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ABSTRACT

The evolution of processor architectures from single core de-
signs with increasing clock frequencies to multi-core designs
with relatively stable clock frequencies has fundamentally
altered application design. Since application programmers
can no longer rely on clock frequency increases to boost per-
formance, over the last several years, there has been sig-
nificant emphasis on application level threading to achieve
performance gains. A core problem with concurrent pro-
gramming using threads is the potential for deadlocks. Even
well-written codes that spend an inordinate amount of effort
in deadlock avoidance cannot always avoid deadlocks, par-
ticularly when the order of lock acquisitions is not known a
priori. Furthermore, arbitrarily composing lock based codes
may result in deadlock - one of the primary motivations for
transactional memory. In this paper, we present a language
independent runtime system called Sammati that provides
automatic deadlock detection and recovery for threaded ap-
plications that use the POSIX threads (pthreads) interface
- the de facto standard for UNIX systems. The runtime is
implemented as a pre-loadable library and does not require
either the application source code or recompiling/relinking
phases, enabling its use for existing applications with arbi-
trary multi-threading models. Performance evaluation of the
runtime with unmodified SPLASH, Phoenix and synthetic
benchmark suites shows that it is scalable, with speedup
comparable to baseline execution with modest memory over-
head.
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1. INTRODUCTION

Over the last several years, the dominant trend in proces-
sor architectures has been the move away from increasing
clock frequencies of single core processors to adding more
processing cores. Unlike clock frequency increases, which
transparently increase application performance, the trend to
multi-core architectures squarely places the burden on the
application to use concurrent programming to achieve per-
formance. Correct concurrent programming is notoriously
hard as has been well documented in [19]. The most common
concurrency bugs are data races that arise due to unguarded
or improperly guarded memory updates and deadlocks that
arise due to circular dependencies among locks. While data
races can be ameliorated by appropriate synchronization (a
non trivial problem in itself), deadlocks require fairly com-
plex deadlock avoidance techniques, which may fail when
the order of lock acquisitions is not known a priori. Fur-
thermore, due to the potential for deadlocks, application
programmers cannot arbitrarily compose lock based codes
without knowing the internal locking structure.

In this paper, we present Sammati (agreement in San-
skrit), a software system that transparently detects and elim-
inates deadlocks in threaded codes, without requiring any
modifications to application source code or recompiling/re-
linking phases. Since a large percentage of applications are
based on weakly typed languages such as C and C++ that
permit arbitrary pointer accesses, we eschewed a language
based approach in favor of a pure runtime. Sammati is im-
plemented as a pre loadable library that overloads the stan-
dard POSIX threads (pthreads) interface and makes the ac-
quisition of mutual exclusion locks a deadlock free opera-
tion. Sammati supports arbitrary application level thread-
ing models including those that use locks for concurrency
control where serial lock elision does not result in a pro-
gram with the same semantics. Our core goal in this work
is to achieve composability of lock based codes. While this
goal is in principle similar to transactional memory systems,
there is a critical difference. Sammati preserves the mutual
exclusion semantics (and more importantly limitations) of
existing lock based codes and does not provide any mecha-
nisms to optimistically execute critical sections concurrently
as in transactional memory.

Fundamentally, Sammati works by associating memory
accesses with locks and privatizing memory updates within



a critical section. Memory updates within a critical section
are made visible outside the critical section on the release of
the parent lock(s) viz. the containment property. On the ac-
quisition of every lock, Sammati runs a single cycle deadlock
detection algorithm. If a deadlock is detected, our deadlock
elimination algorithm breaks the cycle by selecting a victim,
rolling it back to the acquisition of the offending lock, and
discarding any memory updates. Since our containment en-
sures that memory updates from a critical section are not
visible outside the critical section until a successful release,
we simply restart the critical section to recover from the
deadlock.

While the core idea behind Sammati is quite simple, there
are several challenges in the details. First, we need a trans-
parent mechanism for detecting memory updates within a
critical section and privatizing the updates. Second, in the
context of nested locks we need to define a set of visibil-
ity rules that preserve existing lock semantics, while still
permitting containment based deadlock elimination and re-
covery. Finally, we need a deadlock detection and recovery
mechanism that is capable of deterministically eliminating
deadlocks without either (a) deadlocking itself or (b) requir-
ing an outside agent.

The rest of this paper is organized as follows. In section 2
we present related work in the area of deadlock detection
and recovery. Section 3 describes the components of Sam-
mati including privatization, visibility rules and deadlock
detection and recovery algorithms. Section 4 presents our
implementation of the Sammati runtime in the Linux op-
erating systems. In section 5, we present the results from
a performance evaluation of Sammati on the SPLASH [31]
and Phoenix [24] shared memory benchmark suites, which
include applications that use a variety of threading models.
Finally, we conclude the paper in section 6 with directions
for future work.

2. RELATED WORK
2.1 Transactional Memory (TM)

Transactional memory [15, 28] introduces a programming
model where synchronization is achieved via short critical
sections called transactions that appear to execute atomi-
cally. The core goal of transactional memory is to achieve
composability of arbitrary transactions, while presenting a
simple memory model. Similar to lock based codes, transac-
tions provide mutual exclusion. However, unlike lock based
codes, transactions can be optimistically executed concur-
rently, leading to efficient implementation. However, inter-
actions between transactions and non-transactional code is
still ill-defined. Blundell et.al., [7] introduce the notion of
weak and strong atomicity to define the memory semantics
of interactions between transactions and non transactional
code and show that such interaction can lead to races, pro-
gram errors or even deadlock. Defining the semantics of the
memory model in the interaction between transactional and
non transactional code is an on going area of research [16,
29, 30].

Most TM systems are based on language support with spe-
cial programming language constructs [12, 22, 34] or API [25]
to provide TM semantics. Alternatively, some TMs rely on
special memory allocation primitives [16] and wrappers [22]
to support transactional memory semantics. Fine-grain pri-
vatization of updates within transactions is typically achieved

by instrumenting load and store operations, which can result
in significant impact on application speedup [6].

2.2 Deadlock Detection and Recovery

Several techniques were proposed to detect deadlocks in
concurrent programs. In this section we briefly discuss some
of the literature. Static type checking systems [4, 10, 11,
20, 21, 26, 27, 33] use program analysis to determine dead-
locks. While static analysis can identify certain deadlocks
based on information obtained at compile time, it cannot
identify all deadlocks in weakly typed languages such as C
or C++. Furthermore, they may generate false positives in
identifying deadlocks resulting in spurious recovery actions.
On the other hand, dynamic analysis tools [1, 2, 13, 14,
17, 18, 23, 32] detect deadlocks at runtime. For instance,
certain runtime tools instrument programs and introduce
scheduler [5, 9, 17] noise to increase the chances of deadlock
occurrence while testing concurrent programs. Other tech-
niques to detect deadlocks include sequential composition
of threads with speculative execution [3], which can per-
form deadlock recovery for applications written with fork-
join parallelism, evaluating runtime traces [1, 2, 14], em-
ploying binary instrumentation [13], generating control-flow-
graphs [32] of programs. Additionally, certain tools such as
Rx [23] and Dimmunix [18] provide recovery support on de-
tecting a deadlock. For instance Rx uses checkpointing to
rollback to a recent checkpoint and resume execution in the
new environment. Dimmunix maintains a state information
of each deadlock pattern that occurs at runtime and aims
to prevent such future occurrences through deadlock predic-
tion.

In contrast, Sammati is implemented as a runtime system
that uses a deterministic algorithm to detect and eliminate
deadlocks with no false positives or negatives. Second, our
approach does not rely on source analysis or require any
modifications to the source code. Third, it is transparent
to the source application - deadlocks are detected and elim-
inated with no change to the expected program semantics.
Fourth, unlike transactional memory systems, Sammati’s
runtime privatizes at page granularity and does not instru-
ment individual load store operations and thereby largely
preserves application speedup. Finally, Sammati performs
efficient deadlock recovery without requiring a complete ap-
plication checkpoint and the associated overhead.

3. DESIGN

The core goal of Sammati is to provide transparent dead-
lock detection and recovery for threaded codes with arbi-
trary threading models. In this section, we present the chal-
lenges behind and the design of the major components of
Sammati.

3.1 Privatization and Containment

In order to restore from a deadlock successfully, Sammati
uses containment (through privatization) to ensure that mem-
ory updates (write set) within a critical section are not vis-
ible to any other thread until the successful release of the
critical section. To implement containment within a critical
section we need (a) a mechanism to identify memory up-
dates and (b) a mechanism to privatize the updates. In the
case of managed languages such as Java, program analysis
can be used to detect the write set within a critical section,
which can then be privatized through rewriting or source-



to-source translation to implement containment. However,
in the case of weakly typed languages such as C or C++,
which allow arbitrary pointer access, program analysis can-
not always determine the exact write set and conservatively
degenerates to privatizing the entire address space, which is
prohibitively expensive.

Alternately, a runtime can use page level protection to
determine the write set within a critical section. In this
approach, all data pages are write protected on lock acquisi-
tion. If the subsequent critical section attempts to modify a
page, it results in a segmentation violation signal. The sig-
nal handler then gets the page address, privatizes the page
and changes the page permissions to read-write. While this
solution works for processes that operate in distinct virtual
address spaces, it does not work for threaded codes that
share a single virtual address space and page protection bits.
Consider the case where a thread acquires a lock L and up-
dates two values in page P. Page P is write protected on the
acquisition of lock L. To allow the update, the runtime would
perform its privatization action and set the page permission
for page P to read/write. Assume another concurrent thread
of the same program now acquires lock M and updates a dif-
ferent data unit on page P. If the two lock acquisitions hap-
pen concurrently before the updates, the first thread that
performs the update would change the page permissions of
P to read/write. The second thread performing the update
would never see a protection fault (since page P is already in
read/write mode) and hence would not privatize its update,
thereby breaking containment.

To implement containment for threaded codes, we use a
technique first described in [3]. The key observation is that
privatization can be implemented efficiently and transpar-
ently in a runtime environment if each thread had its own
virtual address space. Modern UNIX operating systems al-
ready implement threads as lightweight processes with no
major performance implications. We exploit this capability
by creating multiple processes and share their global data
regions through a common shared memory mapping. In
essence, this creates a set of processes that are semantically
equivalent of threads — they share their global data and have
distinct stacks. To achieve containment for a page, we break
its binding to the shared memory region and create a private
page mapping (mmap with MAP_PRIVATE vs. mmap with
MAP_SHARED) at the same virtual address. Any updates
to the private page are thus localized to the thread execut-
ing the critical section, thereby implementing containment.
In the rest of this paper, we refer to these control flow con-
structs as cords to distinguish their properties from regular
threads that operate within a single virtual address space.

3.2 Visibility Rules

Visibility rules define when memory updates made within
a critical section are visible outside the critical section. This
is relatively straightforward for a single lock (shown in Fig-
ure 1(a)) around a critical section —updates are visible at the
release of the lock. However, nested locks are more complex.
Consider the nested lock sequence shown in (Figure 1(b)). If
the memory update to x within the critical section protected
by lock L2 were made visible immediately after the release
of L2 and subsequently a deadlock occurred on the acquisi-
tion of lock L3, where the victim was lock L1, there would
be no way to unroll the side-effects of making the update to
x visible. A secondary issue exists here in associating data
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X=y=0,' X=y=0,' X:y:O;

acquire(Ll); F acquire(Ll); acquire(Ll);
{ xX++; acquire(L2); X++;
release(Ll); x++; } acquire(L2);
release(L2); y++;

release(Ll);
release(L2);

(c)

(a) <

acquire(L3);
X++;
y++;
release(L3);
h release(Ll);

(b)

Figure 1: Visibility
lock context.

rules for memory updates within a

with locks. When a unit is data is modified within a critical
section protected by more than one lock, it is not possible
to transparently determine the parent lock that is uniquely
responsible for ensuring mutual exclusion on that data. For
instance in Figure 1(c), it is not possible to transparently
determine what data should be made visible. The variable
x is protected by lock L1, however, the variable y, may be
protected by L2 or L1.

To ensure containment of memory updates in the presence
of nested locks, Sammati makes memory updates visible on
the release of all locks. This is a necessary and sufficient
condition for Sammati’s deadlock elimination and recovery.
Furthermore, in order to preserve the semantics of mutual
exclusion, we track the release of nested locks in program
order and defer performing the actual release till all locks
around a critical section have been released in program or-
der. To see why, consider the example shown in Figure 1(b).
If lock L2 is released at its original location, but its update
to x is privatized (since there is another lock L1 around the
same critical section), another thread may acquire lock L2,
update x and release L2, creating a write-write conflict in
otherwise correct code. Internally, Sammati tracks deferred
releases within a nested lock sequence and elides the actual
lock acquisition if a cord attempts to reacquire a deferred
release lock in the same nested lock sequence.

3.3 Deadlock Detection and Recovery

A concurrent multi-threaded program can hold a set of
locks (holding set) and simultaneously be waiting on one or
more locks (waiting set). In this context, deadlocks may
arise due to multiple circular dependencies resulting in a
multi-cycle deadlock. Eliminating multi-cycle deadlocks re-
quires potentially multiple victims and the deadlock detec-
tion algorithm has to execute in a context that is guaranteed
to not be a part of the deadlock itself. Multi-cycle deadlock
detection is typically implemented as an external process
that implements distributed deadlock detection and recov-
ery.

Since threads have been transparently converted to cords
in Sammati, the key observation here is that each cord (a
single threaded process) may only wait on one lock. This
significantly simplifies deadlock detection, since from the
perspective of each cord, all deadlocks are single cycle dead-
locks. Furthermore, since all cords share a global address
space, the deadlock detection algorithm has access to the
holding and waiting sets of each cord. Deadlock detection
can be hence performed at lock acquisition with the guar-



holding hash table ( lock key, pid value)
waiting hash table ( pid key, lock value)
lock_list list of locks ordered by program

order acquisition of locks.

void deadlock_free_lock (lock L)

{
lock S; /* globally shared lock across cords */|
lock W; /#* local lock identifier */
start:
R := restore point containing the contents

of stack frame and processor registers.
set restore point R for lock (L) on rollback.

if ( returning from a restore point flag) {
restore the stack.

free the old stack context and reset
returning from restore point flag.

}

id := my pid;

acquire lock (S).

try acquiring lock (L).

if ( lock (L) is acquired successfully ) {
insert in holding hash table (lock (L),
insert (lock (L),
of lock_list.
release lock (S).

id).
restore point (R)) at tail

}
else {
insert id in waiting hash table(id, lock (L))
W := L;
traverse:
candidate := find lock (W) in holding
hash table.
if ( candidate == id ) {
/* We have a deadlock !!! x/
recover_from_deadlock (W).
return to restore point (W).
}
else {
W := lock that candidate is waiting on;
if( lock (W) is valid ) {
/*continue traversing the waits for graph#*/
goto traverse;
}
else {
/* There 4s no deadlock. */
release lock (S).
acquire lock (L).
acquire lock (S).
delete ids entries from waiting hash tabldg
if (lock(L) is acquired successfully) {
insert lock (L) in holding
hash table (lock (L), id).
insert (lock (L), restore point (R)) at
tail of lock_list.
release lock (S).
}
elseq{
/* Error 4n acquiring the Lock (L) */
release lock (S).
throw error and terminate program.
}
}
}
}
update internal data structures and return.

Figure 2: Deadlock detection algorithm
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void recover_from_deadlock (lock (W))
{

For all entries starting from

head of lock_list find the

first occurrence of lock (W)

and do the following

discard all the modifications made
by locks from lock (W) to tail of
lock_list.

release all locks including lock (W).
update internal data structures.

clear relevant entries from holding hash
table including entries for lock (W).

release lock (S).
return;

Figure 3: Deadlock recovery algorithm

antee that the deadlock detection algorithm itself cannot be
deadlocked.

Figure 2 shows the deadlock detection algorithm that ex-
ecutes at the acquisition of every lock. The detection algo-
rithm uses three data structures — a holding hash table that
associates locks being held with its owning cord, a waiting
hash table that associates a cord with a single lock it is wait-
ing on, and a per cord list of locks ordered (queue) by the
program order of acquisition. The list of locks tracks nested
locks and is freed at the release of all locks in a nested lock
sequence. The deadlock detection algorithm implements a
deadlock free lock acquisition and starts off by saving a re-
store point for deadlock recovery. The restore point contains
the contents of the stack and all processor registers and is
associated with the lock entry in the per cord list of locks.
The algorithm then tries (non-blocking trylock) to acquire
the requested lock L. If the acquisition succeeds, it inserts
L into the holding hash table and the per cord lock list and
returns. If the lock acquisition of L fails, the algorithm finds
the cord C that owns L and checks if C is waiting on another
lock M. If C is not waiting on any lock, there is no cycle and
the deadlock detection algorithm inserts L into the waiting
hash table and attempts to acquire L through a blocking
lock acquisition. If C is waiting on another lock M, we find
the cord that owns M and check to see if it is waiting on
another lock and so on. Essentially, this algorithm imple-
ments a traversal of a waits-for-graph to detect a cycle. A
deadlock is detected if the traversal encounters an entry in
the holding hash table with the cord id of the cord running
the deadlock detection algorithm. The corresponding lock
identifier in the holding hash table is chosen as the victim.
Since each cord can wait on at most one lock, the depth of
traversal of this deadlock detection algorithm is equal to the
diameter of the waits-for graph. Since we use hash tables to
represent the graph, our deadlock detection algorithm has a
time complexity upper bound of O(n), where n is the num-
ber of cords.

Note that the blocking lock acquisition of the lock L is
not protected by a secondary lock (doing so would result
in serialization of all locks) in this algorithm and hence the
initial non blocking trylock may fail, and yet the holding
hash table may not have an entry for the owning cord. This




x=y=0;

acquire(Ll);
acquire(L2);
X++;
release(L2);

acquire(L2);
acquire(L3);

Figure 4: In this example, if the acquisition of L3 results
in a deadlock and the victim was L2, Sammati’s deadlock
recovery rolls back to the earliest acquisition of L2.

condition (an intentional benign race) cannot result in a
deadlock. We do not present our formal proof of correctness
due to space constraints. The intuition behind the proof is
that while there may be multiple cords waiting on the same
lock, the cord that acquires the lock successfully is no longer
waiting on any lock and hence cannot be part of a cycle.

The deadlock detection algorithm presented above detects
a deadlock and identifies a lock W as the victim for deadlock
recovery. The deadlock recovery algorithm scans the list of
locks to find the oldest acquisition of W in program order
and uses the associated recovery point from the lock list for
recovery. To recover from the deadlock we (a) discard all
memory updates performed by locks in the lock list including
and after W (i.e. locks acquired later in program order after
W), (b) release all locks in the lock list acquired after W
and including W, (c) remove the locks released in step (b)
from the holding hash table and finally restoring the stack
and processor registers from the recovery point for W, which
transfers control back to deadlock free lock acquisition.

Note that deadlock recovery uses the recovery point from
the oldest (in program order) acquisition of lock W. The
reasoning behind this is subtle. Consider the example shown
in Figure 4. A cord C acquires a lock L1, followed by lock L2
and updates a variable x. It then releases lock L2, reacquires
L2 and acquires another lock L3. The acquisition of L3
results in a deadlock and the deadlock recovery algorithm
selects L2 as the victim for rollback. However, if we rolled
back to the most recent acquisition of L2 and released L2,
thereby breaking the deadlock, the earlier update to x within
L2 would still be privatized and not visible externally. A
cord M waiting on L2 can now acquire L2 and change the
value of x, creating an illegal write-write conflict with the
privatized copy within cord C.

4. IMPLEMENTATION

Sammati is implemented as a shared library and that is
pre-loaded by the dynamic linker (ld) before executing the
binary. It implements most of the POSIX threads inter-
face, including mutual exclusion locks and barriers. The
current implementation does not support synchronization
control through condition variables. Condition variables can
be supported by a fairly straightforward extension to Sam-
mati’s design and is the subject of a future paper. The
implementation of Sammati’s runtime is available as a pub-
lic download.
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4.1 Shared Address Space

A threaded process has a shared address space, with a dis-
tinct stack for each thread. To create the illusion of a shared
address space among processes, the constructor in Sammati
traverses the link map of the application ELF binary at run-
time and identifies the zero initialized and un-initialized data
in the .bss section and the non-zero initialized data in the
.data section. Sammati then unmaps these sections from the
loaded binary and maps them from a SYSV memory mapped
shared memory file and reinitializes the sections to the orig-
inal values. This mapping to a shared memory file is done
by the main process before its execution begins at main.
Since cords are implemented as processes that are forked at
thread creation (we actually use the clone() system call in
Linux to ensure that file mappings are shared as well), a copy
of the address space of the parent is created for each cord
and consequently they inherit the shared global data map-
ping. Any modifications made by any cord to global data is
immediately visible to all cords. As an aside, we note that
in UNIX process semantics, each process has its own copy
of the data segment of the shared libraries. Consequently,
Sammati’s runtime is not shared among cords automatically.
To circumvent this issue and to maintain a shared view of
the runtime, each newly created cord automatically executes
an initialization routine that maps the shared state of Sam-
mati’s runtime before executing its thread start function.

The heap of a process is also shared among all threads of a
process. To implement this abstraction, we modified Doug
Lea’s [8] dlmalloc allocator to operate over shared mem-
ory mappings. This memory allocator internally allocates
16 MB chunks (the allocator’s internal granularity), which
are then used to satisfy individual memory requests. Each
16MB chunk is backed by a shared memory file mapping
and is visible to all cords. Sammati provides global heap al-
location by sharing memory management metadata among
cords using the same shared memory backing mechanism
used for .data and .bss sections. Similar to the semantics of
memory allocation for threads, any cord can allocate mem-
ory that is visible and usable by any other cord. When a
cord first allocates memory, the memory addresses are al-
located in its virtual address space and backed by a shared
memory file. If any other cord accesses this memory, it re-
sults in a segmentation violation (a map error) since the
address does not exist in its address space. Sammati han-
dles this segmentation violation by consulting the memory
management metadata to check if the reference is to a valid
memory address allocated by a different cord. If so, it maps
the shared memory file associated with the memory thereby
making it available. Note that such an access fault only oc-
curs on the first access to a memory region allocated by a
different cord, and is conceptually similar to lazy memory
allocation within an operating system. To further minimize
such faults, we map the entire 16MB chunk that surrounds
the faulting memory address. Sammati exposes dynamic
memory management through the standard POSIX mem-
ory management primitives including malloc, calloc, realloc,
valloc and free.

Since stacks are local to each cord, Sammati does not
share stacks among cords. Each cord has a default stack of
8MB. The stack is created at cord creation and it is freed
automatically when a cord terminates.
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with a simple example explained in text.

4.2 Detecting Memory Updates Within Locks

In order to perform rollback on deadlock recovery success-
fully, the runtime system must be able to precisely identify
write accesses within locks. Hence, we define two contexts
of execution for a cord; a cord is said to be in a lock context
if it acquires a lock and it remains in the lock context until
it releases the lock. In case of nested locks, a thread remains
in lock context until all the locks it acquired previously are
released (marked in bold in Figure 1).

In order to track accesses, Sammati initially write-protects
(PROT_READ) all pages of the shared VMA. Read accesses
to shared data do not produce any faults and execute as they
would otherwise. However, if a process attempts to write to
a shared page (global data, heap), the runtime system han-
dles the access fault (SEGV_ACCERR) and makes a note
of the page and the current context of execution. Sammati
maintains a unique list of pages that were modified within
the scope of each lock. The permissions of the page are then
set to read-write so that the cord can continue its execu-
tion. On acquiring a lock, only the set of pages that were
modified before acquiring a lock are write-protected instead
of protecting the entire shared VMA. This approach tracks
the write set of a cord between lock release and lock acquisi-
tion (ordinary memory accesses) and only write-protects this
write-set, thereby minimizing the cost of changing memory
protection.

4.3 Privatization

When a cord modifies a shared VMA page from within
a lock context, it is detected by the occurrence of a segmen-
tation violation (access error) since all pages in the shared
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VMA are write protected. Sammati handles the access viola-
tion by remapping the faulting page from the shared memory
backing in MAP_PRIVATE mode. In this mode, updates
from the cord in the lock context are no longer visible to
other cords, effectively privatizing the page. Sammati then
creates a copy of the page (called a twin page), changes the
page permission to read/write and returns from the segmen-
tation violation handler. The twin page is used to detect the
actual memory updates on the page, which are then commit-
ted when the cord exits a lock context. Note that the space
overhead of this solution is O(W), where W is the write set
(in pages) within a lock context.

Intuitively, Sammati implements a lazy privatization scheme
that defers privatization to the instant when the first mem-
ory update occurs. Note that lazy privatization results in
weak atomicity. While a conservative privatization of the
entire address space at the acquisition of the first lock in a
nested lock sequence would give us strong atomicity - this
was in fact our original solution, the measured runtime costs
of this approach were far too high for applications with fine-
grain locks. Since standard lock semantics of mutual exclu-
sion locks do not require strong atomicity, we chose the more
efficient lazy privatization approach and its resultant weak
atomicity.

4.4 Mutual Exclusion

Sammati provides mutual exclusion among processes by
transforming all mutex exclusion locks (pthread mutex t)
within the program to process-shared
(PTHREAD_PROCESS_SHARED) locks, which enables their
use among cords. Recall that in case of nested locks, a cord



remains in lock context until all the locks it acquired pre-
viously are released. On unlock, Sammati marks a lock for
release but defers the actual release of the lock until all locks
in the nested lock sequence have been released in program
order (refer to section 3).

A subtle side effect of memory isolation occurs because
locks in a threaded program are generally global i.e., they
reside in the shared VMA irrespective of how they are ini-
tialized (globals—statically declared or heap—dynamically al-
located). If a cord C acquires a lock and subsequently mod-
ifies a page P, P is privatized. If P contains any definitions
of lock variables (which may happen if P contains parts of
the .data section), they end up being privatized as well. If
such a privatized lock is subsequently used in a nested lock
sequence by cord C, it no longer provides mutual exclusion
outside cord C since any updates to the lock (such as ac-
quisition/release) are privatized and not visible outside C.
A simple solution to this problem would have been to mod-
ify the application source code to allocate memory for all
mutual exclusion locks from a distinct shared memory zone
that is not subject to privatization. However, this requires
source code modifications and conflicts with our goal of be-
ing a transparent runtime solution to deadlock recovery.

In order to address this side effects of privatization, we
present a novel approach that leverages the large virtual
memory address (VMA) provided by 64-bit operating sys-
tems. Linux allows 48 bits of addressable virtual memory
on x86-64 architectures and we use this feature to our ad-
vantage. Recall that our runtime system maps globals and
heap (described in 4.1) using shared memory objects and
memory mapped files. Using the same shared memory ob-
jects and memory mapped file, Sammati creates an identical
secondary mapping of the global data sections and heap at
a high address (45th bit set) in the VMA of each cord. The
application is unaware of this mapping, and performs its ac-
cesses (reads/writes) at the original low address space. In
effect, the high address mapping creates a shadow address
space for all shared program data and modifications (un-
less privatized) are visible in both address spaces (shown in
Figure 5). The high address space shadow is always shared
among threads and is never privatized.

To perform mutual exclusion operations, we transform the
address of a mutual exclusion lock by setting the high ad-
dress bit and performing the lock operation in the shadow
address space. Since the shadow address space is not sub-
ject to privatization, lock acquisitions and releases are visible
across all cords, correctly implementing mutual exclusion.

4.5 Inclusion

When a cord exits a lock context, updates contained in
its privatized data must be made visible and reconciled with
other cords. In order to perform this inclusion, we need
to identify the exact write set of the lock context. To do
this, for every page modified within a lock context, we com-
pute an XOR difference (byte wise XOR) between the the
privatized version of the page and its copy (twin) that was
saved before any modifications were made within the lock
context. The XOR difference identifies the exact bytes that
were changed. To perform inclusion, we apply the XOR
difference to the high address shadow region of the VMA
(shown in Figure 5) by computing the XOR of the difference
and the high memory page, which makes the updates visi-
ble to all cords. Sammati then reverts the privatization by
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discarding the privatized pages and remapping their shared
versions. Since the semantics of mutual exclusion locks pre-
vent two cords from modifying the same data under different
locks, updates from concurrent lock releases would be to dif-
ferent regions within a memory page. Hence the operation
of applying XOR differences to the shadow address space
is a commutative operation and is thus implemented as a
concurrent operation.

We present a simple example to illustrate how Sammati
manipulates the VMA of each cord while providing isolation,
privatization and inclusion. Consider the scenario as shown
in Figure 5 where a thread has four shared pages when it
started its execution. Initially, all the shared pages (1, 2,
3, 4) are write-protected. When a thread attempts to write
to pages outside a lock context, the pages (1, 2) are then
given write access. On entering a lock context, only pages
that were modified previously are write-protected (pages 1,
2). If a thread attempts to write to a page (2) within a
lock context, the page is privatized (lazy privatization) and a
copy of it is created (twin). Before exiting a lock context, the
runtime system evaluates the modifications by computing an
XOR difference of the private page against its twin. It then
checks for any write-write races before applying difference
to the page in the shared high-address space.

4.6 Detecting Write-Write Races

Sammati can detect and report write-write races that oc-
cur between (a) guarded and concurrent unguarded updates
to a shared value and (b) improperly guarded updates, where
a single data value is guarded by two or more different
locks. Sammati identifies these data races during the inclu-
sion phase by checking every word in the diff page. If the
word is non-zero, then it indicates that the cord has modi-
fied data within a lock context. Sammati then compares the
word corresponding to the non-zero value in its twin with its
equivalent in the shadow address space that is shared across
all cords. In essence this comparison checks to see if some
other cord modified a word that should have been uniquely
protected by the current lock context. If the two values are
not equal then this indicates that the same word was modi-
fied within the current lock context as well as by one or more
cords. Since the race is detected at inclusion, Sammati can
identify the race, but doesn’t have enough information to
identify the other cords involved in the conflict.

5. PERFORMANCE EVALUATION

5.1 Experimental setup

To analyze the impact of Sammati on threaded appli-
cations, we evaluated its performance over SPLASH [31],
Phoenix [24] and synthetic benchmark suites. The SPLASH
suite contains applications from several domains including
high-performance computing, signal processing and graph-
ics. The Phoenix suite contains applications from enterprise
computing, artificial intelligence, image processing and sci-
entific computing domains. The synthetic benchmarks con-
tain programs written intentionally to create deadlocks and
deadlock examples from [3, 17]. We were able to run all the
benchmarks unmodified, except radiz from SPLASH since it
uses condition variables for communication among threads,
which as mentioned earlier is not supported in the current
implementation of Sammati. We ran each benchmark under
two scenarios, one involving Sammati, where we pre-load
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Figure 6: Performance of applications from the SPLASH benchmark suite with Sammati on a 16 core system. The
results show that Sammati has relatively small impact on speedup (except when the runtime is small), but impacts
runtime, particularly for applications with fine-grain locking. In contrast, transactional memory implementations may

have significant impact on speedup.

our runtime system using LD_PRELOAD, and the other by
running the vanilla pthreads application. The performance
results presented are the average of five independent runs
of each scenario. Runtime for each benchmark run was ob-
tained through wallclock time, using the UNIX time com-
mand.

All performance measurements were obtained from a 16
core shared memory machine (NUMA) running Linux 2.6.24-
21 with 64GB of RAM. The test system contains four 2 GHz
Quad-Core AMD Opteron processors.

5.2 Performance

Figure 6 illustrates the performance of Sammati and pthreads

with SPLASH benchmarks. In order to avoid scheduling
noise and the runtime’s fixed startup costs, we report re-
sults of the SPLASH benchmarks that have a runtime of at
least a few seconds. The performance of Sammati is compa-
rable to pthreads for most applications with the exception
of Ocean.
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The primary reason for the fall-off in speedup for Ocean
stems from our mechanism to detect updates within a crit-
ical section. Recall that all shared data is maintained in
read-only form. When updates to shared data occur out-
side a lock context, we store the page address in a write-set
list and change the page permissions to read/write. At the
acquisition of the next lock, we only change the page permis-
sions of pages in the write-set list to read only, thereby avoid-
ing the cost of write protecting the entire data space. This
implementation is biased towards fine-grain locking where
the write-set between lock contexts is small, which is not
true for OCEAN. When the write-set between lock contexts
is large, the cost of handling the access error and chang-
ing the page permissions outweighs the benefits from this
approach. Note that in this scenario, the rate of lock acqui-
sitions is small. In the future we expect to automatically
deduce the write set between lock contexts and tune the
policy based on application behavior. Furthermore, we are



Table 1: Illustrates the number of locks acquired and lock acquisition rate for a few benchmarks from SPLASH
and Phoenix suite.

Benchmark Number of Threads | Number of Locks | Lock acquisition rate (locks/sec)
1 173 0.1765
. 2 346 0.702
Ocean (contiguous) 1 692 285
8 1384 11.178
16 2768 43.328
1 10001 4.73
2 10002 9.40
PCA 4 10004 18.51
8 10008 26.161
16 10016 28.46
1 275216 20630.88
Barnes 2 275222 43616.79
o 4 139216 46842.53
8 112228 75119.14
16 537538 53968.87
1 4517437 6838.26
2 4521242 13782.92
FMM 4 4543919 27171.02
8 4559515 51836.23
16 4586903 89490.069
B Vanilla % Sammati Thread 1 Thread 2
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Figure 7: Illustrates the performance of Sammati
and pthreads for Phoenix benchmarks on a 16 core
machine. The performance of Sammati is identical
to pthreads for most applications.

working on reducing this overhead by moving parts of the
runtime - the cords implementation, shared memory infras-
tructure, memory protection, privatization and inclusion -
into the Linux operating system. We expect this to reduce
the cost of privatization by reducing the number of protec-
tion faults. Currently the OS faults on our write-protection
scheme and then has to schedule a signal to be delivered to
the Sammati runtime.

In Figure 7 we present the results of Phoenix benchmark
suite. Sammati achieves almost identical performance to
that of native pthreads with the exception of linear_regression
and pca where Sammati achieves slightly better speedup
than pthreads. This is because by default when threads
are created they are “affinitized” to the same core and it
takes a while for the operating system load balancer to move
the threads from one core to another in an attempt to bal-
ance the CPU workload. In contrast, processes in Linux are
started on distinct cores when they are spawned and benefit
from the larger cache almost immediately.
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Figure 8: (a) illustrates a simple deadlock between
two threads due to cyclic lock acquisition. (b) de-
picts a more complex example of deadlock involving
more than two threads.

We measured the number of locks acquired and lock-acquisition-

rate (total locks acquired/total runtime) for all applications
used in this study. In Table 1 we present the results that
show widely varying rates across the spectrum of applica-
tions from the SPLASH and Phoenix suites. While Sam-
mati’s runtime is impacted by lock acquisition rate, it shows
speedup comparable to the native pthreads case. This is in
contrast to transactional memory systems, which have sig-
nificant impact on speedup, largely due to privatization at
the instruction level and the need to guard every read from
read /write conflicts. [6].

5.3 Memory Overhead

Sammati’s memory overhead consists of two components -
Sammati metadata and the overhead of privatization. Sam-
mati’s metadata is relatively small at around 1 - 2 MB inde-
pendent of the number of cords. The privatization memory
overhead is incurred when the application is in a critical sec-
tion. This overhead is caused by the runtime maintaining
twin copies of the page, which are then used to compute
the XOR differences during inclusion. Note that the twin



pages are freed at the end of the critical section, i.e. this
memory overhead is transient. The memory footprint of the
twin pages is proportional to the write-set in pages within
a critical section. In principle, this is similar to the mem-
ory overhead of software transactional memory systems, ex-
cept that we operate at page granularity. To quantify this
overhead, we measured the maximum number of twin pages
within any critical section, which yields the upper bound
on the transient memory overhead of Sammati. We found
that a majority of the benchmarks modified only a few pages
within any given critical section and sum of the maximum
number of twin pages for all cords was trivial (approx 16
pages). The highest overhead is for BARNES at 298 pages
for 16 cords, which represents a modest 1.192 MB of mem-
ory.

5.4 Deadlock Detection and Recovery

In Figure 8 we present a few examples from our synthetic
benchmark suite. In the first example, two threads (shown
in Figure 8(a)) acquire locks (L1 and L2) in different orders
that could potentially result in a cyclic dependency among
threads depending on the ordering of the threads. In order
to induce a deadlock, we added a sleep statement to thread
1 after the acquisition of lock L1. This resulted in a deter-
ministic deadlock among the two threads. In Figure 8(b))
we illustrate a more complex example involving a cyclic de-
pendency of lock acquisition among multiple threads. The
native pthreads program hangs on such deadlocks. Sammati
detects such deadlocks, recovers from them transparently
and executes the program to completion.

6. ONGOING AND FUTURE WORK

We are working in several extensions to Sammati to re-
duce the runtime overhead. First, we are working on moving
the implementation of cords and privatization into the Linux
kernel. During lock acquisition, Sammati write protects all
pages in the shared VMA. The first write access to a page
in a lock context results in an access fault inside the Linux
kernel, which then generates a fault to our user level segmen-
tation violation handler. By handling the fault and creating
the twin within the kernel, we can halve the cost of fault
handling, which is the main component of the performance
overhead of fine-grain locks. Second, we are working on an
API that can be used by program analysis tools to indicate
the write-set within a lock, which can then be privatized at
lock acquisition without incurring the fault handling over-
head of our current solution. We believe that there are a
significant number of cases where program-analysis can de-
termine the write-set, and where it cannot, we can auto-
matically fall back to the current runtime solution. Finally,
we are working on a speculative execution model that uses
Sammati’s privatization to enable several hard to parallelize
algorithms to execute concurrently in the same data space.
The basic idea here is to extend the acquire/release seman-
tics of a lock to acquire/commit/abort. Multiple algorithms
can operate concurrently over the same data — for instance
multiple sort algorithms, or multiple numerical quadrature
codes — with the results coming from the first algorithm to
complete successfully.

7. CONCLUSION

In this paper we presented Sammati, a runtime system

84

for transparent deadlock detection and recovery in POSIX
threaded applications. We implemented the runtime system
as a pre-loadable library and its use does not require either
the application source code or recompiling/relinking phases
thereby enabling its use for existing applications with arbi-
trary multi-threading models. We presented the results of a
performance evaluation of Sammati using SPLASH, Phoenix
and synthetic benchmark suites. Our results indicate that
the speedup of Sammati is comparable to native Pthreads
for most applications with modest memory overhead. The
source code for Sammati will be available at
http://www.csrl.cs.vt.edu/sammati.
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