open3MObject, it loads its own

Sate into the transactional buffer. Thus, as soon as a hardware-

mode transaction writes to th&ate, the transactional buffer
will detect a conflict and abort the software-mode transacti
In addition, since theXate field is now ABORTED, if the
software-mode transaction was writing an object, otherstra
actions will automatically use the old object field as thereotr
version of the data.

3. Software aborts Hardware. When a software-mode transac-

tion opens alMObject for writing, the open is not fully com-
plete until it swaps th&MObject pointer to the new.ocator

that it created. Since the hardware transaction has read thi
pointer (A in Figure 5), when the software performs the swap i

will cause the transactional buffer to abort the hardwaocelen
transaction.

4. Software aborts Software.A software-mode transaction can
abort another software-mode transaction by writing ABORTE
to the Sate field (B in Figure 5) through the writer and reader

state pointers in theocator.

If the transaction fails to commit successfully within targies, it
falls back into software mode and retries until it succeeds.

A number of improvements are possible here. First, a digtinc
can be made between transactions that abort due to confiitts w
other threads as opposed to exceeding hardware resourndsbou
In the former case, it is more efficient to repeatedly retryha
hardware mode. However, this requires the hardware tdtie@x-
ception handler which of these two cases occurred. Secoofi- p
ing and programmer supplied hints could be used to influgmse t
policy. In this work, we address the high overhead of tratisaal
memory and evaluate using microbenchmarks. The rightyodic
quires an application-driven study that we leave as futukw

3.2.4 Contention Management

One of the advantages of DSTM is that it separates the mesthani
(detection and resolution of conflicts between transasjidrom
the contention management policy. The contention manageme
policy is responsible for ensuring forward progress everthi
presence of contention as well as other issues like fairaads
priority. Recent research [9, 15, 24] has proposed a vaéty
contention management techniques.

This paper focuses on reducing the overhead of the mechanism
used to implement DSTM. Our proposed technique raises nalwv ch
lenges to designing the right policy for hybrid transacsiomem-
ory where the transactions executed in hardware mode asgile/
to other processors. We leave this problem as future wonkth®
paper, we use two of the commonly used policies that are atequ
for our experiments. When possible (i.e., when a transactan
detect a conflicting transaction because the conflictingstaetion
is executing in the software mode), transactions uséthi¢e pol-
icy with randomized exponential backoff—that is, they albloem-
selves. When the conflicting transaction is executing inhtfe-
ware mode, the hardware will automatically abort the cotirfige
transaction. This is effectively thi&ggressive policy with random-
ized exponential backoff. Prior research [15] has showhRbate
policy usually performs better thakggressive policy.

Extremely long transactions pose a problem to our proposed
scheme. Currently, a transaction (in both software andvienel
modes) is aborted on a context switch. This transactionsiiiply

When a transaction executes in hardware mode, all memory be restarted when thread is context switched back in. Censigl

accesses, are performed in a transactional manner (exuvege t
in the Hybrid TM library performed viaDR and STR). This has
two interesting consequences. First, when a programmdcilyp
aborts a transaction (by using a DSTM API call), all updatéhiw
the transaction will be discarded. However, the semanégsire
updates to nontransactional objects to survive. This islleanby
reexecuting the explicitly aborted transaction in sofevanode.

that millions of instructions can be executed within a tirlieeson
modern operating systems, most transactions will complefere
the next context switch. However, if a transaction is lontem
a time slice, a transaction would never finish successfilhys
unlikely scenario can be handled by introducing a third mimde
which all other threads are blocked and the transactionas/ed
to complete without interference and without using any & th

Second, even updates to the stack are discarded by an abort. Stransactional hardware proposed in this paper. Such aroagipr
the implementation cannot recover from an aborted traiwact would guarantee completeness without hurting performairoee
by unwinding the stack. This is handled by making a complete this case would be extremely rare in practice.

register checkpoint using th&TATE instruction before starting
the transaction. An alternative would be to modify the nonati
system so that the relevant information in the stack frante (I
the return address) is stored nontransactionally (Usb®gandSTR
instructions).

4. Evaluation Framework
4.1 Systems Modeled

We use a cycle accurate, execution driven multiprocessarlator

for our experiments. This simulator has been validated nsgai
real systems and has been extensively used by our lab. Table 2
summarizes our base system configuration, and also shows the

3.2.3 Choosing the execution mode

At the start of each transaction, our hybrid scheme chocstegelen
hardware and software modes. All objects opened withinres&e: changes for our hybrid transactional memory scheme.

tion use the same mode. It makes sense to pick the hardware mod  Each processor is in-order and capable of simultaneously ex
when the amount of data a transaction accesses is withirethe r cuting instructions from multiple threads. We assume a ohifti-
source bounds of the transactional buffer. In this casehé#rd- processor (CMP), where each processor has a private L1,Gauthe
ware mode will perform faster than the software mode as itdsss all processors share an L2 cache. We assume a perfect tiwtruc
overheads. Currently, we use a simple policy: it alwaysstthe cache for this study since we consider only very small cotlas t
hardware mode the first three times that it is executes agctinsg. would easily fit into a conventional instruction cache. Theces-



Processor Parameters

# Processors 1-64
Processor width 2

Memory
Private (L1) cache

Hierarchy Parameters
Base & SW TM: 64KB, 4-way
HW TM & Hybrid TM: 32KB, 4-way
Base & SW TM: None
HW TM & Hybrid TM: 32KB, 16-way
16 banks, 8-way
Bi-directional ring

Contentionless Memory Latencies

Trans. buffer

Shared L2 cache
Interconnection network

L1 hit 3 cycles
Trans. buffer hit 4 cycles
L2 hit 18-58 cycles

Table 2. Simulated system parameters

sors are connected with a bi-directional ring, and the Lheds
broken into multiple banks and distributed around the ring.
We model systems both with and without hardware support for

transactional memory. This hardware support includestiatdi to

the ISA, a transactional state table for each processoradrahs-
actional buffer for each processor, as described in Seetid®o-
herence is maintained between the L1 cache and the tramsalcti
buffer in hardware. For experiments with the transactidnfer,

Benchmark Problem Size Parameter
Vector reduction VR-high VR-low
Vector size 16 2048
No. of Operations 128000 128000
Hash Table HT-high HT-low
Table size 37 1439
No. of Operations 65536 65536
Prepopulation 75 % 75 %
Lookups/Inserts/Deletes 80/10/10 % | 34/33/33 %
Graph Update GU-high GU-low
No. of Nodes 256 4096
No. of Operations 65536 65536
No. of Objects Accessed 1-7 1-7
Objects Read-only/Modified  50/50 % 80/20 %

Table 3. Benchmarks Problem Sizes

4.2 Benchmarks and Experiments

We study three microbenchmarks. These microbenchmarks-rep
sent some very commonly used operations that present opalie
for parallelization. Each benchmark is evaluated underdiffer-
ent scenariosH+ew and high contention. The problem sizes used
are specified in Table 3.

Vector Reduction (VR): This benchmark involves atomic up-
dates (additions) to elements in a vector (array). Thisatper is
commonly used in sparse linear algebra codes. In this beswthm
during each iteration, an element of the vector is selectedra

we reduce the size of the L1 cache so that the cache space plusiom (outside the critical section) and atomically increteen(in
buffer space is the same as for the base system. We consider ahe critical section). This benchmark exposes the oveshaasoci-

large transactional buffer for our experiments. We exantnky
microbenchmarks in this study; thus, the buffer size is raotip-
ularly important since we can tune the data sets to fit or nan fit
the buffer as we desire. Further study is needed to deterarine
appropriate size for the buffer for real applications. Farse same

ated with starting and committing transactions becausastery
small critical sections. In addition, the amount of conimmtan be
varied by changing the size of the vector. We consider bothadls
vector, where contention for each element is higR-figh), and a
large vector, where contention is loWR-low). When using locks,

reasons, we assume the data sets fit in the L2 cache, and ¢hat theach element of the vector is protected by its own lock. Wisémgu

cache is warm at the start of our experiments.

We created a library that implements our transactional nmgmo
API using the ISA extensions in Section 2.1. This librarysuns
running transactions in hardware-only mode, softwarg-ombde,
and in hybrid hardware-software mode. We experiment with al
three of these flavors of transactional memory, as well ab wit
a base system that uses locks rather than transactional ipemo
We use an efficient implementation of ticket locks [18] in our
experiments.

transactional memory, each atomic update is a transaction.
Hash Table (HT): This benchmark involves operations on
hash table. During each iteration, both an operation (eigme
insert, delete, or lookup) and a key are randomly chosersigit
the critical section) and the chosen operation is perfororethe
hash table (in the critical section). This benchmark expdise per
object overheads associated with transactions. When sihg,
a lock-acquire and a lock-release is required for each tiparan
the hash table because each bucket is protected by its ok#-loc

a

We use a very simple dynamic memory management schemethe hash function is used to compute the desired buckettkdadr

(malloc/free) for our experiments for several reasonsstFthe
memory allocator that is available on our infrastructure paor
scaling. Second, we wanted to factor out the cost of memory ma
agement because it can vary significantly depending on trense
used (malloc/free vs. garbage collection vs. custom diloch

that bucket is grabbed, the operation is performed, andottieis
released. In contrast, when using transactions, each afljeets
(in the worst case) in the particular bucket needs to be “egén
before it can be used. In addition, when using transactiongtjple
lookup operations can be performed simultaneously on theesa

The dynamic memory management scheme used has extremelybucket because lookup operations do not modify any obfedts.

low overhead. Each thread is assigned a separate large fspace
which it allocates space and, therefore, requires no IgcKime
allocated objects are never freed. Consequently, no ntetadads
to be maintained by the allocator. Allocation overhead ialbas it
simply involves incrementing a index. The main potentialjpem
with this scheme is that it would generate a lot of memoryfitraf
due to cold misses. To address this, we set the memory lafency
a L2 miss) to zero so that these are not unfairly penalizedalRe
that the L2 used in our experiments is large enough that ttmeone
allocator is the only source of memory traffic.

It should be noted that the memory allocator is used on tite cri
ical path extensively byM-SW (an allocation on each “start trans-
action” and two allocations for each “object open”) and stbmes
by TM-Hybrid (similar to TM-SW but only in the small fraction of
instances when it falls back into software mode due to caiaten

start our experiments with a partially prepopulated habletaAs
before, we consider both a small hash table, where contefdio
each bucket is significanH{-high), and a large table, where there
is little contention HT-low).

Graph Update (GU): This benchmark is designed to demon-
strate the strength of transactional memory. When usirigsidbe

programmer needs to keep track of the mapping between each

object and the lock that guards it. In addition, when periogn
atomic operations on multiple elements, the programmecajly
avoids deadlocks by acquiring all the relevant locks in altot-
der. In some instances (e.g., maxflow [2]), this can trickyibu
plementable. In other instances (e.g., Red-Black Treek Eff-

2Similar behavior can be achieved with locks by using readeiters
locks. Currently, we do not use readers-writers locks.
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Figure 6. Benchmark Scalability: Parallel speedup with TM-HW
version

cient doubly-linked lists [15], and Heaps), all the locksitthwill
be needed cannot be determined at the start of the criticibse
Therefore, a total order is difficult to achieve. In all thesses,
programmers usually resort to using a single coarse-gidimek
to guard the entire operation and, therefore, suffer seaid@bn. In
contrast, with transactional memory, the programmer carthge
benefit of fine-grained locking with little effort. In this behmark,
a set of elements (representing nodes in a graph) are nregdtai
During each iteration, a subset of nodes are chosen at ra@dm
side the critical section) and accessed and modified (wiltf@rerit-
ical section). A single coarse-grained lock is used to gtiaeden-
tire critical section. In this benchmark, the contention ba varied
by changing the total number of nodes and the number of differ
ent objects that are accessed within a critical sect®-figh and
GU-low).

We run each benchmark with each of the four systems: the
base system with locksL¢ck), the base system with software-
only transactional memoryTM-SW), the system with hardware
support for transactional memory with hardware-only teai®ons
(TM-HW), and the system with hardware support for transactional
memory with hybrid transactional memoryNl-Hybrid).

For all of our benchmarks, all elements (vector, hash elésnen
and tree nodes), and all locks are placed on their own canke i
to prevent performance artifacts from false sharing. Aike,con-
tention management policy (Section 3.2.4) requires gptiirpa-
rameterk where 2* is the maximum backoff. Based on experi-
ments, we usé4, 8, and10 as values fok for TM-HW, TM-SW,
andTM-Hybrid respectively.

5. Performance Evaluation

In this section, we evaluate the effectiveness of the Hybrahs-
actional Memory technique presented in this paper. In @aHr,
we compare the performance of the hybrid transactional mgmo
(TM-Hybrid) with the other transactional memory implementations
(TM-HW & TM-SW) as well as with the lock versiorck).

Figure 6 presents the parallel speedups forTikleHW version
(which is used as the baseline in Figure 7). It shows thdthend
high versions for the different benchmarks do result in signifia
different contention and speedup.

Figure 7 presents the results of the three benchmaRsHT,
andGU) on the four schemes ¢ck, TM-Hybrid, TM-HW, andTM-
SW). In addition, each benchmark is evaluated under two differ
scenarios—ew andhigh contention. All results are normalized to

the system with hardware transactiomdEHW) for each processor
configuration.

Figure 8 shows the ratio of the number transactions started
to the number of transactions committed. A ratio of 1 indésat
that none of the transactions were aborted. It should bednote
that, by design, all aborted transactions are due to caateirt
these experiments; no transactions are aborted due torcesou
constraints. Otherwise, the pure hardware versidv-HW) would
never run to completion.

Table 4 presents the average number of instructions as well a
the number of cycles taken to execute the synchronizatian-op
ations (transactions and locks) in th&® benchmark on a single
processor. The execution time reported is in some casegisign
cantly higher for thdow version than théigh version because the
dataset size is much larger for thav version and does not fit in
the L1 cache. However, as the number of processors increase,
chronization and contention for the shared cache lines Aavach
larger impact on théigh version.

5.1 TM-Hybrid vs. TM-HW vs. TM-SW

Overhead on one processor. Figure 7 shows thatM-HW usu-
ally outperforms the other two versions of transactionahnosy.
This is becaus&@M-HW incurs minimal overheads. It requires only
10 and 5 instructions to begin and commit a transaction,eesp
tively (Table 4). It incurs no per object overheads (i.e.p&@ Ob-
jects”).

TM-SW incurs significantly higher overheads that mainly come
from two sources. FirsTM-SW requires dynamic memory alloca-
tion, initialization and copying: each “begin transactioaquires
one allocation while each “open” operation requires twocdt
tions. SecondTM-SW incurs additional overheads due to indirec-
tion: each object open requires two additional cache limesses
(one to accessMODbject and one to accedsocator). Due to these
overheadsTM-SW performs between 2.48x (féfT-low) and 7.36x
(for VR-high) slower thariTM-HW on one processdr

In the common caselM-Hybrid avoids the larger of the two
sources of overheads iFM-SW. It incurs only the overhead due
to indirections while avoiding the overheads due to allocgt
initialization, and copying. As a result, it experiencegnaist 2.63x
(for GU-high) slowdown compared tdM-HW on one processor. It
is worth emphasizing here that the performanc&MfHW comes
at a loss of generality-+FM-HW works only when transactions
are small enough so as to not exceed the resource bounds of the
transactional hardware.

ComparingTM-Hybrid with TM-SW shows thafTM-Hybrid is
between 1.6x (foHT-low) and 3.27x (folVR-high) faster tharifM-

SW on 1 processor. It should be noted that this understates the
potential improvement for several reasons. First, our expntal
setup understates the actual cost of dynamic memory atmdat
(which has a bigger impact arivM-SW). Second, in our experiments

all transactional objects are small (one cache line). Rebat
TM-SW incurs copying overhead proportional to the size of object
while the indirection overhead (which is the primary ovexthén

3Section 4.1 explained that we understate the performarifazetice be-
tweenTM-SW and otherTM schemes due to the simple dynamic memory
management scheme used in our experiments. To get someg@arspwe
measured the cost of doing malloc and free operations uginddly per-
forming a random sequence of malloc and free operations.n@asure-
ments show that, on average, a pair of malloc and free opas#xecute
426 instructions (not counting time spent in system calls)contrast, a
pair of malloc and free in our experiments costs only 37 idtons. This
is a significant difference and explains the difference ifiggenance on one
processor in our experiments when compared to prior work [fat work
reported thaM-SW was about 22x slower thdrock on one processor.
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Operation Lock TM-SW TM-HW TM-Hybrid

Lock or Begin Transaction 26 88.24, 37.03 67[ 152.49, 152.52 | 10[ 13.06, 13.07 | 40[ 37.45, 36.99
Unlock or Commit Transaction 71[29.86, 16.0Q 22[ 30.43, 30.43 5[ 7.01, 7.07 | 26[ 34.00, 34.09
Open Write - 194[ 305.89, 213.71 - 19[144.31, 36.0Q

Table 4. One processor execution 0fR benchmark: Each entry is of the fornX [ Y, Z]—X is the average number of instructions per
operation;y andz are the average number of cycles per operatiotvitow andVR-high, respectively.

TM-Hybrid) is constant. Finally, indirection overheads might be
reduced by using prefetching techniques.

Scaling. Scaling of the transactional memory implementations
is determined by two main factors. First, transactional mem
overheads increase the effective size of a transactios.réduces
the likelihood that a transaction will complete succedgfurhis
is because the smaller the critical section, the less likeat a
transaction is going to conflict with another, causing onehaf
two transactions to be aborted. Second, the policy usedstives
contention impacts scaling. Recall tiH-HW uses thé\ggressive
policy (with longer backoff) while th& M-S\ uses théolite policy
with less aggressive backoff (Section 3.2.4). Fdt-Hybrid, the
ratio of transactions executed in hardware mode vs. softwerde
is an additional factor that impacts scaling. This ratioggedmined
by the policy that picks the execution mode (Section 3.2.3).

For thelow contention experiments, the scaling of all thiied
implementations are similar (Figure 7). Comparifigl-SW with
TM-HW in the high contention experiments shows that the scaling
depends on which of the two above mentioned factors has a big-
ger influence. On the one hand, the contention managemeay pol
favors TM-SW in VR-high and GU-high (i.e., TM-SW scales well
for both benchmarks). On the other hand, the lower overhaad (
therefore, a significantly smaller number of aborted tratisas)
favors TM-HW in HT-high. ComparingTM-Hybrid with TM-HW
in the high contention experiments shows that both have simila
scaling forGU-high, thatTM-Hybrid scales better fovR-high, and
that TM-Hybrid scales worse fodT-high. In VR-high, TM-Hybrid
scales better because of the better contention managewi@y p
In HT-high, for a large number of processors, the number of trans-
actions that fallback into the software mode is significamiwgh
that it affects scaling. An alternate policy that is more reggive
and tries the hardware mode several more times beforedddbick
to software mode yields expected scaling (Section 3.2.3t 5,
the corresponding scaling numbers fov-Hybrid running HT-
high for 32 and 64 processors would become 2.2 and 2.4, respec-
tively.

r

5.2 TM-Hybrid vs. Lock

Overheads on one processor. ComparingTM-Hybrid with Lock

in Figure 7 shows thatM-Hybrid incurs varying overhead for the
different benchmarks. For one processor execution, theneae

of using locks is proportional to the number of locks acciiaad
released in a critical section. In contrast, the overheadried

by TM-Hybrid includes a constant part (cost of beginning and
committing a transaction) and a variable part that is pripoal

to the number of objects accessed (“open” operations). In ou
experimentsTM-Hybrid performed between 2.42x (f@U-high)

to 17% slower (fo’VR-low). This is due to a combination of extra
instructions and worse cache behavior.

Scaling. As the number of processors increases, contention for
shared data becomes an additional factor that impactsrpeafce.
With locks, the contention is on the locks. With transactioron-
tention occurs when multiple transactions try to performficting
operations on the same object MR andHT benchmarks, the con-
tention experienced by locks and transactions are sinileere-
fore, the scaling is similar up to 64 processors. The outiieHT-

high (32 and 64 processors) are due to a large number of trans-
actions that fall back into the software mode as discussedeab

In GU benchmark, the lock version has a lot of contention (i.e.,
the operations are essentially serialized) and thereforeotiscale
with the number of processors; in fact, it experiences aciown.

With transactions, contention is dynamically detecte@refore,

the system is more aggressive at extracting parallelisairigao

the benchmark achieving significant speedups, therebedotm-

ing locks.

6. Related Work

There is alarge body of related work [23]. Due to space caimgs,
we discuss only the most relevant ones here.

Harris and Fraser [12] proposed a software transactionai-me
ory at the word granularity. They map conditional criticagjions
(CCRs) onto a software transactional memory. CCRs allow pro
grammers to group operations that will be executed atolyieal
guard these operations with a boolean condition. They usk-ha
ing to track conflicts; this can be an expensive overheadverye
read and write. More recently, Harris et al. [13] implemenseft-
ware transactional memory in Concurrent Haskel. Howeasfop-
mance results are not available for this implementation.

Hammond et al. [11] proposed Transactional memory Coher-
ence and Consistency (TCC) as an alternative to a conveihtion
cache coherence protocol in shared memory systems. Inefead
using a coherence protocol to keep cache lines coherentéoy e
memory access, TCC buffers all writes of a transaction {rateis
system-wide for permission to commit these writes at the &nd
the transaction, and broadcasts these writes to the rebedafys-
tem. Other processors may hold copies of the same lines iin the
caches and must invalidate these copies during the brdaaicds
abort their ongoing transactions. To use TCC programmaerplgi
insert transactional boundaries in their code. Howevergiam-
mersmust use transactions for everything since traditional synchro
nization such as locks does not exist under TCC.

Ananian et al. [1] proposed Unbounded Transactional Mem-
ory (UTM) to address the resource limit associated with \vare
transactional memory. UTM maintains transactional loggritual
memory. New transaction values are stored in memory whie ol
values are stored in transactional logs. For acceptabferpgnce,
caches can be used to keep the latest values while origithal va
ues are kept in main memory. However, UTM requires significan
changes to processors, caches, and main memory. The aptbers
posed Large Transactional Memory (LTM) as a less costlyrate
tive that limits the footprint of a transaction to physicaémory.
Like UTM, the cache keeps the latest data value while theéraig
value is kept in main memory. When a transaction state ovesflo
the cache, the overflowed values are spilled into a hash table
main memory.

Rajwar et al. [22] proposed Virtual Transactional Memory, a
combined hardware-software scheme that addresses thergeso
limit of hardware transactional memory. VTM extends a habv
transactional memory scheme with a software overflow buéer
software filter table, and additional hardware to check aamtle
overflows. VTM sends overflows to the overflow buffer and may
need to walk this buffer for subsequent memory accessesafte



overflow has occurred in order to check for access conflictsds

a 10-MB filter table to hash addresses and skip the buffer ifialk
the hash function returns negative (a false positive reguiralking
the buffer). VTM optimizes the non-overflow case by checking
for an overflow counter and skipping the filter table lookuml an
the buffer walk if no overflow has occurred. However, once an
overflow occurs, the filter table lookup is needed for everynoey
access and a buffer walk is necessary for a hit in the filtdetab
Performance evaluation was not included in the paper.

Moore et al. [19] proposed LogTM, a hardware assisted trans-
actional memory scheme that stores new data values in piate a
old values in per-thread software logs. By modifying datplace,
LogTM optimizes for commits as the old values in the logs are s
ply discarded on commits. Aborts require the unrolling & kbgs
to restore the old values. In its current form, LogTM doeshwaot-
dle paging, context switches, thread migrations and O%dotens
within transactions.

7. Conclusions

Transactional memory is a promising technique that maletagk

of writing parallel programs that scale well easier. In twisrk,

we propose a novel hybrid hardware-software transactiomsh-
ory scheme that uses a hardware transactional memory scseme
long as transactions do not exceed resource limits and fgigce
falls back to a software scheme when those limits are exceede
This approach combines the performance benefits of a pude har
ware scheme with the flexibility of a pure software schemes Th
hardware for our hybrid scheme is just slightly more complex
terms of chip area and design complexity than Herlihy et afig-
inal hardware transactional proposal [16]. Results shat tur
hybrid scheme greatly accelerates the software schemejretiee
presence of a high number of conflicts.
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