
Avoiding deadlock avoidance

Abstract

The evolution of processor architectures from single core designs with increasing clock frequencies

to multi-core designs with relatively stable clock frequencies has fundamentally altered application

design. Since application programmers can no longer rely on clock frequency increases to boost

performance, over the last several years, there has been significant emphasis on application level

threading to achieve performance gains. A core problem with concurrent programming using threads

is the potential for deadlocks. Even well-written codes that spend an inordinate amount of effort in

deadlock avoidance cannot always avoid deadlocks, particularly when the order of lock acquisitions

is not known a priori. Furthermore, arbitrarily composing lock based codes may result in deadlock

- one of the primary motivations for transactional memory. In this paper, we present a language

independent runtime system that provides automatic deadlock detection and recovery for threaded

applications that use the POSIX threads (pthreads) interface - the de facto standard for UNIX

systems. The runtime is implemented as a pre-loadable library and does not require either the

application source code or recompiling/relinking phases, enabling its use for existing applications

with arbitrary multi-threading models. Performance evaluation of the runtime with unmodified

SPLASH, Phoenix and synthetic benchmark suites shows that it is scalable, with speedup comparable

to baseline execution.

1 Introduction

Over the last several years, the dominant trend in processor architectures has been the move

away from increasing clock frequencies of single core processors to adding more processing cores.

Unlike clock frequency increases, which transparently increase application performance, the trend
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to multi-core architectures squarely places the burden on the application to use concurrent pro-

gramming to achieve performance. Correct concurrent programming is notoriously hard as has

been well documented in several studies [19]. The most common concurrency bugs are data races

that arise due to unguarded or improperly guarded memory updates and deadlocks that arise due

to circular dependencies among locks. While data races can be ameliorated by appropriate syn-

chronization (a non trivial bug to detect), deadlocks require fairly complex deadlock avoidance

techniques, which may fail when the order of lock acquisitions is not known a priori. Furthermore,

due to the potential for deadlocks, lock based codes are not arbitrarily composable.

In this paper, we present Sammati (agreement in Sanskrit), a software system that transpar-

ently detects and eliminates deadlocks in threaded codes, without requiring any modifications to

application source code or recompiling/relinking phases. Since a large percentage of applications

are based on weakly typed languages such as C and C++ that permit arbitrary pointer accesses,

we eschewed a language based approach in favor of a pure runtime. Sammati is implemented as

a pre loadable library that overloads the standard POSIX threads (pthreads) interface and makes

the acquisition of mutual exclusion locks a deadlock free operation. Sammati supports arbitrary

application level threading models including those that use locks for concurrency control where se-

rial lock elision does not result in a program with the same semantics. Our core goal in this work is

to achieve composability of lock based codes. While this goal is in principle similar to transactional

memory systems, there is a critical difference. Sammati preserves the mutual exclusion semantics

(and more importantly limitations) of lock based codes and does not provide any mechanisms to

optimistically execute critical sections concurrently as in transactional memory.

Fundamentally, Sammati works by associating memory accesses with locks and privatizing mem-

ory updates within a critical section. Memory updates within a critical section are made visible

outside the critical section on the release of the parent lock(s) viz. the containment property. On

the acquisition of every lock, Sammati runs a single cycle deadlock detection algorithm. If a dead-

lock is detected, our deadlock elimination algorithm breaks the cycle by selecting a victim, rolling

it back to the acquisition of the offending lock, and discarding any memory updates. Since our

containment ensures that memory updates from a critical section are not visible outside the critical

section until a successful release, we simply restart the critical section to recover from the deadlock.

While the core idea behind Sammati is quite simple, there are several challenges in the details.
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First, we need a transparent mechanism for detecting memory updates within a critical section and

privatizing the updates. Second, in the context of nested locks we need to define a set of visibility

rules that preserve existing lock semantics, while still permitting containment based deadlock elim-

ination and recovery. Finally, we need a deadlock detection and recovery mechanism that is capable

of deterministically eliminating deadlocks without either (a) deadlocking itself or (b) requiring an

outside agent.

The rest of this paper is organized as follows. In section 2 we present related work in the

area of deadlock detection and recovery. Section 3 describes the components of Sammati including

privatization, visibility rules and deadlock detection and recovery algorithms. Section 4 presents the

implementation of Sammati. In section 5, we present the results from a performance evaluation

of Sammati on the SPLASH and PHOENIX shared memory benchmark suites, which include

applications that use a variety of threading models. Finally, we conclude the paper in section 6

with directions for future work.

2 Related Work

In this section we present a brief overview of related research some of the prior research rele-

vant to our current work. Our work is related to transactional memory, program violations and

programming models related to concurrent programming.

2.1 Transactional Memory (TM)

Transactional memory [14, 28] introduces a programming model where synchronization is achieved

via short critical sections called transactions that appear to execute atomically. The core goal of

transactional memory is to achieve composability of arbitrary transactions, while presenting a sim-

ple memory model. Similar to lock based codes, transactions provide mutual exclusion. However,

unlike lock based codes, transactions can be optimistically executed concurrently, leading to effi-

cient implementation. However, interactions between transactions and non-transactional code is

still ill-defined. Blundell et.al., [7] introduce the notion of weak and strong atomicity to define the

memory semantics of interactions between transactions and non transactional code and show that

such interaction can lead to races, program errors or even deadlock. Defining the semantics of the
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memory model in the interaction between transactional and non transactional code is an on going

area of research [15, 30, 29].

Most TM systems are based on language support with special programming language con-

structs [11, 34, 22] or API [25] to provide TM semantics. Alternately, some TMs rely on special

memory allocation primitives [15] and wrappers [22] to support transactional memory semantics.

Fine-grain privatization of updates within transactions is typically achieved by instrumenting load

and store operations, which can result in significant impact on application speedup [6].

2.2 Deadlock Detection and Recovery

Several techniques were proposed to detect deadlocks in concurrent programs. In this section we

briefly discuss some of the literature. Static type checking systems [4, 26, 10, 9, 27, 21, 20, 33] use

program analysis to determine deadlocks. While static analysis can identify certain deadlocks based

on information obtained at compile time, it cannot identify all deadlocks in weakly typed languages

such as C or C++. Furthermore, they may generate false positives in identifying deadlocks resulting

in spurious recovery actions. On the other hand, dynamic analysis tools [2, 13, 1, 12, 16, 23, 17, 32]

detect deadlocks at runtime. For instance, certain runtime tools instrument programs and intro-

duce scheduler [16, 8, 5] noise to increase the chances of deadlock occurrence while testing con-

current programs. Other techniques to detect deadlocks include sequential composition of threads

with speculative execution [3], which can perform deadlock recovery for applications written with

fork-join parallelism, evaluating runtime traces [2, 13, 1], employing binary instrumentation [12],

generating control-flow-graphs [32] of programs. Additionally, certain tools such as Rx [23] and

Dimmunix [17] provide recovery support on detecting a deadlock. For instance Rx uses checkpoint-

ing to rollback to a recent checkpoint and resume execution in the new environment. Dimmunix

maintains a state information of each deadlock pattern that occurs at runtime and aims to prevent

such future occurrences through deadlock prediction.

In contrast, Sammati is implemented as a runtime system that uses a deterministic algorithm to

detect and eliminate deadlocks with no false positives or negatives. Second, our approach does not

rely on source analysis or require any modifications to the source code. Third, it is transparent to the

source application - deadlocks are detected and eliminated with no change to the expected program

semantics. Fourth, unlike transactional memory systems, Sammati’s runtime privatizes at page
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granularity and does not instrument individual load store operations and thereby largely preserves

application speedup. Finally, Sammati performs efficient deadlock recovery without requiring a

complete application checkpoint and the associated overhead.

3 Design

The core goal of Sammati is to provide transparent deadlock detection and recovery for threaded

codes with arbitrary threading models. In this section, we present the challenges behind and the

design of the major components of Sammati.

3.1 Privatization and Containment

In order to successfully restore from a deadlock, Sammati uses containment (through privati-

zation) to ensure that memory updates (write set) within a critical section are not visible to any

other thread until the successful release of the critical section. To implement containment within

a critical section we need a (a) mechanism to identify memory updates and (b) mechanism to pri-

vatize the updates. In the case of managed languages such as Java, program analysis can be used

to detect the write set within a critical section, which can then be privatized through rewriting

or source-to-source translation to implement containment. However, in the case of weakly typed

languages such as C or C++, which allow arbitrary pointer access, program analysis cannot always

determine the exact write set and conservatively degenerates to privatizing the entire address space,

which is prohibitively expensive.

Alternately, a runtime can use page level protection to determine the write set within a critical

section. In this approach, all data pages are write protected on lock acquisition. If the subsequent

critical section attempts to modify a page, it results in a segmentation violation signal. The signal

handler then gets the page address, privatizes the page and changes the page permissions to read-

write. While this solution works for processes that operate in distinct virtual address spaces, it

does not work for threaded codes that share a single virtual address space and page protection

bits. Consider the case where a thread acquires a lock L and updates two values in page P. Page

P is write protected on the acquisition of lock L. To allow the update, the runtime would perform

its privatization action and set the page permission for page P to read/write. Assume another
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holding hash table ( lock : key , pid : value )

waiting hash table ( pid : key , lock : value )

lock_list : list of locks ordered by program order

acquisition of locks .

void deadlock_free_lock (lock L)

{

lock S; /* globally shared lock across all cords */

lock W; /* local lock identifier */

start :

R := restore point containing the contents

of stack frame and processor registers .

set restore point R for lock (L) on rollback

if ( returning from a restore point flag )

{

restore the stack

free the old stack context and reset returning

from restore point flag

}

id := my pid

acquire (S)

try acquiring lock (L)

if( successfully acquired lock (L) )

{

insert in holding hash table (lock (L), id)

insert (lock (L), restore point (R)) at tail

of lock_list .

release lock (S)

}

else

{

insert id in waiting hash table (id , lock (L))

W := L;

traverse :

candidate := find lock (W) in holding hash table .

if( candidate == id )

{

/* We have a deadlock !!! */

recover_from_deadlock (W)

return to restore point (W)

}

else

{

W := lock that candidate is waiting on

if( lock (W) is valid )

{

/* continue traversing the waits for graph */

goto traverse ;

}

else

{

There is no deadlock .

release Lock (S)

acquire Lock (L)

acquire lock (S)

Delete ids entries from waiting hash table

if (lock (L) is successfully acquired )

{

insert lock (L) in holding hash table (lock (L), id)

insert (lock (L), restore point (R)) at

tail of lock_list .

release (S)

}

else

{

Error in acquiring the Lock (L)

release (S)

throw error and terminate program .

}

}

}

}

update internal data structures and return.

}

void recover_from_deadlock (lock (W))

{

For all entries starting from

head of lock_list find the

first occurrence of lock (W)

and do the following

discard all the modifications made

by locks from lock (W) to tail of

lock_list .

release all locks including lock (W)

update internal data structures

clear relevant entries from holding hash

table including entries for lock (W).

release (S)

return;

}

x=y=0;

acquire(L1);

x++;

release(L1);

(a)

x=y=0;

acquire(L1);

    acquire(L2);

    x++;

    release(L2);

    acquire(L3);

    x++;

    y++;

    release(L3);

release(L1);

(b)

x=y=0;

acquire(L1);

x++;

    acquire(L2);

    y++;

release(L1);

    release(L2);

(c)

Figure 1: Visibility rules for memory up-
dates within a lock context

x=y=0;

acquire(L1);

    acquire(L2);

    x++;

    release(L2);

        acquire(L2);

             acquire(L3);

            ....

            ....

Figure 2: In this example, if acquisition of
L3 results in a deadlock and the victim was
L2, Sammati’s deadlock recovery rolls back
to the earliest acquisition of L2.

Figure 3: (Left) Deadlock detection algorithm and (right -top) recovery algorithm
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concurrent thread of the same program now acquires lock M and updates a different data unit on

page P. At the acquisition of lock M, page P would be reset to read only mode. If the two lock

acquisitions happen concurrently before the updates, the first thread that performs the update

would change the page permissions of P to read/write. The second thread performing the update

would never see a protection fault (since page P is already in read/write mode) and hence would

not privatize its update, thereby breaking containment.

To implement containment for threaded codes, we use a technique first described in [3]. The

key observation is that privatization can be implemented efficiently and transparently in a runtime

environment if each thread had its own virtual address space. Modern UNIX operating systems

implement threads as lightweight processes that are functionally equivalent of regular processes

except that they share a single page table. We exploit this capability by creating multiple processes

and share their global data regions through a common shared memory mapping. In essence, this

creates a set of processes that are semantically equivalent of threads they share their global data

and have distinct stacks. To achieve containment for a page, we break its binding to the shared

memory region and create a private page mapping (mmap with MAP PRIVATE vs. mmap with

MAP SHARED) at the same virtual address. Any updates to the private page are thus localized

to the thread executing the critical section, thereby implementing containment. In the rest of this

paper, we refer to this control flow construct as cords to distinguish its properties from regular

threads that operate within a single virtual address space

3.2 Visibility Rules

Visibility rules define when memory updates made within a critical section are visible outside

the critical section. This is relatively straightforward for a single lock(shown in Figure 1(a)) around

a critical section -updates are visible at the release of the lock. However, nested locks are more

complex. Consider the nested lock sequence shown in (Figure 1(b)). If the memory update to x

within the critical section protected by lock L2 were made visible immediately after the release of

L2 and subsequently a deadlock occurred on the acquisition of lock L3, where the victim was lock

L1, there would be no way to unroll the side-effects of making the update to x visible. A secondary

issue exists here in associating data with locks. When a unit is data is modified within a critical

section protected by more than one lock, it is not possible to transparently determine the parent
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lock that is uniquely responsible for ensuring mutual exclusion on that data. For instance in Figure

1c, it is not possible to transparently determine what data should be made visible. The variable x

is protected by lock L1, however, the variable y, may be protected by L2 or L1.

To ensure containment of memory updates in the presence of nested locks, Sammati makes

memory updates visible on the release of all locks. This is a necessary and sufficient condition for

Sammatis deadlock elimination and recovery. Furthermore, in order to preserve the semantics of

mutual exclusion, we track the release of nested locks in program order and defer performing the

actual release till all locks around a critical section have been released in program order. To see

why, consider the example shown in Figure 1b. If lock L2 is released at its original location, but its

update to x is privatized (since there is another lock L1 around the same critical section), another

thread may acquire lock L2, update x and release L2, creating a write-write conflict in otherwise

correct code. Internally, Sammati tracks deferred releases within a nested lock sequence and elides

the actual lock acquisition if a cord attempts to reacquire a deferred release lock in the same nested

lock sequence.

3.3 Deadlock Detection and Recovery

A concurrent multi-threaded program can hold a set of locks (holding set) and simultaneously

be waiting on one or more locks (waiting set). In this context, deadlocks may arise due to mul-

tiple circular dependencies resulting in a multi-cycle deadlock. Eliminating multi-cycle deadlocks

requires potentially multiple victims and the deadlock detection algorithm has to execute in a con-

text that is guaranteed to not be a part of the deadlock itself. Multi-cycle deadlock detection is

typically implemented as an external process that implements distributed deadlock detection and

recovery.

Since threads have been transparently converted to cords in Sammati, the key observation

here is that each cord (a single threaded process) may only wait on one lock. This significantly

simplifies deadlock detection, since from the perspective of each cord, all deadlocks are single

cycle deadlocks. Furthermore, since all cords share a global address space, the deadlock detection

algorithm has access to the holding and waiting sets of each cord. Deadlock detection can be

hence performed at lock acquisition with the guarantee that the deadlock detection algorithm itself

cannot be deadlocked.
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Figure 3 shows the deadlock detection algorithm that executes at the acquisition of every lock.

The detection algorithm uses three data structures a holding hash table that associates locks being

held with its owning cord, a waiting hash table that associates a cord with a single lock it is waiting

on, and a per cord list of locks ordered (queue) by the program order of acquisition. The list of

locks tracks nested locks and is freed at the release of all locks in a nested lock sequence. The

deadlock detection algorithm implements a deadlock free lock acquisition and starts off by saving

a restore point for deadlock recovery. The restore point contains the contents of the stack and all

processor registers and is associated with the lock entry in the per cord list of locks. The algorithm

then tries (non-blocking trylock) to acquire the requested lock L. If the acquisition succeeds, it

inserts L into the holding hash table and the per cord lock list and returns. If the lock acquisition

of L fails, the algorithm finds the cord C that owns L and checks if C is waiting on another lock

M. If C is not waiting on any lock, there is no cycle and the deadlock detection algorithm inserts

L into the waiting hash table and attempts to acquire L through a blocking lock acquisition. If C

is waiting on another lock M, we find the cord that owns M and check to see if it is waiting on

another lock and so on. Essentially, this algorithm implements a traversal of a waits-for-graph to

detect a cycle. A deadlock is detected if the traversal encounters an entry in the holding hash table

with the cord id of the cord running the deadlock detection algorithm. The corresponding lock

identifier in the holding hash table is chosen as the victim. Since each cord can wait on at most one

lock, the maximum traversal of this deadlock detection algorithm is equal to the diameter of the

waits-for graph. Since we use hash tables to represent the graph, our deadlock detection algorithm

has a time complexity of O(n), where n is the number of cords.

Note that the blocking lock acquisition of the lock L is not protected by a secondary lock (doing

so would result in serialization of all locks) in this algorithm and hence the initial non blocking

trylock may fail, and yet the holding hash table may not have an entry for the owning cord. This

condition (an intentional benign race) cannot result in a deadlock. We do not present our formal

proof of correctness due to space constraints. The intuition behind the proof is that while there

may be multiple cords waiting on the same lock, the cord that successfully acquires the lock is no

longer waiting on any lock and hence cannot be part of a cycle.

The deadlock detection algorithm presented above detects a deadlock and identifies a lock W

as the victim for deadlock recovery. The deadlock recovery algorithm scans the list of locks to find
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the oldest acquisition of W in program order and uses the associated recovery point from the lock

list for recovery. To recover from the deadlock we (a) discard all memory updates performed by

locks in the lock list including and after W (i.e. locks acquired later in program order after W), (b)

release all locks in the lock list acquired after W and including W, (c) remove the locks released

in step (b) from the holding hash table and finally restoring the stack and processor registers from

the recovery point for W, which transfers control back to deadlock free lock acquisition.

Note that deadlock recovery uses the recovery point from the oldest (in program order) acqui-

sition of lock W. The reasoning behind this is subtle. Consider the example shown in Figure 2.

A cord C acquires a lock L1, followed by lock L2 and updates a variable x. It then releases lock

L2, reacquires L2 and acquires another lock L3. If the acquisition of L3 results in a deadlock, the

deadlock recovery algorithm would select L2 as the victim for rollback. However, if we rolled back

to the most recent acquisition of L2 and released L2, thereby breaking the deadlock, the earlier

update to x within L2 would still be privatized and not externally visible. A cord M waiting on

L2 can now acquire L2 and change the value of x, creating an illegal write-write conflict with the

privatized copy within cord C.

4 Implementation

Sammati is implemented as a shared library and that is pre-loaded by the dynamic linker (ld)

before executing the binary. It implements most of the POSIX threads interaface, including mutual

exclusion locks and barriers. The current implementation does not support synchronization control

through condition variables. Condition variables can be supported by a fairly straightforward ex-

tension to Sammati’s design and is the subject of a future paper. The implementation of Sammati’s

runtime is available as a public download.

4.1 Shared Address Space

A threaded process has a shared address space, with a distinct stack for each thread. To

create the illusion of a shared address space among processes, the constructor in Sammati traverses

the link map of the application ELF binary at runtime and identifies the zero initialized and un-

initialized data in the .bss section and the non-zero initialized data in the .data section. Sammita
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then unmaps these sections from the loaded binary and maps them from SYSV memory mapped

shared memory file and reinitializes the sections to the original values. This mapping to a shared

memory file is done by the main process before its execution begins at main. Since cords are

implemented as processes that are forked at thread creation (we actually use the clone() system

call in Linux to ensure that file mappings are shared as well), a copy of the address space of the

parent is created for each cord and consequently they inherit the shared global data mapping. Any

modifications made by any cord to global data is immediately visible to all cords. As an aside,

we note that in UNIX process semantics, each process has its own copy of the data segment of

the shared libraries. Consequently, Sammati’s runtime is not automatically shared among cords.

To circumvent this issue and to maintain a shared view of the runtime, each newly created cord

automatically executes an initialization routine that maps the shared state of Sammati’s runtime

before executing its thread start function.

The global heap of a process is also shared among all threads of a process. To implement

this abstraction, we modified Doug Lea’s [18] dlmalloc allocator to operate over shared memory

memory mappings. This memory allocator internally allocates 16 MB chunks (the allocator’s

internal granularity), which are then used to satisfy individual memory requests. Each 16MB chunk

is backed by a shared memory file mapping and is visible to all cords. Sammati provides global heap

allocation by sharing memory management metadata among cords using the same shared memory

backing mechanism used for .data and .bss sections. Similar to the semantics of memory allocation

for threads, any cord can allocate memory that is visible and usable by any other cord. When a

cord first allocates memory, the memory addresses are allocated in its virtual address space and

backed by a shared memory file. If any other cord accesses this memory, it results in a segmentation

violation (a map error) since the address does not exist in its address space. Sammati handles the

segmentation violation by consulting the memory management metadata to check if the reference

is to a valid memory address allocated by a different cord. If so, it maps the shared memory file

associated with the memory thereby making it available. Note that such an access fault only occurs

on the first access to a memory region allocated by a different cord, and is conceptually similar to

lazy memory allocation within an operating system. To further minimize such faults, we map the

entire 16MB chunk that surrounds the faulting memory address. Sammati exposes dynamic memory

management through the standard POSIX memory management primitives including malloc, calloc,
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Figure 4: (left) illustrates the virtual memory address (VMA) layout of each process. Sammati provides
memory isolation by transforming threads to processes. It uses shared memory objects and memory mapped
files to share global variables and the process heap among cords. (right) Illustrates how the VMA is manipu-
lated by our runtime system with a simple example. Initially all shared pages (1, 2, 3, 4) are write-protected.
When a process attempts to write to pages outside a lock context, the pages (1, 2) are then given write access.
On entering a lock context, only pages that were modified previously are write-protected (pages 1, 2). If a
thread attempts to write to a page (2) within a lock context, the page is privatized (lazy privatization) and
a copy of it is created (twin). Before exiting a lock context, the runtime system evaluates the modifications
by computing an XOR difference of the private page against its twin. It then checks for any write-write
races before applying difference to the page in the shared high-address space.

realloc, valloc and free.

Since stacks are local to each cord, Sammati does not share stacks among cords. Each cord has

a default stack of 8MB. The stack is created at cord creation and automatically freed when a cord

terminates.

4.2 Detecting Memory Updates Within Locks

In order to successfully perform rollback on deadlock recovery, the runtime system must be able

to precisely identify write accesses within locks. Hence, we define two contexts of execution for a

cord; a cord is said to be in a lock context if it acquires a lock and it remains in the lock context

until it releases the lock. In case of nested locks, a thread remains in lock context until all the locks
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it acquired previously are released (marked in bold in Figure 1).

In order to track accesses, Sammati initially write-protects (PROT READ) all pages of the

shared VMA. Read accesses to shared data do not produce any faults and execute as they would

otherwise. However, if a process attempts to write to a shared page (global data, heap), the runtime

system handles the access fault (SEGV ACCERR) and makes a note of the page and the current

context of execution. Sammati maintains a unique list of pages that were modified within the scope

of each lock. The permissions of the page are then set to read-write so that the cord can continue

its execution. On acquiring a lock, only the set of pages that were modified before acquiring a

lock are write-protected instead of protecting the entire shared VMA. This approach tracks the

write set of a cord between lock release and lock acquisition (ordinary memory accesses) and only

write-protects this write-set, thereby minimizing the cost of changing memory protection.

4.3 Privatization

When a cord modifies a shared VMA page from within a lock context, it is detected by the

occurrence of a segmentation violation (access error) since all pages in the shared VMA are write

protected. Sammati handles the access violation by remapping the faulting page from the shared

memory backing in MAP PRIVATE mode. In this mode, updates from the cord in the lock context

are no longer visible to other cords, effectively privatizing the page. Sammati then creates a copy of

the page (twin page), changes the page permission to read/write and returns from the segmentation

violation handler. The twin page is used to detect the actual memory updates on the page, which

are then committed when the cord exits a lock context. Note that the space overhead of this

solution is O(W), where W is the write set (in pages) within a lock context.

Intuitively, Sammati implements a lazy privatization scheme that defers privatization to the

instant when the first memory update occurs. Note that lazy privatization results in weak atomicity.

While a conservative privatization of the entire address space at the acquisition of the first lock in

a nested lock sequence would give us strong atomicity - this was in fact our original solution, the

measured runtime costs of this approach were far too high for applications with fine-grain locks.

Since standard lock semantics of mutual exclusion locks do not require strong atomicity, we chose

the more efficient lazy privatization approach and its resultant weak atomicity.
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4.4 Mutual Exclusion

Sammati provides mutual exclusion among processes by transforming all mutex exclusion locks

(pthread mutex t) within the program to process-shared (PTHREAD PROCESS SHARED) locks,

which enables their use among cords. Recall that in case of nested locks, a cord remains in lock

context until all the locks it acquired previously are released. On unlock, Sammati marks a lock

for release but defers the actual release of the lock until all locks in the nested lock sequence have

been released in program order (refer to section 3).

A subtle side effect of memory isolation occurs because locks in a threaded program are generally

global i.e., they reside in the shared VMA irrespective of how they are initialized (globals–statically

declared or heap–dynamically allocated). If a cord C acquires a lock and subsequently modifies

a page P, P is privatized. If P contains any definitions of lock variables (which may happen if P

contains parts of the .data section), they end up being privatized as well. If such a privatized lock

is subsequently used in a nested lock sequence by cord C, it no longer provides mutual exclusion

outside cord C since any updates to the lock (such as acquisition/release) are privatized and not

visible outside C. A simple solution to this problem would have been to modify the application

source code to allocate memory for all mutual exclusion locks from a distinct shared memory zone

that is not subject to privatization. However, this requires source code modifications and conflicts

with our goal of being a transparent runtime solution to deadlock recovery.

In order to address this side effects of privatization, we present a novel approach that leverages

the large virtual memory address (VMA) provided by 64-bit operating systems. Linux allows 48

bits of addressable virtual memory on x86-64 architectures and we use this feature to our advantage.

Recall that our runtime system maps globals and heap (described in 4.1) using shared memory

objects and memory mapped files. Using the same shared memory objects and memory mapped

file, Sammati creates an identical secondary mapping of the global data sections and heap at a high-

address (45th bit set) in the VMA of each cord. The application is unaware of this mapping, and

performs its accesses (reads/writes) at the original low address space. In effect, the high address

mapping creates a shadow address space for all shared program data and modifications (unless

privatized) are visible in both address spaces (shown in Figure 4). The high address space shadow

is always shared among threads and is never privatized.
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To perform mutual exclusion operations, we transform the address of a mutual exclusion lock

by setting the high address bit and performing the lock operation in the shadow address space.

Since the shadow address space is not subject to privatization, lock acquisitions and releases are

visible across all cords, correctly implementing mutual exclusion.

4.5 Inclusion

When a cord exits a lock context, updates contained in its privatized data must be made visible

and reconciled with other cords. In order to perform this inclusion, we need to identify the exact

write set of the lock context. To do this, for every page modified within a lock context, we compute

an XOR difference (byte wise XOR) between the the privatized version of the page and its copy

(twin) that was saved before any modifications were made within the lock context. The XOR

difference identifies the exact bytes that were changed. To perform inclusion, we apply the XOR

difference to the high-address region of the VMA (shown in Figure 4) by computing the XOR of the

difference and the high memory page, which makes the updates visible to all cords. Sammati then

reverts the privatization by discarding the privatized pages and remapping their shared versions.

Since the semantics of mutual exclusion locks prevent two cords from modifying the same data

under different locks, updates from concurrent lock releases would be to different regions within a

memory page. Hence the operation of applying XOR differences to the shadow address space is a

commutative operation and is thus implemented as a concurrent operation.

4.6 Detecting Write-Write Races

Sammati can detect and report write-write races that occur between (a) guarded and concurrent

unguarded updates to a shared value and (b) improperly guarded updates, where a single data value

is guarded by two or more different locks. Sammati identifies these data races during the inclusion

phase by by checking every word in the diff page. If the word is non-zero, then it indicates that the

cord has modified data within a lock context. Sammati then compares the word corresponding to

the non-zero value in its twin with its equivalent in the shadow address space that is shared across

all cords. In essence this comparison checks to see if some other cord modified a word that should

have been uniquely protected by the current lock context. If the two values are not equal then

this indicates that the same word was modified within the current lock context as well as by one
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or more cords. Since the race is detected at inclusion, Sammati can identify the race, but doesn’t

have enough information to identify the other cords involved in the conflict.

5 Performance Evaluation

5.1 Experimental setup

To analyze the impact of Sammati on threaded applications, we evaluated its performance

over SPLASH [31], Phoenix [24] and synthetic benchmark suites. The SPLASH suite contains

applications from several domains including high-performance computing, signal processing and

graphics. The Phoenix suite contains applications from enterprise computing, artificial intelligence,

image processing and scientific computing domains. The synthetic benchmarks contain programs

written intentionally to create deadlocks and deadlock examples from [16, 3] . We present a brief

description of the benchmarks used in this study in Table 1. We were able to run all the benchmarks

unmodified, except radix from SPLASH since it uses condition variables for communication among

threads, which as mentioned earlier is not supported in the current implementation of Sammati. We

ran each benchmark under two scenarios, one involving Sammati, where we pre-load our runtime

system using LD PRELOAD, and the other by running the vanilla pthreads application. The

performance results presented are the average of five independent runs of each scenario. Runtime

for each benchmark run was obtained through wallclock time, using the UNIX time command.

All performance measurements were obtained from a 16 core shared memory machine (NUMA)

running Linux 2.6.24-21 with 64GB of RAM. The system contained four 2 GHz Quad-Core AMD

Opteron processors, each with 512KB cache/cache.

Performance

Figure 5 illustrates the performance of Sammati and pthreads with SPLASH benchmarks. In

order to avoid scheduling noise and the runtime’s fixed startup costs, we report results of the

SPLASH benchmarks that have a runtime of at least a few seconds. The performance of Sammati

is comparable to pthreads for most applications with the exception of Ocean.

The primary reason for the fall-off in speedup for Ocean stems from our mechanism to detect

updates within a critical section. Recall that all shared data is maintained in read-only form.
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Benchmark Description

Histogram Generates a histogram of frequencies of pixels values (R,G,B) in an image
Kmeans Iteratively performs data clustering of N-dimensional data points
Linear regression Performs linear approximation of 2D points
Matrix multiply Computes the product of two matrices
PCA Performs principal component analysis on a matrix
String match Searches a list of keys in a file and checks it the keys match with a list of

encrypted words

Barnes Barnes-Hut algorithm to simulate interaction of a system of bodies (N-bodies)
FMM Fast Multipole Method to simulate interaction of a system of bodies (N-bodies)
Ocean Simulates large-scale ocean movements based on eddy and boundary currents
FFT Computes Fast Fourier Transform
LU Performs matrix factorization

Table 1: Benchmarks used in evaluation of Sammati

When updates to shared data occur outside a lock context, we store the page address in a write-

set list and change the page permissions to read/write. At the acquisition of the next lock, we

only change the page permissions of pages in the write-set list to read only, thereby avoiding the

cost of write protecting the entire data space. This implementation is biased towards fine-grain

locking where the write-set between lock contexts is small, which is not true for OCEAN. When

the write-set between lock contexts is large, the cost of handling the access error and changing the

page permissions outweighs the benefits from this approach. Note that in this scenario, the rate of

lock acquisitions is small. In the future we expect to automatically deduce the write set between

lock contexts and tune the policy based on application behavior.

In Figure 6(c) we present the results of Phoenix benchmark suite. Sammati achieves almost

identical performance to that of native pthreads with the exception of linear regression and pca

where Sammati achieves slightly better speedup than pthreads. This is because by default when

threads are created they are “affinitized” to the same core and it takes a while for the operating

system load balancer to move the threads from one core to another in an attempt to balance the

CPU workload. In contrast, processes in Linux are started on distinct cores when they are spawned

and benefit from the larger cache almost immediately.

We measured the number of locks acquired and lock-acquisition-rate (total locks acquired/total

runtime) for all applications used in this study. In Table 2 we present the results that show widely

varying rates across the spectrum of applications from the SPLASH and Phoenix suites. While

Sammati’s runtime is impacted by lock acquisition rate, it shows speedup comparable to the native
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Figure 5: Performance of applications from the SPLASH benchmark suite with Sammati on a 16 core
system. The results show that Sammati has relatively small impact on speedup (except when the runtime is
small), but impacts runtime, particularly for applications with fine-grain locking. In contrast, transactional
memory implementations generally have significant impact on speedup.

pthreads case. This is in contrast to transactional memory systems have significant impact on

speedup, largely due to privatization at the instruction level and the need to guard reads from

read/write conflicts. [6].

Deadlock detection and recovery

In Figure 6 we present a few examples from our synthetic benchmark suite. In the first exam-

ple, two threads (shown in Figure 6(a)) acquire locks (L1 and L2) in different orders that could

potentially result in a cyclic dependency among threads depending the ordering of the threads. In
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Benchmark Number of Threads Number of Locks Lock acquisition rate (locks/sec)

PCA

1 10001 4.73

2 10002 9.40

4 10004 18.51

8 10008 26.161

16 10016 28.46

Barnes

1 275216 20630.88

2 275222 43616.79

4 139216 46842.53

8 112228 75119.14

16 53753 53968.87

FMM

1 4517437 6838.26

2 4521242 13782.92

4 4543919 27171.02

8 4559515 51836.23

16 4586903 89490.069

Ocean (contiguous)

1 173 0.1765

2 346 0.702

4 692 2.85

8 1384 11.178

16 2768 43.328

Table 2: Illustrates the number of locks acquired and lock acquisition rate for a few benchmarks from
SPLASH and Phoenix suite.

order to induce a deadlock, we added a sleep statement to thread-1 after the acquisition of lock

L1, this resulted in a deterministic deadlock among the two threads. Sammati reliably detects and

recovers from this deadlock. In figure 6(b)) we illustrate an example involving a cyclic dependancy

of lock acquisition among multiple threads.

Thread 

acquire(L1);

sleep(1);

acquire(L2);

(b)

Thread 2

acquire(L2);

sleep(2);

acquire(L3);

Thread 3

acquire(L3);

sleep(3);

acquire(L1);

Thread 1

acquire(L1);

sleep(2);

acquire(L2);

(a)

Thread 2

sleep(1);

acquire(L2);

acquire(L1);

histogram kmeans linear_regression matrix_multiply pca string_match
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Figure 6: (a) illustrates a simple deadlock between two threads due to cyclic lock acquisition. (b) depicts a
more complex example of deadlock involving more than two threads. The native pthreads program hangs on
such deadlocks. Sammati successfully detects such deadlocks, recovers from them transparently and executes
the program to completion. (c) Illustrates the performance of Sammati and pthreads for Phoenix benchmarks
on a 16 core machine. The performance of Sammati is identical to pthreads for most applications.

6 Ongoing work

We are working in several extensions to Sammati to reduce the runtime overhead. First, we are

working on moving the implementation of cords and privatization into the Linux kernel. During

lock acquisition, Sammati write protects all pages in the shared VMA. The first write access to
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a page n a lock context results in an access fault inside the Linux kernel, which then generates

a fault to our user level segmentation violation handler. By handling the fault and creating the

twin within the kernel, we can halve the cost of fault handling, which is the main component

of the performance overhead of fine-grain locks. Second, we are working on an API that can be

used by program analysis to tell us the write-set within a lock, which can then be privatized at

lock acquisition without incurring the fault handling overhead of our current solution. We believe

that there are a significant number of cases where program-analysis can determine the write-set,

and where it cannot, we can automatically fall back to the current runtime solution. Finally,

we are working on a speculative execution model that uses Sammati’s privatization to enable

several hard to parallelize algorithms to execute concurrently in the same data space. The basic

idea here is to extend the acquire/release semantics of a lock to acquire/commit/abort. Multiple

algorithms can operate concurrently over the same data - for instance multiple sort algorithms, or

multiple numerical quadrature codes - with the results coming from the first algorithm to complete

successfully.
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