
The Next 700 Access Control Models or a Unifying
Meta-Model?

Steve Barker
Dept. Computer Science, King’s College London

The Strand, London, WC2A 2LS
steve.barker@kcl.ac.uk

ABSTRACT
We address some fundamental questions, which were raised by
Atluri and Ferraiolo at SACMAT’08, on the prospects for and ben-
efits of a meta-model of access control. We demonstrate that a
meta-model for access control can be defined and that multiple ac-
cess control models can be derived as special cases. An anticipated
consequence of the contribution that we describe is to encourage re-
searchers to adopt a meta-model view of access control rather than
them developing the next 700 particular instances of access control
models.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls.

General Terms
Security.

Keywords
Access Control Models, Access Control Policies

1. INTRODUCTION
In his influential paper, entitled “The Next 700 Programming

Languages” [17], Peter Landin emphasized that rather than com-
puter scientists developing n special programming languages for
n application areas (n ∈ N), it is essential for them to identify
instead a set of programming language “primitives” from which a
specific subset may be selected as the basis for deriving a particular
language (for a particular area of application).

Over a number of years, researchers in access control have pro-
posed a variety of models and languages in terms of which autho-
rization policies may be defined. Despite the multitude of proposed
access control models that have hitherto been described in the lit-
erature, we take the view that existing access control models are
essentially based on the same (small number of) primitive notions,
and that these primitives are interpreted in a limited (and limiting)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’09, June 3–5, 2009, Stresa, Italy.
Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

manner. The essential primitive notions that we identify as com-
mon to access control models (and access control specification lan-
guages that are based on these models) are: approaches for cate-
gorizing entities, methods for describing their properties and the
relationships between them, and a means for specifying a range of
modalities (of which permission and authorization are of interest,
but not exclusively so).

In the approach that we advocate, the primitives of access control
that we identify are given a more general interpretation than is usual
in access control. Our liberal interpretation will reveal that multiple
access control models can be expressed in terms of the primitive
notions that we identify, that the degree of overlap amongst existing
access control models is significant, and that many “novel” access
control models can potentially be developed by simply combining
the primitives of access control in novel ways. A consequence of
our work is to conclude that research into the universal aspects of
access control models should be given prominence rather than the
research community continuing to focus on the development of the
next 700 particular instances of access control models.

Our work also directly addresses some profoundly important ques-
tions in access control, which were raised at SACMAT’08. The
specific questions of interest to which we allude are those raised
by Atluri and Ferraiolo [12]. By paraphrasing and combining their
words, the Atluri-Ferraiolo questions can be expressed thus:

• Is it possible for a unifying access control meta-model to be
developed given the large diversity and types of existent ac-
cess control policies?

• What practical good would such a meta-model serve?

We suggest that the answer to the first question is “yes”. In the
remainder of the paper, we will give reasons for answering this
question in the affirmative. In answer to the second of the Atluri-
Ferraiolo questions, we assert that there are many theoretical and
practical reasons for developing a unifying access control meta-
model. For example, having a general, unifying meta-model of
access control is important for providing a common basis for spec-
ifying a range of access control notions, which, in turn, facilitates
the sharing of access control policy information (including the shar-
ing of policy information by composition). In the ensuing discus-
sion, we will explain more fully the benefits of developing an ac-
cess control meta-model of the type that we will describe. We will
also address potential sources of scepticism about the possibility
and potential benefits of a meta-model of access control.

The remainder of this paper is organized thus. In Section 2, we
describe the conceptual primitives on which our approach is based:
the categorization of principals, the relationships between these cat-
egories, and the modalities of relevance in access control. In Sec-
tion 3, we describe a logic language for describing the meta-model

187

of access control that we propose. In Section 4, we show how arbi-
trary access control policy requirements can be represented in our
proposed meta-model by making small changes to the core con-
cepts that constitute our meta-model. We also show how a range
of existing access control models and some novel access control
models may be viewed as instances of our meta-model. In Sec-
tion 5, we briefly discuss the “practical good” that a meta-model
might deliver. In Section 6, we discuss related work. In Section 7,
conclusions are drawn and further work is suggested.

2. FUNDAMENTAL CONCEPTS
In this section, we briefly describe access control in general terms

and in relation to the primitive notions of categories, relationships
between categories and between categories and principals, and modal-
ities. We also introduce a simple syntax and semantics for dis-
cussing these concepts.

Informally, a category (a term which can, loosely speaking, be
interpreted as being synonymous with, for example, a type, a sort,
a class, a division, a domain) is any of several fundamental and
distinct classes or groups to which entities may be assigned. In
the approach that we introduce, we regard categories as a primitive
concept and we view classification types used in access control, like
classifications by role, user attributes, status, clearances, discrete
measures of trust, team membership, location, . . . , as particular
instances of the more general class of category.

It is important to note that we are not concerned with estab-
lishing an a priori necessarily complete set of categories for ac-
cess control, and we also only give a descriptive, language-based
account of categories. However, the categories that may be used
in our meta-model can be arbitrarily complex (e.g., by combining
subcategories) and multiple subcategories can be derived from any
number of (super-)categories.

In the alphabet that we use to describe our family of access con-
trol models, we take the set of entities, which may be referred to
in a specification of access control requirements, as a primitive
ontological category. Entities are the subjects of predication and
cannot themselves be predicated. Entities are denoted uniquely by
constants in a many sorted domain of discourse. The key sets of
constants in the universe of discourse that we assume in our formu-
lation are as follows:

• A countable set C of categories, where c0, c1, . . . are used to
denote arbitrary category identifiers.

• A countable set P of principals, where p0, p1, . . . are used
to identify principals.

• A countable set A of named atomic actions, where a0, a1,
. . . are used to denote arbitrary action identifiers.

• A countable set R of resource identifiers, where r0, r1, . . .
denote arbitrary resources.

• A countable set S of situational identifiers.

• A countable set E of event identifiers, e0, e1, . . .

Entities in the set P will include any elements (typically denoted
by their public key) that may access a resource in a computer sys-
tem to which access must be controlled or which may make asser-
tions about other principals (cf. credentials). We assume that prin-
cipals that request access to resources are pre-authenticated. The
actions that we allow are represented by using arbitrary strings of
characters that name arbitrary actions that principals may perform;
we do not restrict attention to a small, pre-defined set of operations
(as is typical in access control models). The situational identifiers

that we admit are used to denote contextual or environmental in-
formation e.g., IP addresses, times, system states, external states,
etc. The precise set S of situational identifiers that is admitted
will, of course, be application specific. On times, we adopt a one-
dimensional, linear, discrete view of time, with a beginning and no
end point. That is, the model of time that we choose is a total or-
dering of time points that is isomorphic to the natural numbers. In
this paper, we represent times in YYYYMMDD format, an encoding
of times as natural numbers. Locations and system state indicators
are assumed to be represented by strings of characters e.g., “Eu-
rope”, “System under attack”. Event identifiers uniquely denote
happenings at a point in time.

It should be noted that although our focus will be on the catego-
rization of principals, categories of other types of entities from our
alphabet can be usefully employed in access control. For instance,
actions can be viewed in terms of sub-actions, events can be cate-
gorized by day of occurrence, contextual information may be used
to categorize machines, system states, . . . , and a resource can be
defined in terms of the sub-resources that it includes.

In addition to the different types of entities that we admit, we
consider properties of and relationships between entities.

A property is expressed by a 1-place predicate of the form p(τ),
where τ is a term. For example, current_time(t) specifies that
t has the property of being the current time according to a sys-
tem clock. Relations are used to describe how one entity may be
related to another. Terms of the type that are included in our al-
phabet may be used in relations. For example, p(b, d, t) may be
used to express that p(b, d) holds at time t. Notice too that partic-
ular relations may be admitted for particular representations of ac-
cess control requirements (e.g., ordering relations), and any number
of application-specific relations may be defined in order to satisfy
domain-specific requirements.

In our approach, the following two relations are of primary im-
portance:

• PCA is a relation, PCA ⊆ P × C.

• ARCA is a ternary relation, ARCA ⊆ A×R× C.

The semantics of the elements in PCA and ARCA are defined
thus:

• (p, c) ∈ PCA iff a principal p ∈ P is assigned to the cat-
egory c ∈ C. Henceforth, pca(p, c) will be used to express
that principal p is assigned to the category c.

• (a, r, c) ∈ ARCA iff the action a ∈ A on resource r ∈
R can be performed by principals assigned to the category
c ∈ C. Henceforth, arca(a, r, c) will be used to express that
the a action can be performed on resource r by a principal
assigned to category c.

For access control models, two modalities are of prime impor-
tance: permissions and authorizations. A permission is a pair (a, r)
that denotes that the action a may be performed on resource r.
Hence, arca(a, r, c) denotes that the permission (a, r) is assigned
to c ∈ C. An authorization in access control is a principal-assigned
permission PAR. That is:

• PAR is a ternary relation, PAR ⊆ P ×A×R.

• (p, a, r) ∈ PAR iff a principal p ∈ P can perform the ac-
tion a ∈ A on the resource r ∈ R. Henceforth, par(p, a, r)
will be used to express that the a action on resource r, the
permission (a, r), is assigned to the principal p.

188

The set PAR is the set of authorizations that hold according to a
specification of an access control policy, Π; the set of par(p, a, r)
facts that hold with respect to Π may be expressed, in first-order
terms, thus:

∀p ∈ P ∀a ∈ A ∀r ∈ R ∃c ∈ C[pca(p, c) ∧ arca(a, r, c)
⇒ par(p, a, r)].

Access control models will also typically include a relationship ρ
between categories that defines (typically) an inclusion relationship
between categories c and c′. Hence, par is more generally defined
thus:

∀p ∈ P ∀a ∈ A ∀r ∈ R ∃c ∈ C ∃c′ ∈ C[pca(p, c) ∧
ρ(c, c′) ∧ arca(a, r, c′) ⇒ par(p, a, r)].

It should be noted that we have used the word “can” when re-
ferring to the actions a principal is allowed to perform with respect
to a resource. In access control, “can” is standardly interpreted as
being synonymous with a principal’s possession of a permission.
In later sections of this paper we will consider a more general in-
terpretation of “can” than is normal in access control. This general
interpretation is required in order to construct the type of general
meta-model of access control that we wish to develop.

As a final point on foundational matters, we note that sessions,
delegation, denials of permissions and conflict resolution strategies
are not considered in the version of the meta-model that we de-
scribe in this paper. However, these notions can be naturally ac-
commodated if needs be.

3. RULE LANGUAGE
In this section, we briefly describe a logic language that: will be

used by us later in this paper to describe our meta-model; provides
a formal semantics for the meta-model; and enables us to specify
examples of access control policy representation in terms of the
meta-model. Henceforth, we will refer to specifications of access
control requirements in our logic language as access control pro-
grams. We restrict attention to (locally) stratified programs [2]. It
should be noted that the rule language that we use is quite general
and is based on the syntax of constraint logic programs because,
as we will see, constraints are important (albeit not necessary) for
representing access control requirements in the framework that we
describe. Nevertheless, equally serviceable syntactic forms, with
equally well defined logical semantics, may be used to specify ac-
cess control programs in our framework.

We begin by defining the key notions of a primitive constraint
and a constraint.

DEFINITION 3.1. A primitive constraint c has the form p(t1, . . . ,
tn) where p is a (predefined) constraint relation of arity n and
t1, . . . , tn are terms. A constraint C is a conjunction of primitive
constraints c1 ∧ · · · ∧ ck where ∧ is the logical ‘and’ operation.

We admit equational constraints over sets of constants that de-
note elements from the alphabet that we adopt. The only terms
of interest are constants and variables, and the only primitive con-
straints of interest are of the form t1 = t2 and t1 �= t2. In
the remainder of the paper, constants in our logic language will
be denoted by symbols that appear in the lower case; variables
are denoted by symbols that start with an upper case letter. We
also admit constraints over non-negative integers. Terms are con-
structed from variables, integer constants and the arithmetic opera-
tors ×,÷, +,− and mod; primitive constraints are restricted to the
predefined constraint relations =,≥,≤, >, < and �=. These rela-
tions and the arithmetic operators that we admit are assumed to be
predefined in all access control programs.

A rule in an access control program Π takes the following form,
which we will later specialize:

H ← L1, . . . , Ln.

Each rule, H ← L1, . . . , Ln, in which Li (1 ≤ i ≤ n) is a pos-
itive or a negative literal, corresponds to the first-order statement
(clause) ∀̃(H ← L1 ∧ · · · ∧ Ln) where ∀̃ is universal closure.

The semantics of access control programs that we define are ex-
pressed in terms of Clark’s completion [10].

DEFINITION 3.2. The definition of an n-place predicate sym-
bol p in an access control program Π is the formula

∀X1 . . .∀Xn p(X1, . . . , Xn) ↔ B1 ∨ . . . ∨ Bm

where ∨ is logical or, ↔ is bi-implication and each Bi corresponds
to a rule in Π of the form

p(t1, . . . , tn) ← L1, . . . , Lk.

Here, Li (1 ≤ i ≤ k) are literals that may be defined in a local
program or in a remotely located program identified by υ. In the
latter case, we write Li � υ. In the case where a condition of the
form Li � υ appears in a rule in a program π, the access control
program of interest is the set of rules in π ∪ υ.

The Bi elements take the form

∃Y1 . . .∃Yj (X1 = t1 ∧ . . . ∧ Xn = tn ∧ L1 . . . ∧ Lk)

where Y1, . . . , Yj are the variables in the original rule, and X1, . . . ,
Xn are variables that do not appear in any rule.

If there is no rule with head p, then the definition of p is simply

∀X1 . . .∀Xn ¬p(X1, . . . , Xn).

DEFINITION 3.3. The (Clark) completion, Π�, of an access con-
trol program Π is the conjunction of the definitions of the user-
defined predicates in Π.

The following results establish that access control programs are
categorical.

PROPOSITION 3.4. If Π is an access control program such that
the evaluation of all access requests terminate then Π� has a unique
two-valued model.1

The result that follows next demonstrates the coincidence of the
logical and an operational semantics for negation-as-failure safe
programs [9].

PROPOSITION 3.5. Let G be an access request and Π be an
access control program that is negation-as-failure safe for G. Then,
Π� |= G ↔ C iff there are answers C1, . . . , Ck to G with respect
to Π (using negation-as-failure) such that C ↔ C1 ∨ · · · ∨ Ck.

In the next two sections, the rule-based language will be used to
describe a variety of particular access control models in a common
form.

4. AN ACCESS CONTROL META-MODEL
Our meta-model of access control, M, is based on a single core

axiom (which is derived from the first-order expression of par from
Section 2), to wit:

par(P, A,R) ← pca(P, C), contains(C, C′), arca(A,R, C′).

1Termination analysis may be used to ensure termination for all
queries of interest. [14]

189

As the predicate name suggests, contains is a containment re-
lation that expresses that the category C contains the category C′.
In terms of principals, the semantics of contains(C, C′) is that
the set of principals assigned to C′ ∈ C is a subset of the set of
principals assigned to C ∈ C.

By choosing different definitions of pca, contains and arca, the
core par axiom of M can be specialized in multiple ways to de-
fine different instances of access control models. It should also be
clear that it is perfectly possible for par not to include a contains
condition if that is not required for a domain-specific application
and it is equally possible for more than one contains relation to be
defined in an instance of M.

In the next three subsections, we consider alternative definitions
of pca, contains and arca and the different access control models
that can be naturally derived from M by changing their definitions.

4.1 pca Definitions
One way in which a policy author can define access control mod-

els in terms of M is to use pca definitions to define, specialize
or combine categories of interest to meet domain-specific require-
ments. Definitions of pca are specified by using rules of the form
defined next.

DEFINITION 4.1. Definitions of pca are expressed in the form:

pca(P, C) ← P1, . . . ,Pn, L1, . . . , Lp, C1, . . . , Cm.

Here, Pi (1 ≤ i ≤ n) is a condition (possibly negated) that is
expressible (recursively) in terms of pca, Li (1 ≤ i ≤ p) is an
arbitrary literal, and Ci (1 ≤ i ≤ m) is a sequence of constraints.
Any of P1, . . . ,Pn, L1, . . . , Lp can be defined at a remotely acces-
sible source or locally. In the former case, the condition is of the
form Pi � υ or Li � υ where υ is the source of the definition
of the literal that appears in the body of a pca rule. P1, . . . ,Pn,
L1, . . . , Lp and C1, . . . , Cm are sets of conditions that are dis-
joint, in a pca rule, ν, and any of these sets may be empty in ν.

Once a category c has been defined by a policy author α, α’s
definition of c can be used by any number of other policy authors.
In particular, if α asserts that a principal p is assigned to a category
c then any policy author that sufficiently trusts α’s categorization
of p as one of α’s c’s can refer to that category in its specifications
of access control requirements.

EXAMPLE 1. Consider the following policy requirements:

Principals are assigned to the preferred category if
they are categorized as being loyal and their current
account balance is greater than 1000 Euro (which causes
them to be categorized as members of the goodbalance
category).

To represent these requirements by using our approach, it is suffi-
cient to use the following definitions (assuming that all definitions
are local):

pca(P, pref) ← pca(P, loyal), pca(P, goodbalance).

pca(P, goodbalance) ← balance(P, X), X ≥ 1000.

Here, pref , loyal and goodbalance are domain-specific ele-
ments in the general class of categories. �

The important thing to note from the previous example is that any
categories can be referred to in the generic, meta-model that we are
proposing; our proposal is not restricted to particular types of cat-
egories. Thus, principals may be assigned to categories according
to whether they have a shared attribute, a shared measure of trust, a
common security clearance, as a consequence of an assignment to
the same department, division, organization, as a consequence of

actions or events, . . . or any combination of these forms of cate-
gory types. As access control models are based on category types,
it follows that different access control models can be flexibly con-
structed by combining different types of categories. Moreover, a
range of access control concepts can be understood in category-
based terms. For example, notions like provisional authorizations
(or pre-access obligations) can be represented in category-based
terms: a principal that assumes an obligation may be assigned to
a category of principals that are obligated to discharge that obliga-
tion at some future chronon. It follows from this that we do not
distinguish between, for example, what a principal is, has, could
be, etc. A principal may be a member of a manager role, have the
attribute of being an adult, assume an obligation, . . . The notion
of category is sufficiently powerful to accommodate these partic-
ular interpretations. As such, there is no reason to develop 700
access control models to treat these requirements individually; cat-
egories are a unifying concept for a meta-model that is capable of
accommodating access control requirements, in general.

It should also be noted that although conditions for principal-
category assignment can, of course, be expressed in arbitrary (Turing-
complete) rule-based access control languages, our motivation is to
make categories the basis for access control rather than rules being
used to define categories in an ad hoc manner. Several rule-based
access control models have been described in the access control lit-
erature (see, for example, [4]), but these are just ad hoc variants of
the meta-model that we propose in this paper.

The next example that we give illustrates the representation of
trusted third-party assertions in our approach.

EXAMPLE 2. Consider the following policy requirements:

In a local policy specification, any principal P is as-
signed to the category approved_uni if a principal Y
is assigned to the category of trusted_on_uni and Y
asserts that P is assigned to the category good_university.

To represent these requirements, the following definition of pca is
sufficient:

pca(P, approved_uni) ← pca(Y, trusted_on_uni),
pca(P, good_university) � Y.

�

Many other aspects of access control can be treated, quite gen-
erally, within our approach. For example, various access control
algebras can be understood as defining particular relationships that
exist between the particular types of categories that hold in domain-
specific applications for which access control models (and policies)
are typically specified. Rather than viewing algebras as a basis for
combining policy rules, an algebra of categories allows for rules to
be combined and applied to categories of principals. The next defi-
nition and example demonstrate how a disjunctive operator can, for
example, be simulated and used for specifying particular types of
principal-category relationships by using definitions of pca.

DEFINITION 4.2. Take Pij (1 ≤ i ≤ n, 1 ≤ j ≤ k) to be a
condition expressed in terms of the pca predicate, take Lij (1 ≤
i ≤ p, 1 ≤ j ≤ k) to be literals that are not expressed in terms
of pra, take Cij (1 ≤ i ≤ m, 1 ≤ j ≤ k) to be a constraint on
p ∈ P , c ∈ C or a term in L11 , . . . , Lp1 . . . L1k , . . . , Lpk , and let
Π denote an access control program then

pca(P,C)1 ← P11 , . . . ,Pn1 , L11 , . . . , Lp1 , C11 , . . . , Cm1
...
pca(P,C)k ← P1k , . . . ,Pnk , L1k , . . . , Lpk , C1k , . . . , Cmk

190

expresses that ∀P ∈ P , P is assigned to the category C ∈ C
if for some rule ν with the head pca(P, C)l, (1 ≤ l ≤ k), the
Pi conditions in ν are provable from Π (∀i, i ∈ {1, .., n}), Lq is
provable from Π (∀q, q ∈ {1, .., p}), and Cj is satisfiable (∀j, j ∈
{1, .., m}) with respect to Π.

EXAMPLE 3. Principals that are categorized by having a clean
driving license (cdl) according to the Driving Vehicle Licensing Au-
thority database (dvla) or have preferred status (ps) are assigned
to the “most-valued” customer (mvc) category:

pca(P,mvc) ← pca(P, cdl) � dvla.
pca(P,mvc) ← pca(P, ps).

�

For extra convenient expressive power, categories can be param-
eterized. For instance, pca(P, manager(b1)) may be used as an
alternative to

pca(P, manager_b1).

More generally, variables may be used in paramaterized expres-
sions.

4.2 Containment and par Definitions
In the previous section, we considered the flexible specification

of access control requirements in terms of pca definitions. In this
section, we combine pca definitions and definitions of containment
relations to define flexibly a range of particular existing access con-
trol models and we show how any number of novel access control
models can be represented as specialized instances of our meta-
model, M.

In the field of access control, role-based access control (RBAC)
has a special importance currently; it has even been speculated that
RBAC in itself provides the basis for a meta-model for access con-
trol [12]. However, we reject the latter view on the grounds that
a role is just a special case of the more general notion of category
and, as we will see, RBAC is also a specialized instance of M.

Standard RBAC models [13, 1] assume a single (limited) form
of category: the role. In ANSI Hierarchical RBAC, role hierarchies
are the only form of category-category relationships that are admit-
ted. In all of the ANSI RBAC models only limited modalities of
permissions and authorizations are considered (under a restricted
interpretation of “can” cf. Section 2).

In terms of our access control primitives, the axioms that define
hierarchical RBAC can be expressed thus (where ‘_’ denotes an
anonymous variable):

par(P,A, R) ← pca(P,C), contains(C, C′), arca(A,R, C′).

contains(C, C) ← dc(C, _),
contains(C, C) ← dc(_, C),
contains(C′, C′′) ← dc(C′, C′′),
contains(C′, C′′) ← dc(C′, C′′′), contains(C′′′, C′′).

In this instance, contains is a definition of a partial order rela-
tionship between pairs of categories (here restricted to roles) that
are in the transitive-reflexive closure of a “directly contains” rela-
tion on role identifiers, dc(ri, rj), such that: Π |= dc(ri, rj) iff the
role ri ∈ C (ri �= rj) is senior to the role rj ∈ C in an RBAC
role hierarchy defined in the access control program Π and there
is no role rk ∈ C such that [dc(ri, rk) ∧ dc(rk, rj)] holds where
rk �= ri and rk �= rj .

The definition of contains assumes that the following property
holds on categories (restricted here to roles):

∀ri ∈ C ∃rj ∈ C [(dc(ri, rj) ∨ dc(rj , ri)) ∧ (ri �= rj)].

The axiomatization of Hierarchical RBAC models reveals an at-
tractive simplicity of this form of RBAC model. The simplicity
appears to be reasonably sufficient for the types of restricted autho-
rization policies that RBAC admits under the simplifying assump-
tions that it adopts (e.g., principals can be assigned to well-defined,
relatively static job functions in “traditional” forms of organiza-
tions, . . .). Nevertheless, there are many types of practical access
control policies and requirements that need to be represented, but
which cannot be adequately expressed in the ANSI RBAC family.
Hence, many extended forms of RBAC have been proposed in the
access control literature. One such (apparently) extended form of
RBAC is Status-based Access Control (SBAC) [3].

At first sight, it may appear that SBAC generalizes RBAC by
making an important distinction between ascribed status (of which
a role assignment is a particular type) and action status. That is,
principals can be assigned to a category as a consequence of them
being a particular office-holder, but their actions (as office-holders)
are also taken into account to determine their overall status. This
overall status is used as the basis for determining authorized forms
of actions. Thus, ascription is a basis for categorization and so too
is the history of an agent’s actions. However, ascription and ac-
tion are simply particular types of category in SBAC. As such, the
SBAC extension of RBAC is, in effect, simply one that combines
two category types in order for access control decisions to be made.
In the meta-model of access control that we propose, any number
of categories can be so combined and thus many access control
models may be accommodated, including SBAC.

To accommodate action status from SBAC, the axioms of our
general model of access control may be simply specialized thus
(with the above definition of contains assumed and with T - Ts

being the interval of time during which a relationship holds):

par(P, A,R) ← pca(P, C), contains(C, C′), arca(A,R, C′).

pca(P, C) ← current_time(T), happens(E,Ts),
agent(E,U), act(E,A), Ts < T,

pca_init(E, P, A, L, Ts, T),
not ended_pca(P,L, Ts, T).

ended_pca(P, L, Ts, T) ← happens(E′, T ′),
agent(E′, U), act(E′, A′),

pca_term(E′, P, A′, L, Ts, T),
Ts < T ′, T ′ ≤ T.

By changing the definitions of pca and contains (and, as we
will see later, by changing the definitions of arca) new forms of
access control models can be derived as particular instances of our
meta-model. As an example of that, suppose that a categoriza-
tion of principals by spatial position were required to determine the
principal’s set of authorizations. For that, an access control model
may be defined as being based, in part, on a categorization of prin-
cipals by their current location (say). A contains relation may then
be defined in terms of dc where dc is used to define geographical re-
gions that are ordered by direct containment (e.g., dc(europe, uk)
perhaps). In this case, pca may be defined by using rules of the
standard form,

pca(P, C) ← P1, . . . ,Pi, L1, . . . , Lm, C1, . . . , Cn,

but where C′ is a categorization of P by location that is ex-
pressed by pca(P, C′) and where pca(P,C) is one of P1, . . . ,Pi.
Again, the key point to note is that multiple forms of access control
model can be defined as particular cases of M.

Although SBAC may be viewed as a general form of RBAC,
MAC and DAC can be viewed as special cases of RBAC (as has

191

already been noted in the access control literature, see, for exam-
ple, [21]). In terms of our proposed framework, a version of the
Bell-LaPadula model [6] may be viewed as a restricted form of the
Hierarchical RBAC model, in which contains is as previously de-
fined and with par defined thus:

par(P, read,R) ← pca(P, C), contains(C, C′),
arca(read,R, C′).

par(P,write, R) ← pca(P,C), contains(C, C),
arca(write,R, C).

In this case, the containment relationship is an ordering of cat-
egories that are restricted to being defined on a common set of
security classifications for resources and security clearances for
principals. The par definitions represent the rules “no read up”
and “write only at the subject’s classification level,” which are the
core axioms of strict MAC (as the latter term is interpreted in Bell-
LaPadula terms). The key point to note is that par may be defined
as a specialized form of the axiomatization of M.

At this point, another aspect of the generality of M needs to be
considered. Recall that we allow the set A to include strings of
characters that denote arbitrary (atomic) actions. In access control,
in general, it is often assumed that read and write are the only ac-
tions of interest (cf. strict MAC); access control models that make
this assumption are invariably constrained in terms of their expres-
siveness.

Although there are a many variations, any number of discre-
tionary access control models may also be understood in category-
based terms. This should not be too surprising given that groups are
a particular type of category and an individual principal p is itself a
category: the category that is defined by the singleton {p}. Delega-
tion via a “with grant option” can also be represented by defining a
contains relation as the transitive closure of a form of the dc(c, c′)
relation, which may be used to specify that c directly delegates per-
missions to c′. We also note that the discretionary access control
model of Unix can be understood in terms of group and other as
categories of principals.

Thus far in our discussion, we have considered a variety of basic
forms of access control models and their representation in terms
of M. Once these basic models have been constructed, they can
be specialized further to satisfy a yet wider range of application-
specific requirements. For example, pca(P, C, Tstart, Tstop) and
arca(P, R,C, Tstart, Tstop) definitions may be introduced to ex-
press intervals of time (i.e., [Tstart, Tstop]) during which principal-
category assignments and permission-category assignments hold.
To accommodate such generalizations, we simply require that the
core axioms of M be specialized too. Specifically, the following
form of par may be used:

par(P, A,R) ← current_time(T), pca(P, C, T ′, T ′′),
contains(C, C′), arca(A,R, C′, T ′′′, T ′′′′),

T ′ ≤ T, T ≤ T ′′, T ′′′ ≤ T, T ≤ T ′′′′.

Notions like relative times and periodic times (cf. [7]) can also
be naturally defined in order to represent application-specific re-
quirements that are expressible in terms of par.

It should also be noted that par can be defined recursively. This
allows for multiple additional access control models to be con-
structed as particular instances of M. For example, suppose that
the domain-specific requirements were for an access control model
that combined categorization by status (from SBAC) and catego-
rization by clearance/classification (from MAC). For that, an SBAC
program υ1 may be combined with an MAC program υ2 by using

the following definition:

par(P,A, R) ← par(P,A, R) � υ1, par(P,A, R) � υ2.

As far as access control models based on trust are concerned, we
regard the association of a trust measure with a principal as the as-
signment of the principal to a category of users that have the same
degree of trust according to some authority. Moreover, we accom-
modate assertions made by trusted third parties in our framework
by allowing specifications of properties by p(τ) � υ and rela-
tions by p(τ1, . . . , τn) � υ (where τ and τi, i ∈ {1, . . . , n} are
terms). We note that, interpreted in terms of certification-based ac-
cess control, our use of relations of the form p(τ1, . . . , τn) � υ
is essentially the same as principals using n-tuples of the form
p(τ1, . . . , τn) to express assertions about public keys via υ (cf.
SPKI certificates [11]).

On the RT family of role-trust access control models specifi-
cally, we note that the proposers of the RT family [18] begin to
address some of the concerns that motivate our paper (concerns on
providing a general framework for specifying access control poli-
cies). In RT , the notions of roles and “attributes” of principals are
used, and trust and role concepts can be combined to allow for a
range of access control models to be represented using a common
syntactic basis. Nevertheless, roles and trust are simply particular
types of category and multiple forms of categories can be combined
in M, as we have shown, to accommodate a wider range of access
control models than the models admitted in RT .

In RT , a number of general rules are proposed for specifying
credentials. For example, the following RT credential (in which
A.r(τ1, . . . , τn) and B.r1(σ1, . . . , σm) are roles expressed using
the terms τ1, . . . , τn, σ1, . . . , σm)

A.r(τ1, . . . , τn) ← B.r1(σ1, . . . , σm)

has the following equivalent representation in terms of pca def-
initions (where C1, . . . , Cm are constraints on terms that are vari-
ables cf. the definition of pca above):

pca(P, A.r(τ1, . . . , τn)) ← pca(P, B.r1(σ1, . . . , σm)),
C1, . . . , Cm.

Other forms of credential that are expressible in the RT syntax
can be equivalently represented in terms of the primitives and ax-
iomatization that we admit in M. What is more, we adopt a more
general interpretation of category, than the one used in RT , which
includes categories defined in terms of events, ticks of a clock, his-
tories of actions, the current location of a requester for access, sys-
tem states, . . . ; in short, any category can be admitted in a policy
specification expressed in terms of M.

To appreciate further the expressiveness that our proposal af-
fords, consider the following example, which demonstrates how
complex access control requirements can be simply represented in
M and how a range of different access control models can be flex-
ibly accommodated in this meta-model.

EXAMPLE 4. Suppose that the following access control require-
ments need to be represented:

Any principal that is a member of the category Senior
Executive (s_exec), is permitted to read the salary in-
formation (as recorded in υ2) of any principal that is
assigned to the category of manager (details recorded
locally) of a branch that is categorized as profitable (as
recorded in υ3). To be categorized as a senior execu-
tive, a principal must be categorized as being a man-
ager (mgr) of at least five years standing (according
to the source of this information, υ1).

192

In this case, it is necessary to deal with various forms of categoriza-
tion including categorization of an institution (a branch office) hav-
ing a particular status (of being profitable). To represent these re-
quirements, the following specialized axioms of M are sufficient to
include in the policy specification (together with the axioms that de-
fine pca, as a 2-place or 3-place predicate, and salary and where
year(T, Y) is used to extract the year Y from a time T in YYYYM-
MDD form):2

par(P,A, R) ← pca(P,C), arca(P, R, C).

pca(P, s_exec) ← pca(P, mgr,T) � υ1, current_time(T ′),
year(T, Y), year(T ′, Y ′), Y ′ − Y ≥ 5.

arca(read, salary(X,Y), s_exec) ← pca(X,manager(Y)),
pca(Y, profitable) � υ3,

salary(X,Y) � υ2.

�

Any number of additional, novel forms of access control models
may be similarly defined in terms of M. For instance, suppose that
an access control model were required with a type of contains re-
lationship on categories such that if members of category c2 trust
the assertions of an immediately “superior” authority category c1

and members of category c3 similarly trust c1 then c2 and c3 trust
each others’ assertions (such relationships are often useful in trust-
based models [19]). Henceforth, we refer to this access control
model as the Shared Trust Model (STM). The (Euclidean) relation-
ship that is required in STM can simply be captured by defining, in
terms of dc, a contains relation of the following form:3

contains(C′, C′′) ← dc(C,C′), dc(C, C′′).

Next, suppose that an access control requirement is such that a
principal will engage with whichever principals it chooses to form a
mutual access partnership (MAP) (cf. policies required in the con-
text of the “policy aware web” [22]). If p′ ∈ P and p′′ ∈ P are in
a MAP then p′ will allow p′′ to access its resources and conversely.
To represent the MAP model in M, it is sufficient for a policy au-
thor to: declare MAP category pairings, using definitions of dc,
and to define a symmetrical containment relationship between two
principals in a MAP. For the latter, it is sufficient for a policy author
to define a rule of the following form:4

contains(C, C′) ← contains(C′, C).

It is important to note that the specific details of the STM and
the MAP models are relatively unimportant. It is more important
to recognize that these models can be naturally represented as in-
stances of M. Moreover, multiple “novel” forms of existing access
control models may be similarly developed from the core axioms
and predicates of M (e.g., RBAC with “downward” inheritance of
permissions via isa hierarchies of roles).

Next, we note that access control models are often defined, in
part, in terms of the classes of constraints that they admit. In M,
constraints are expressed in terms of categories.

In Constrained RBAC [13], the constraint of Separation of “Du-
ties” (SoD) is the only general form of constraint that is admitted
(albeit static and dynamic versions of SoD are included). A separa-
tion of categories (SoC) constraint, which equivalently represents
the static SoD constraint in Constrained RBAC, can be specified,

2Here, the structured terms can be represented in an equivalent
“flattened” form if needs be.
3More complex forms of this type of Euclidean relation are, of
course, clearly possible.
4In this case, contains should be a tabled predicate [23] to avoid
a potentially infinite computation.

in M, in terms of pca, thus (where ⊥ read as “is inconsistent” and
c ∈ C and c′ ∈ C are constants that denote specific categories):

⊥ ← pca(P, c), pca(P, c′).

However, many additional forms of constraints can be similarly
represented in M. For example, the following variant of the previ-
ous specification of SoC,

⊥ ← pca(P, C), pca(P,C′), me(C,C′),

can be used to define arbitrary pairs of categories that are mutually
exclusive i.e., satisfy the me predicate. We note that a shortcoming
of RBAC as a general access control model is that it admits only
one restricted form of mutual exclusivity constraint on the one type
of category that it assumes, the role. In contrast, in M, mutual
exclusivity constraints may be defined with respect to any number
of categories.

Many other forms of constraint (beyond SoD/SoC) may be de-
fined in terms of M. For example, the constraint,

⊥ ← pca(P, c), not pca(P, c′),

can be used to express that a principal P cannot be assigned to
a category c unless P is assigned to the category c′. That is, a
prerequisite constraint can be naturally defined in M. Cardinality
constraints may also be defined. Moreover, once the notion of a
category is admitted as the basis of M then constraints on com-
bined category-based access control models are possible. For ex-
ample, if it were required to define an access control model that
combined status categories from SBAC and categories as clear-
ances/classifications from a MAC model then the following con-
straint can be formulated in M to specify that no principal with
the status of debtor (as recorded in the access control program υ1)
can be cleared to access anything other than the resources that are
accessible to principals with unclassified clearance (as recorded in
the access control program υ2):

⊥ ← pca(P, debtor) � υ1, pca(P, C) � υ2,
C �= unclassified.

Constraints may be similarly defined in terms of pca and can be
included in any number of access control models that are deriv-
able from M. Moreover, it is possible to use the language of M
to permit other forms of constraints to be defined. For example,
history-based constraints may be defined in terms of events, which,
in access control terms, are happenings at an instance of time that
typically involve a principal p ∈ P (an actor) performing an action
in relation to a resource. Thus, to represent that a resource ρ1 can-
not be read more than once on the same day by the same principal
(a constraint that is often useful for satisfying the Principle of Least
Privilege) the following constraint may be defined in M:

⊥ ← happens(E,T), actor(E,P), action(E, read),
resource(E,ρ1), happens(E′, T ′), actor(E′, P),

action(E′, read), resource(E′, ρ1), E �= E′, T ′ − T < 1.

By judiciously combining the elements of M, any number of
specific access control models may be defined in a uniform manner.

4.3 arca Definitions
Thus far, our discussion has been focused on demonstrating how

a wide range of access control models can be expressed in terms of
our meta-model M by changing the definitions of pca and contains,
and hence par. However, there is, as we have mentioned above,
a useful generalization of the notion of permissions that is very

193

important to adopt in richer interpretations of access control. By
adopting this general interpretation, many additional access control
models can be defined in terms of M for satisfying the require-
ments of domain-specific applications.

To motivate the discussion on this point, consider the language
of the Flexible Authorization Framework (FAF) [15]. In the FAF,
authorizations are represented by the predicates cando(p, a, r) or
dercando(p, a, r). In the case of FAF, as is standard in access con-
trol, “can do” is interpreted in terms of permission only; FAF does
not take alternative interpretations of “can” into account. However,
alternative interpretations of “can do” are not only possible, but
often need to be represented in access control models in order to
capture domain-specific requirements. These alternative interpre-
tations of “can do” are therefore important to accommodate in a
meta-model of access control.

In many scenarios it is, for instance, perfectly possible for a prin-
cipal p to have a permission (a, r), but for p not to be able to do a
on r. Moreover, the view of “can do” as synonymous with autho-
rization is not always satisfactory. For example, a server may not
have the capability of bringing about a state in which p can do a on
r even though p has the permission to do a on r e.g., because p re-
quests to perform an action that cannot be physically satisfied even
though it is permitted. It follows that for a richer form of access
control meta-model, a more liberal interpretation of “can do”, that
can capture such nuances, is desirable.

To address the problems of the limited interpretation of “can do”
in standard access control, we propose a more general definition of
arca, in M, than the one that has traditionally been considered.
This generalized form of arca also generalizes the notion of autho-
rization (i.e., as principal assigned permissions) that is standard in
access control models. Specifically, we advocate defining arca in
terms of a range of modalities beyond the interpretation of “can” as
permission. For example, in M, “can” may be interpreted in terms
of physical capability or in the sense of requiring a willingness on
a party, with a resource to protect, to act in order for a requester
to perform an action on a resource. Moreover, obligations, in the
sense of provisional authorizations, can be understood under a gen-
eral interpretation of “can”. That is, for a principal p ∈ P to “do”
action a on resource r at time t the “can” requires a willingness by
the party that controls access to r to allow access on the basis of p’s
promise to perform an act at some time point t′ such that t′ > t.

To accommodate these rich interpretations of “can”, arca rules
may be used and are defined recursively and thus in the same way
as pca rules.

DEFINITION 4.3. Rules defining arca are expressed in the fol-
lowing general form:

arca(A,R,C) ← A1, . . . ,An, L1, . . . , Lp, C1, . . . , Cm.

Here, Ai (1 ≤ i ≤ n) is a condition that is expressible (recur-
sively) in terms of arca, Li (1 ≤ i ≤ p) are literals, and Ci (1 ≤
i ≤ m) is a sequence of constraints. Any of A1, . . . ,An, L1, . . . , Lp

can be defined at a remotely accessible source or locally. In the for-
mer case, the condition is of the form Ai � υ or Li � υ where
υ is the source of the definition of the literal that appears in the
body of an arca rule. A1, . . . ,An, L1, . . . , Lp and C1, . . . , Cm

are sets of conditions that are disjoint, in a arca rule, ν, and any
of these sets may be empty in ν.

It should be clear from the general definition of arca above that
different interpretations of this predicate can be flexibly employed
in a variety of different ways and, as a consequence, any number
of additional access control models can be defined as instances of
M. The following example illustrates the possibilities afforded by
a generalized interpretation of arca.

EXAMPLE 5. Consider the following policy requirements:

A principal’s request to buy gold is permitted (in the
sense of being physically possible) provided that the
amount of gold requested is not greater than the cur-
rent stock level recorded in υ1. In a gold market that
is currently categorized as “volatile”, according to the
source υ2, a principal that requests to perform an act
of buying is permitted to buy a maximum of 50 units
of gold (i.e., permission as consistency with supplier
intentions). All principals are permitted (in the sense
of being authorized) to perform a buying action in re-
lation to the resource gold provided that the principal
is not a member of the debtor category.

To represent these access control requirements in our framework,
the following rules may be used:

arca(A,R, C) ← arcac(A,R, C), arcap(A,R, C),
not arcai(A,R, C).

arcac(buy, gold(X), C) ← stock(gold, Y) � υ1,
Y − X ≥ 0.

arcap(buy, gold(X), C) ← C �= debtor.

arcai(buy, gold(X), C) ← X > 50,
market(gold, volatile) � υ2.

In this case, if a request is received from a principal p to perform
the action of buying from a principal p′ that defines the access con-
trol program above then that action is allowed if and only if p′ has
the capability of satisfying p’s request, p′ permits the request, in the
sense of authorizing p to perform the action of buying gold, and p′
has the intention of satisfying p’s request given the particular state
of the gold market that obtains. �

It is important to note, from the previous example, that the ac-
cess control program is based on one possible distinction between
the different interpretations of “can.” Other interpretations are, of
course, possible and can be used to define different instances of
M. It is also important to note that the different interpretations
of “can”, which are used in the example above, cannot simply be
captured by merging conditions into a single rule in a rule-based ap-
proach to access control requirement representation. For instance,
physical capability does not demand that a particular state of the
market obtains. The separate arca definitions here emphasize that
different aspects of “can” need to be separately specified.

In M, any number of constraints may be expressed in terms of
arca. For example,

⊥ ← arca(write, o1, c), not arca(write, o1, c
′),

may be used to specify a “prerequisite” constraint on permis-
sions, to wit: for the write action to be performed on the resource
o1 by principals assigned to the category c it is required that the
write action on o1 is assigned to principals assigned to the cate-
gory c′.

Notice too that if multiple interpretations of “can” are accommo-
dated in a meta-model like M then it is possible to specify general
forms of constraints in terms of the variants of arca that are admit-
ted. For example,

⊥ ← arcac(A,R, C), not arcap(A,R, C),

may be used to represent the constraint that, for all categories of
principals, it is impossible for a permission not to be assigned to a
category if any requested action A on any resource R is (physically)
capable of being performed.

As a final point of arca definitions, we note that a variety of dif-
ferent interpretations of denials of access to categories of principals
can be naturally accommodated in an extended form of M. Due to

194

space limitations, we do not give the details of that here. However,
it should be clear that a d_arca predicate (say) could be used to de-
fine denials of permission assignments to categories of principals in
essentially the same way that we have used arca definitions (and
with different interpretations of denials being admitted e.g., denials
by intention, denials as physical constraints, etc.).

5. THE PRACTICAL GOOD
Thus far, we have focused on one of the Atluri-Ferraiolo ques-

tions, the question: is it possible to define an access control meta-
model? In this section, we briefly address the second of the Atluri-
Ferraiolo questions: what “practical good” would a meta-model
serve?

Following on from the discussion in Section 1 of this paper, hav-
ing a general, unifying access control meta-model provides a ba-
sis for a common specification of access control requirements that
permits a general semantics to be determined for access control.
Having a common, agreed semantics is essential when access con-
trol information needs to be shared (as is the case with many dis-
tributed applications). The meta-model M that we have described
has a well-defined semantics (which can be expressed in terms of
Clark’s completion or perfect models). By ensuring that all policies
that are defined in terms of M are (locally) stratified, properties of
these policies can be directly determined (e.g., from standard re-
sults for the operational semantics used for access request evalua-
tion). Moreover, having a meta-model that is based on well defined
formal foundations and common semantics facilitates the sharing
of access control information.

Having a shared conception of an access control meta-model is
important for reducing the burden on policy administrators when it
comes to representing application-specific access control require-
ments. That is, the meta-model provides policy authors with a gen-
eral framework for representing access control requirements. A
policy author simply needs to specialize the general axioms to de-
fine a domain-specific model and the access control policies that
can be represented within that model. Because the meta-model re-
duces the burdens on policy authors (i.e., it provides a well defined
framework for policy authors to specialize), it is useful for the rapid
prototyping of policies and for abstracting away the complexities of
access control policy specification.

Identifying a common access control model is also desirable
because it allows for various general syntaxes to be developed in
terms of the generic model e.g., a natural language syntax for sim-
plifying access control specification and an XML-based syntax for
access control policy exchange. In relation to an XML-based syn-
tax for access control policy exchange, we argue that access con-
trol policies that are expressible in our meta-model can be naturally
represented in RuleML [8]. A representation of our meta-model in
RuleML offers the possibility of access control policy exchange
in a framework that has a well defined formal semantics (unlike
XACML).

6. RELATED WORK
In response to our proposed approach and focus, a sceptical reader

may argue that general models and languages have already been
described in the access control literature e.g., the Generalized TR-
BAC model [16] and ASL [15]. However, it is our view that these
approaches, though valuable in their own right, cannot be meaning-
fully described as general in any absolute sense; they are general
only in the sense of being more general than the particular access
control models that they assume as a primitive base. In GTRBAC,
the focus is on one type of category, the role (interpreted as being

synonymous with the notion of job function). In ASL, users, groups
and roles (again, traditionally interpreted in functional terms) are
admitted in the language. FAF/ASL could, of course, be extended
to some extent to accommodate the richer notion of categories that
we advocate using. However, a richer form of ASL/FAF would
be required to accommodate the generality of M e.g., to allow for
hierarchies that are not restricted to partial orders, for assertions
made by remote authorities, for an extended form of done that,
for instance, admits proactive events and more expressive forms of
event descriptions, for a generalized interpretation of “can”, etc.

From the discussion above, it will be clear that, despite the ex-
tensive literature on RBAC, it is our view that RBAC is simply a
particular instance of M. More strongly, RBAC is not even an
especially significant instance of M for it is based on a single, se-
mantically impoverished category (the role), one contains relation
(a partial ordering of roles), and one type of constraint, a SoD con-
straint. The proponents of RBAC point out that the elements of
RBAC can be flexibly combined to allow for a range of RBAC mod-
els and policies to be defined, but the concepts included in RBAC
are not always sufficiently expressive to enable domain-specific re-
quirements to be captured even by combination. In the case where
RBAC is not sufficiently expressive to represent requirements, ad
hoc extensions may be employed but these extensions are simply
particular instances of M and may compromise the sharability of
access control policy information. Although it remains a useful
special case of an access control model that is applicable in cer-
tain contexts, RBAC is not a sufficiently general model of access
control; rather, RBAC is a special case of M.

A sceptical reader might also argue that a general language for
access control policy specification has already been described in
the access control literature: XACML [20]. However, in our view,
it is essential to define a general access control language in terms of
a well-defined access control model with a sound formal semantics
(rather than developing ad hoc access control languages with hope-
lessly inadequate formal semantics, as is the case with XACML).
In addition to its unsatisfactory formal underpinnings, XACML is
not based on a well defined conceptual model of access control.
Attempts to retrofit aspects of access control models (via profiles)
have not been satisfactory.

The sceptical reader might also argue that there has never been
a universal agreement on a “general” programming language and
there is therefore no reason to think that a general access control
model/language needs to be considered. However, although many
programming languages have been developed for many different
applications, these languages do have common features that de-
rive from a general model of computation that they assume (cf.
Landin’s work [17]).

The sceptic may also argue that any access control model that is
claimed to be general, as RBAC has been suggested to be [4], will
necessarily end up having numerous ad hoc features, in order to
make it generally applicable, and will thus be necessarily complex
as a consequence. However, we have shown that, by applying Ock-
ham’s razor to the previously developed 700 access control mod-
els, a small core set of primitives can be identified that, despite the
limited concepts involved, paradoxically provides considerable ex-
pressive power that obviates the need for multiple ad hoc features.

The work by Li et al. [18] is related to ours in several respects.
Li et al.’s RT family of role-trust models provides a quite general
framework for defining access control policies, it includes some
standard syntactic forms that can be specialized for defining spe-
cific policy requirements (in terms of credentials), and it is based
on a well defined formal semantics, which permits properties of
policies to be proven. Our approach, however, includes concepts

195

like times, events, actions and histories that may be used to specify
principal-category assignments, but which are not included as ele-
ments of RT . Moreover, in RT the focus is on a particular types
of categorization of principals: by their role membership or their
attributes. In M, we allow for a richer range of categories (e.g., we
allow for obligations to be treated using categories, for principal
categorization according to histories of actions, . . .), we consider
categories in relation to permission-category assignments as well
as principal-category assignments, and our permission-category as-
signments are based on a more general interpretation of “can do”
than that that is standard in access control. In RT , some particular
forms of rules are included as part of the model. In contrast, we
allow rules for defining pca, arca and par in (locally) stratified
logic in general. As such, in M, it is possible to specify access
control requirements in terms of the non-assignment of principals
to a category, for example.5

The work on SecPAL [5] is motivated, as ours is, by the desire to
define a general, declarative framework for specifying a wide range
of authorization policies. However, in SecPAL the emphasis is on
a language for realising this goal. In our approach, a general un-
derlying model is the focus of study and the language requirements
are derived directly from the meta-model.

7. CONCLUSIONS AND FURTHER WORK
In this paper, we have addressed two profoundly important ques-

tions in access control, the Atluri-Ferraiolo questions:

• Is it possible for a unifying access control meta-model to be
developed given the large diversity and types of existent ac-
cess control policies?

• What practical good would such a meta-model serve?

Taking these questions in reverse order, we have described sev-
eral theoretical and practical benefits (e.g., on policy sharing, see
Section 5) that can be realised if the meta-model of access control,
M, were to be adopted. In response to the first question, we have
shown that it is possible to define a meta-model of access control
that is based on the primitive notion of categories, relationships
between categories and principals and amongst categories, and a
notion of “can do”, and hence authorization, that is more general
than the one that is usually adopted in access control. We have
also discussed how a wide range of constraints may be expressed
in M and how category-based algebras may be defined and used
for access policy composition. For specifications of access con-
trol policies in terms of M, only four predicates and a standard
axiomatization of “authorization”, that can be flexibly specialized,
are required. From this simple base, it is possible to reformulate
the last 700 access control models that have been developed and to
develop 700 additional novel forms of access control model.

Future work includes to generalize M to, for instance, accom-
modate a richer variety of different interpretations of denials than
those that have previously been considered by researchers in access
control (and to then consider appropriate conflict resolution strate-
gies). We also intend to investigate the development of a natural
language and a markup language for the exchange of access con-
trol policies expressed in terms of M. Moreover it is important to
note that the meta-model that we have proposed still makes it pos-
sible to define many potentially interesting access control models
as special cases of the meta-model. The investigation of additional,
specialized forms of M is also a matter for further work.
5However, although we admit an nonmonotonic negation operator,
we assume that all sources of access control information are com-
plete.

8. REFERENCES
[1] ANSI. RBAC, 2004. INCITS 359-2004.
[2] C. Baral and M. Gelfond. Logic programming and

knowledge representation. JLP, 19/20:73–148, 1994.
[3] S. Barker, M. J. Sergot, and D. Wijesekera. Status-based

access control. ACM Trans. Inf. Syst. Secur., 12(1), 2008.
[4] S. Barker and P. Stuckey. Flexible access control policy

specification with constraint logic programming. ACM Trans.
on Information and System Security, 6(4):501–546, 2003.

[5] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and
semantics of a decentralized authorization language. In CSF,
pages 3–15, 2007.

[6] D. E. Bell and L. J. LaPadula. Secure computer system:
Unified exposition and multics interpretation. MITRE-2997,
1976.

[7] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access
control model supporting periodicity constraints and
temporal reasoning. ACM TODS, 23(3):231–285, 1998.

[8] H. Boley, S. Tabet, and G. Wagner. Design rationale of
ruleml: A markup language for semantic web rules. In
SWWS 2001, pages 381–401, 2001.

[9] L. Cavedon and J. Lloyd. A completeness theorem for
SLDNF resolution. JLP, 7(3):177–192, 1989.

[10] K. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Databases, pages 293–322. Plenum, 1978.

[11] D. E. Clarke, J.-E. Elien, C. M. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate chain discovery in
SPKI/SDSI. J. Computer Security, 9(4):285–322, 2001.

[12] D. F. Ferraiolo and V. Atluri. A meta model for access
control: why is it needed and is it even possible to achieve?
In SACMAT’08, pages 153–154, 2008.

[13] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed nist standard for role-based
access control. ACM TISSEC, 4(3):224–274, 2001.

[14] S. Genaim and M. Codish. Inferring termination conditions
for logic programs using backwards analysis. volume 2250
of LNCS, pages 685–694. Springer, 2001.

[15] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmaninan.
Flexible support for multiple access control policies. ACM
TODS, 26(2):214–260, 2001.

[16] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized
temporal role-based access control model. IEEE Trans.
Knowl. Data Eng., 17(1):4–23, 2005.

[17] P. J. Landin. The next 700 programming languages.
Commun. ACM, 9(3):157–166, 1966.

[18] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust-management framework. In IEEE
Symposium on Security and Privacy, pages 114–130, 2002.

[19] C.-J. Liau. Belief, information acquisition, and trust in
multi-agent systems–a modal logic formulation. Artif. Intell.,
149(1):31–60, 2003.

[20] OASIS. eXtensible Access Control Markup language
(XACML), 2003. http://www.oasis-open.org/xacml/docs/.

[21] R. S. Sandhu and Q. Munawer. How to do discretionary
access control using roles. In ACM Workshop on Role-Based
Access Control, pages 47–54, 1998.

[22] D. J. Weitzner, J. Hendler, T. Berners-Lee, and D. Connolly.
Creating a policy-aware web: Discretionary, rule-based
access for the world wide web. Web and Information
Security, 2006.

[23] The XSB System Version 2.7.1, Programmer’s Manual, 2005.

196

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

