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Abstract

We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy
Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A
Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted
with an identity, ω′, if and only if the identities ω and ω′ are close to each other as measured
by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption
using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is
precisely what allows for the use of biometric identities, which inherently will have some noise
each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of
application that we term “attribute-based encryption”.

In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be
viewed as an Identity-Based Encryption of a message under several attributes that compose a
(fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks.
Additionally, our basic construction does not use random oracles. We prove the security of our
schemes under the Selective-ID security model.

1 Introduction

Identity-Based Encryption [15] (IBE) allows for a sender to encrypt a message to an identity without
access to a public key certificate. The ability to do public key encryption without certificates has
many practical applications. For example, a user can send an encrypted mail to a recipient, e.g.
bobsmith@gmail.com, without the requiring either the existence of a Public-Key Infrastructure or
that the recipient be on-line at the time of creation.

One common feature of all previous Identity-Based Encryption systems is that they view iden-
tities as a string of characters. In this paper we propose a new type of Identity-Based Encryption
that we call Fuzzy Identity-Based Encryption in which we view identities as a set of descriptive
attributes. In a Fuzzy Identity-Based Encryption scheme, a user with the secret key for the identity
ω is able to decrypt a ciphertext encrypted with the public key ω′ if and only if ω and ω′ are within
a certain distance of each other as judged by some metric. Therefore, our system allows for a
certain amount of error-tolerance in the identities.

Fuzzy-IBE gives rise to two interesting new applications. The first is an Identity-Based En-
cryption system that uses biometric identities. That is we can view a user’s biometric, for example
an iris scan, as that user’s identity described by several attributes and then encrypt to the user
using their biometric identity. Since biometric measurements are noisy, we cannot use existing
IBE systems. However, the error-tolerance property of Fuzzy-IBE allows for a private key (derived
from a measurement of a biometric) to decrypt a ciphertext encrypted with a slightly different
measurement of the same biometric.

Secondly, Fuzzy IBE can be used for an application that we call “attribute-based encryption”.
In this application a party will wish to encrypt a document to all users that have a certain set of
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attributes. For example, in a computer science department, the chairperson might want to encrypt
a document to all of its systems faculty on a hiring committee. In this case it would encrypt to the
identity {“hiring-committee”,“faculty”,“systems”}. Any user who has an identity that contains all
of these attributes could decrypt the document. The advantage to using Fuzzy IBE is that the
document can be stored on an simple untrusted storage server instead of relying on trusted server
to perform authentication checks before delivering a document.

We further discuss the usefulness of using biometrics in Identity-Based and then discuss our
contributions.

Using biometrics in Identity-Based Encryption In many situations, using biometric-based
identity in an IBE system has a number of important advantages over “standard” IBE. We argue
that the use of biometric identities fits the framework of Identity-Based Encryption very well and
is a very valuable application of it.

First, the process of obtaining a secret key from an authority is very natural and straightforward.
In standard Identity-Based Encryption schemes a user with a certain identity, for example, “Bob
Smith”, will need to go to an authority to obtain the private key corresponding to the identity.
In this process the user will need to “prove” to the authority that he is indeed entitled to this
identity. This will typically involve presenting supplementary documents or credentials. The type
of authentication that is necessary is not always clear and robustness of this process is questionable
(the supplementary documents themselves could be subject to forgery). Typically, there will exist
a tradeoff between a system that is expensive in this step and one that is less reliable.

In contrast, if a biometric is used as an identity then the verification process for an identity
is very clear. The user must demonstrate ownership of the biometric under the supervision of a
well trained operator. If the operator is able to detect imitation attacks, for example playing the
recording of a voice, then the security of this phase is only limited by the quality of the biometric
technique itself. We emphasize that the biometric measurement for an individual need not be kept
secret. Indeed, it is not if it is used as a public key. We must only guarantee that an attacker
cannot fool the key authority into believing that an attacker owns a biometric identity that he does
not.

Also, a biometric identity is an inherent trait and will always with a person. Using biometrics
in Identity-Based Encryption will mean that the person will always have their public key handy. In
several situations a user will want to present an encryption key to someone when they are physically
present. For example, consider the case when a user is traveling and another party encrypts an
ad-hoc meeting between them.

Finally, using a biometric as an identity has the advantage that identities are unique if the
underlying biometric is of a good quality. Some types of standard identities, such as the name
“Bob Smith” will clearly not be unique or change owners over time.

Security Against Collusion Attacks In addition to providing error-tolerance in the set of
attributes composing the identity any IBE scheme that encrypts to multiple attributes must provide
security against collusion attacks. In particular, no group of users should be able to combine their
keys in such a way that they can decrypt a ciphertext that none of them alone could. This property
is important for security in both biometric applications and “attribute-based encryption”.

Our Contributions We formalize the notion of Fuzzy Identity-Based Encryption and provide
a construction for a Fuzzy Identity-Based Encryption scheme. Our construction uses groups for
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which an efficient bilinear map exists, but for which the Computational Diffie-Hellman problem is
assumed to be hard.

Our primary technique is that we construct a user’s private key as a set of private key com-
ponents, one for each attribute in the user’s identity. We share use Shamir’s method of secret
sharing [14] to distribute shares of a master secret in the exponents of the user’s private key com-
ponents. Shamir’s secret sharing within the exponent gives our scheme the crucial property of being
error-tolerant since only a subset of the private key components are needed to decrypt a message.
Additionally, our scheme is resistant to collusion attacks. Different users have their private key
components generated with different random polynomials. If multiple users collude they will be
unable to combine their private key components in any useful way.

In the first version of our scheme, the public key size grows linearly with the number of potential
attributes in the universe. The public parameter growth is manageable for a biometric system
where all the possible attributes are defined at the system creation time. However, this becomes a
limitation in a more general system where we might like an attribute to be defined by an arbitrary
string. To accommodate these more general requirements we additionally provide a Fuzzy-IBE
system for large universes, where attributes are defined by arbitrary strings.

We prove our scheme secure under an adapted version of the Selective-ID security model first
proposed by Canetti et al. [5]. Additionally, our construction does not use random oracles. We
reduce the security of our scheme to an assumption that is similar to the Decisional Bilinear Diffie-
Hellman assumption.

1.1 Related Work

Identity-Based Encryption Shamir [15] first proposed the concept of Identity-Based Encryp-
tion. However, it wasn’t until much later that Boneh and Franklin [3] presented the first Identity-
Based Encryption scheme that was both practical and secure. Their solution made novel use of
groups for which there was an efficiently computable bilinear map.

Canetti et al. [5] proposed the first construction for IBE that was provably secure outside the
random oracle model. To prove security they described a slightly weaker model of security known
as the Selective-ID model, in which the adversary declares which identity he will attack before
the global public parameters are generated. Boneh and Boyen [2] give two schemes with improved
efficiency and prove security in the Selective-ID model without random oracles.

Biometrics Other work in applying biometrics to cryptography has focused on the derivation of
a secret from a biometric [12, 11, 10, 6, 9, 7, 4]. This secret can be then used for operations such
as symmetric encryption or UNIX style password authentication.

The distinguishing feature of our work from the above related work on biometrics above is that
we view the biometric input as potentially public information instead of a secret. Our only physical
requirement is that the biometric cannot be imitated such that a trained human operator would
be fooled. We stress the importance of this, since it is much easier to capture a digital reading of
someone’s biometric, than to fool someone into believing that someone else’s biometric is one’s own.
Simply capturing a digital reading of someone’s biometric would (forever) invalidate approaches
where symmetric keys are systematically derived from biometric readings.

Attribute-based encryption Yao et al. [17] show how an IBE system that encrypts to multiple
hierarchical-identities in a collusion-resistant manner implies a forward secure Hierarchical IBE
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scheme. They also note how their techniques for resisting collusion attacks are useful in attribute-
based encryption. However, the cost of their scheme in terms of computation, private key size, and
ciphertext size increases exponentially with the number of attributes.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we formally define a Fuzzy Identity-
Based Encryption scheme including the Selective-ID security model for one. Then, we describe our
security assumptions. In Section 3 we show why two naive approaches do not work. We follow with
a description of our construction in Section 4 and in Section 5 we prove the security of our scheme.
We describe our second construction in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

We begin by presenting our definition of security. We follow with a brief review of bilinear maps,
and then state the complexity assumptions we use for our proofs of security.

2.1 Definitions

In this section we define our Selective-ID models of security for Fuzzy Identity Based Encryption.
The Fuzzy Selective-ID game is very similar to the standard Selective-ID model for Identity-Based
Encryption with the exception that the adversary is only allowed to query for secret keys for
identities which have less than d overlap with the target identity.

Fuzzy Selective-ID

Init The adversary declares the identity, α, that he wishes to be challenged upon.

Setup The challenger runs the setup phase of the algorithm and tells the adversary the public
parameters.

Phase 1 The adversary is allowed to issue queries for private keys for many identities, γj , where
|γj ∩ α| < d for all j.

Challenge The adversary submits two equal length messages M0,M1. The challenger flips a
random coin, b, and encrypts Mb with α. The ciphertext is passed to the adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 .

Definition 1 (Fuzzy Selective-ID). A scheme is secure in the Fuzzy Selective-ID model of
security if all polynomial-time adversaries have at most a negligible advantage in the above game.
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2.2 Bilinear Maps

We briefly review the facts about groups with efficiently computable bilinear maps. We refer the
reader to previous literature [3] for more details.

Let G1, G2 be groups of prime order p, and let g be a generator of G1. We say G1 has an
admissible bilinear map, e : G1 ×G1 → G2, into G2 if the following two conditions hold. The map
is bilinear; for all a, b we have e(ga, gb) = e(g, g)ab. The map is non-degenerate; we must have that
e(g, g) 6= 1.

2.3 Complexity Assumptions

We state our complexity assumptions below.

Definition 2 (Decisional Bilinear Diffie-Hellman (BDH) Assumption). Suppose a chal-
lenger chooses a, b, c, z ∈ Zp at random. The Decisional BDH assumption is that no polynomial-time
adversary is to be able to distinguish the tuple (A = ga, B = gb, C = gc, Z = e(g, g)abc) from the
tuple (A = ga, B = gb, C = gc, Z = e(g, g)z) with more than a negligible advantage.

Definition 3 (Decisional Modified Bilinear Diffie-Hellman (MBDH) Assumption). Sup-
pose a challenger chooses a, b, c, z ∈ Zp at random. The Decisional MBDH assumption is that
no polynomial-time adversary is to be able to distinguish the tuple (A = ga, B = gb, C = gc, Z =
e(g, g)

ab
c ) from (A = ga, B = gb, C = gc, Z = e(g, g)z) with more than a negligible advantage.

3 Other Approaches

Before describing our scheme we first show three potential approaches to building a Fuzzy Identity-
Based Encryption scheme and show why they fall short. This discussion additionally motivates our
approach to the problem.

Correcting the error We consider the feasibility of “correcting” the errors of a biometric mea-
surement and then use standard Identity-Based Encryption to encrypt a message under the cor-
rected input. However, this approach relies upon the faulty assumption that each biometric input
measurement is slightly deviated from some “true” value and that the set of possible “true” values
are well known. In practice, the only reasonable assumption is that two measurements sampled
from the same person will be within a certain distance of each other. This intuition is captured by
previous work. Dodis, Rezyin, and Smith [7] use what they call a fuzzy sketch that contains infor-
mation of a first sampling of a biometric which allows subsequent measurements to be corrected
to it. If the correction could be done without any additional information then we could simply do
away with the fuzzy sketch.

Key per Attribute The second naive approach we consider is for an authority to give a user
a different private key for each of the attributes that describe the user. Such a system easily falls
prey to simple collusion attacks where multiple users combine their keys to form identities that are
a combination of their attributes. The colluders are then able to decrypt ciphertexts that none of
them individually were able to decrypt.
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Several Keys Suppose a key authority measures an input ω for a particular party. The authority
could create a separate standard IBE private key for every ω′ such that |ω∩ω′| ≥ d, for some error-
tolerance parameter d. However, the private key storage will grow exponentially in d and the system
will be impractical for even modest values of d.

4 Our Construction

Recall that we view identities as sets of attributes and we let the value d represent the error-
tolerance in terms of minimal set overlap. When an authority is creating a private key for a user
he will associate a random d− 1 degree polynomial, q(x), with each user with the restriction that
each polynomial have the same valuation at point 0, that is q(0) = y.

For each of the attributes associated with a user’s identity the key generation algorithm will
issue a private key component that is tied to the user’s random polynomial q(x). If the user is able
to “match” at least d components of the ciphertext with their private key components, then they
will be able to perform decryption. However, since the private key components are tied to random
polynomials, multiple user’s are unable to combine them in anyway that allows for collusion attacks.

A detailed description of our scheme follows.

4.1 Description

Recall that we wish to create an IBE scheme in which a ciphertext created using identity ω can be
decrypted only by a secret key ω′ where |ω ∩ ω′| ≥ d.

Let G1 be bilinear group of prime order p, and let g be a generator of G1. Additionally, let
e : G1 ×G1 → G2 denote the bilinear map. A security parameter, κ, will determine the size of the
groups.

We also define the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of elements in Zp:

∆i,S(x) =
∏

j∈S,j 6=i

x− j

i− j
.

Identities will be element subsets of some universe, U , of size |U|. We will associate each element
with a unique integer in Zp

∗. (In practice an attribute will be associated with each element so that
identities will have some semantics.) Our construction follows:

Setup(d) First, define the universe, U of elements. For simplicity, we can take the first |U|
elements of Zp

∗ to be the universe. Namely, the integers 1, . . . , |U| (mod p).
Next, choose t1, . . . , t|U| uniformly at random from Zp. Finally, choose y uniformly at random

in Zp. The published public parameters are:

T1 = gt1 , . . . , T|U| = gt|U| , Y = e(g, g)y.

The master key is:
t1, . . . , t|U|, y.

Key Generation To generate a private key for identity ω ⊆ U the following steps are taken.
A d − 1 degree polynomial q is randomly chosen such that q(0) = y. The private key consists of

components, (Di)i∈ω, where Di = g
q(i)
ti for every i ∈ ω.
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Encryption Encryption with the public key ω′ and message M ∈ G2 proceeds as follows.
First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′, E′ = MY s, {Ei = T s
i }i∈ω′).

Note that the identity, ω′, is included in the ciphertext.

Decryption Suppose that a ciphertext, E, is encrypted with a key for identity ω′ and we have a
private key for identity ω, where |ω ∩ ω′| ≥ d. Choose an arbitrary d-element subset, S, of ω ∩ ω′.

Then, the ciphertext can be decrypted as:

E′/
∏
i∈S

(e(Di, Ei))
∆i,S(0)

= Me(g, g)sy/
∏
i∈S

(
e(g

q(i)
ti , gsti)

)∆i,S(0)

= Me(g, g)sy/
∏
i∈S

(
e(g, g)sq(i)

)∆i,S(0)

= M.

The last equality is derived from using polynomial interpolation in the exponents. Since, the
polynomial sq(x) is of degree d− 1 it can be interpolated using d points.

4.2 Efficiency and Key Sizes

The number of exponentiations in the group G1 to encrypt to an identity will be linear in the
number of elements in the identity’s description. The cost of decryption will be dominated by d
bilinear map computations.

The number of group elements in the public parameters grows linearly with the number at-
tributes in the system (elements in the defined universe). The number of group elements that
compose a user’s private key grow linearly with the number of attributes associated with her iden-
tity. Finally, the number of group elements in a ciphertext grows linearly with the size of the
identity we are encrypting to.

4.3 Flexible Error-Tolerance

In this construction the error-tolerance is set to a fixed value d. However, in practice a party
constructing a ciphertext might want more flexibility. For example, if a biometric input device
happens to be less reliable it might be desirable to relax the set overlap parameters. In the example
of attribute-based encryption we would like to have flexibility in the number of attributes required
to access a document.

There are two simple methods for achieving flexible error-tolerance. First, we can create multiple
systems with different values of d and the party encrypting a message can choose the appropriate
one. For m different systems the size of the public parameters and private keys both increase by
a factor of m. In the second method the authority will reserve some attributes that it will issue
to every key-holder as part of their identity. The party encrypting the message can increase the
error-tolerance by increasing the number of these “default” attributes it includes in the encryption
identity. In this approach ciphertexts must be at least as long as the maximum number of attributes
that can be required in an encryption. Additionally, we can combine the above two techniques and
explore tradeoffs between ciphertext size and public parameter and private key size.

7



5 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to the hardness of the
Decisional MBDH assumption.

Theorem 1. If an adversary can break our scheme in the Fuzzy Selective ID Model, then a simu-
lator can be constructed to play the Decisional MBDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack our scheme in the
Selective-ID model with advantage ε. We build a simulator B that can play the Decisional MBDH
game with advantage ε

2 . The simulation proceeds as follows:
We first let the challenger set the groups G1 and G2 with an efficient bilinear map, e and

generator g. The challenger flips a fair binary coin, µ, outside of B’s view. If µ = 0, the challenger
sets (A,B, C, Z) = (ga, gb, gc, e(g, g)

ab
c ); otherwise it sets (A,B, C, Z) = (ga, gb, gc, e(g, g)z) for

random a, b, c, z. We assume the universe, U is defined.

Init The simulator B runs A and receives the challenge identity, α.

Setup The simulator assigns the public key parameters as follows. It sets the parameter Y =
e(g,A) = e(g, g)a. For all i ∈ α it chooses random βi ∈ Zp and sets Ti = Cβi = gcβi . For all
i ∈ U − α it chooses random wi ∈ Zp and sets Ti = gwi .

It then gives the public parameters to A. Notice that from the view A all parameters are chosen
at random as in the construction.

Phase 1 A makes requests for private keys where the identity set overlap between the identities
for each requested key and α is less than d.

Suppose A requests a private key γ where |γ ∩ α| < d. We first define three sets Γ,Γ′, S in the
following manner:

Γ = γ ∩ α,

Γ′ be any set such that Γ ⊆ Γ′ ⊆ γ and |Γ′| = d− 1, and

S = Γ′ ∪ {0}.

Next, we define the decryption key components, Di, for i ∈ Γ′ as:

If i ∈ Γ : Di = gsi where si is chosen randomly in Zp.

If i ∈ Γ′ − Γ : Di = g
λi
wi where λi is chosen randomly in Zp.

The intuition behind these assignments is that we are implicitly choosing a random d−1 degree
polynomial q(x) by choosing its value for the d− 1 points randomly in addition to having q(0) = a.
For i ∈ Γ we have q(i) = cβisi and for i ∈ Γ′ − Γ we have q(i) = λi.

The simulator can calculate the other Di values where i /∈ Γ′ since the simulator knows the
discrete log of Ti for all i /∈ α. The simulator makes the assignments as follows:

If i /∈ Γ′ : Di = (
∏
j∈Γ

C
βjsj∆j,S(i)

wi )(
∏

j∈Γ′−Γ

g
λj∆j,S(i)

wi )Y
∆0,S(i)

wi
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Using interpolation the simulator is able to calculate Di = g
q(i)
ti for i /∈ Γ′ where q(x) was

implicitly defined by the random assignment of the other d− 1 variables Di ∈ Γ′ and the variable
Y .

Therefore, the simulator is able to construct a private key for the identity γ. Furthermore, the
distribution of the private key for γ is identical to that of the original scheme.

Challenge The adversary, A, will submit two challenge messages M1 and M0 to the simulator.
The simulator flips a fair binary coin, ν, and returns an encryption of Mν . The ciphertext is output
as:

E = (α, E′ = MνZ, {Ei = Bβi}i∈α).

If µ = 0, then Z = e(g, g)
ab
c . If we let r′ = b

c , then we have E0 = MνZ = Mνe(g, g)
ab
c =

Mνe(g, g)ar′ = MνY
r′ and Ei = Bβi = gbβi = g

b
c
cβi = gr′cβi = (Ti)r′ . Therefore, the ciphertext is a

random encryption of the message mν under the public key α.
Otherwise, if µ = 1, then Z = gz. We then have E′ = Mνe(g, g)z. Since z is random, E′ will be

a random element of G2 from the adversaries view and the message contains no information about
Mν .

Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν ′ of ν. If ν = ν ′ the simulator will output µ′ = 0 to indicate that it
was given a MBDH-tuple otherwise it will output µ′ = 1 to indicate it was given a random 4-tuple.

As shown in the construction the simulator’s generation of public parameters and private keys
is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. Therefore, we have Pr[ν 6=
ν ′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when ν 6= ν ′, we have Pr[µ′ = µ|µ = 1] = 1
2 .

If µ = 0 then the adversary sees an encryption of mν . The adversary’s advantage in this
situation is ε by definition. Therefore, we have Pr[ν = ν ′|µ = 0] = 1

2 + ε. Since the simulator
guesses µ′ = 0 when ν = ν ′, we have Pr[µ′ = µ|µ = 0] = 1

2 + ε.
The overall advantage of the simulator in the Decisional MBDH game is 1

2Pr[µ′ = µ|µ =
0] + 1

2Pr[µ′ = µ|µ = 1]− 1
2 = 1

2(1
2 + ε) + 1

2
1
2 −

1
2 = 1

2ε.

5.1 Chosen-Ciphertext Security

Our security definitions and proofs have been in the chosen-plaintext model. Our scheme can be
extended to the chosen-ciphertext model by applying the technique of using simulation-sound NIZK
proofs to achieve chosen-ciphertext security [13]. Alternatively, if we are willing to use random
oracles, then the we can use standard techniques such as the Fujisaki-Okamoto transformation [8].

5.2 Security in Full IBE Model

Suppose all identities are composed of n attributes and we have a universe of attributes, U . We
make the observation [2] that our scheme is secure in the full model with a factor of

(|U|
n

)
in the

reduction.
The original IBE scheme of Boneh and Franklin [3] and a later schemes of Boneh and Boyen [2]

and Waters [16] achieve IBE in the full model with non-exponential reductions. However, all
methods achieve this by essentially removing the relationships between nearby identities. In
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Fuzzy-IBE it is essential that there exists a relationship between nearby identities. Therefore, we
conjecture that a scheme that has a non-exponential loss of security in the full model will require
significantly different methods than those seen in prior work.

6 Large Universe Construction

In the previous construction the size of the public parameters grows linearly with the number of
possible attributes in the universe. We describe a second scheme which uses all elements of Zp

∗ as
the universe, yet the public parameters only grow linearly in a parameter n, which we fix as the
maximum size identity we can encrypt to.

In addition to decreasing the public parameter size, having a large universe allows us to apply a
collision-resistant hash function H : {0, 1}∗ → Zp

∗ and use arbitrary strings as attributes. We can
now use attributes that were not necessarily considered during the public key setup. For example,
we can add any verifiable attribute, such as “Ran in N.Y. Marathon 2005”, to a user’s private key.

Our large universe construction is built using similar concepts to the previous scheme and uses
an algebraic technique of Boneh and Boyen [2]. Additionally, we reduce the security of this scheme
to the Decisional BDH problem. We now describe our construction and give our proof of security.

6.1 Description

Let G1 be bilinear group of prime order p, and let g be a generator of G1. Additionally, let
e : G1 ×G1 → G2 denote the bilinear map. We restrict encryption identities to be of length n for
some fixed n.

We define the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of elements in Zp:

∆i,S(x) =
∏

j∈S,j 6=i

x− j

i− j
.

Identities will be sets of n elements of Zp
∗.1 Alternatively, we can describe an identity as a

collection of n strings of arbitrary length and use a collision resistant hash function, H, to hash
strings into members of Zp

∗. Our construction follows:

Setup(n, d) First, choose g1 = gy, g2 ∈ G1.
Next, choose t1, . . . , tn+1 uniformly at random from G1. Let N be the set {1, . . . , n + 1} and

we define a function, T , as:

T (x) = gxn

2

n+1∏
i=1

t
∆i,N (x)
i .

We can view T as the function gxn

2 gh(x) for some n degree polynomial h. The public key is published
as: g1, g2, t1, . . . , tn+1 and the private key is y.

Key Generation To generate a private key for identity ω the following steps are taken. A d− 1
degree polynomial q is randomly chosen such that q(0) = y. The private key will consist of two
sets. The first set, {Di}i∈ω, where the elements are constructed as

Di = g
q(i)
2 T (i)ri ,

1With some minor modifications to our scheme, which we omit for simplicity, we can encrypt to all identities of
size ≤ n.
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where ri is a random member of Zp defined for all i ∈ ω.
The other set is {di}i∈ω where the elements are constructed as

di = gri .

Encryption Encryption with the public key ω′ and message M ∈ G2 proceeds as follows.
First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′, E′ = Me(g1, g2)s, E′′ = gs, {Ei = T (i)s}i∈ω′).

Decryption Suppose that a ciphertext, E, is encrypted with a key for identity ω′ and we have a
key for identity ω, where |ω ∩ ω′| ≥ d. Choose an arbitrary d-element subset, S, of ω ∩ ω′.

Then, the ciphertext can be decrypted as:

M = E′
∏
i∈S

(
e(di, Ei)
e(Di, E′′)

)∆i,S(0)

= Me(g1, g2)s
∏
i∈S

(
e(gri , T (i)s)

e(gq(i)
2 T (i)ri , gs)

)∆i,S(0)

= Me(g1, g2)s
∏
i∈S

(
e(gri , T (i)s)

e(gq(i)
2 , gs)e(T (i)ri , gs)

)∆i,S(0)

= Me(g, g2)ys
∏
i∈S

1
e(g, g2)q(i)s∆i,S(0)

= M.

The last equality is derived from using polynomial interpolation in the exponents. Since, the
polynomial sq(x) is of degree d− 1 it can be interpolated using d points.

6.2 Efficiency and Key Sizes

Again, he number of exponentiations in the group G1 to encrypt to an identity will be linear in the
number of elements in the identity’s description. The cost of decryption will be dominated by 2 · d
bilinear map computations.

The key feature of the scheme is that the number of group elements in the public parameters
only grows linearly with, n, the maximum number of attributes that can describe an encryption
identity. The number of group elements that compose a user’s private key grow linearly with the
number of attributes associated with her identity. Finally, the number of group elements in a
ciphertext grows linearly with the size of the identity we are encrypting to.

6.3 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to the hardness of the
Decisional BDH assumption.

Theorem 2. If an adversary can break our scheme in the Fuzzy Selective ID Model, then a simu-
lator can be constructed to play the Decisional BDH game with a non-negligible advantage.
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Proof. Suppose there exists a polynomial-time adversary, A, that can attack our scheme in the
Selective-ID model with advantage ε. We build a simulator B that can play the Decisional BDH
game with advantage ε

2 .
The simulation proceeds as follows:
We first let the challenger set the groups G1 and G2 with an efficient bilinear map, e and

generator g. The challenger flips a fair binary coin µ outside of B’s view. If µ = 0, the challenger
sets (A,B, C, Z) = (ga, gb, gc, e(g, g)abc); otherwise it sets (A,B, C, Z) = (ga, gb, gc, e(g, g)z) for
random a, b, c, z.

Init B will run A and receive the challenge identity, α, an n element set of members of Zp.

Setup The simulator assigns the public parameters g1 = A and g2 = B. It then chooses a random
n degree polynomial f(x) and calculates an n degree polynomial u(x) such that u(x) = −xn for all
x ∈ α and where u(x) 6= −xn for some other x. Since −xn and u(x) are two n degree polynomials
they will either agree on at most n points or they are the same polynomial. Our construction
assures that ∀x u(x) = −xn if and only if x ∈ α.

Then, for i from 1 to n + 1 the simulator sets ti = g
u(i)
2 gf(i). Note that since f(x) is a random

n degree polynomial all ti will be chosen independently at random as in the construction and we
implicitly have T (x) = g

in+u(i)
2 gf(i).

Phase 1 A makes requests for private keys where the identity set overlap between the identities
for the requested keys and α is less than d.

Suppose A requests a private key γ. We first define three sets Γ,Γ′, S in the following manner:

Γ = γ ∩ α,

Γ′ be any set such that Γ ⊆ Γ′ ⊆ γ and |Γ′| = d− 1, and

S = Γ′ ∪ {0}.

Next, we define the decryption key components Di and di for i ∈ Γ′ as:

Di = gλi
2 T (i)ri where ri, λi are chosen randomly in Zp and we let di = gri .

The intuition behind these assignments is that we are implicitly choosing a random d−1 degree
polynomial q(x) by choosing its value for the d − 1 points in Γ randomly by setting q(i) = λi in
addition to having q(0) = a.

The simulator also needs to calculate the decryption key values for all i ∈ γ − Γ′. We calculate
these points to be consistent with our implicit choice of q(x). The key components are calculated
as:

Di = (
∏
j∈Γ′

g
λj∆j,S(i)
2 )

(
g

−f(i)
in+u(i)

1 (gin+u(i)
2 gf(i))r′i

)∆0,S(i)

and
di = (g

−1
in+u(i)

1 gr′i)∆0,S(i).

The value in + u(i) will be non-zero for all i /∈ α ,which includes all i ∈ γ − Γ′. This follows from
the our construction of u(x).
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Let ri = (r′i − a
in+u(i))∆0,S(i) and let q(x) be defined as above. We then have:

Di = (
∏
j∈Γ′

g
λj∆j,S(i)
2 )

(
(g

−f(i)
in+u(i)

1 )(gin+u(i)
2 gf(i))r′i

)∆0,S(i)

= (
∏
j∈Γ′

g
λj∆j,S(i)
2 )

(
(g

−af(i)
in+u(i) )(gin+u(i)

2 gf(i))r′i

)∆0,S(i)

= (
∏
j∈Γ′

g
λj∆j,S(i)
2 )

(
(ga

2(gin+u(i)
2 gf(i))

−a
in+u(i) )(gin+u(i)

2 gf(i))r′i
)∆0,S(i)

= (
∏
j∈Γ′

g
λj∆j,S(i)
2 )

(
ga
2(gin+u(i)

2 gf(i))r′i−
a

in+u(i)

)∆0,S(i)

= (
∏
j∈Γ′

g
λj∆j,S(i)
2 )ga∆0,S(i)

2 (T (i))ri

= g
q(i)
2 T (i)ri

Additionally, we have:

di = (g
−1

in+u(i)

1 gr′i)∆0,S(i) = (gr′i−
a

in+u(i) )∆0,S(i) = gri

Therefore, the simulator is able to construct a private key for the identity γ. Furthermore, the
distribution of the private key for γ is identical to that of the original scheme since our choices of
λi induce a random d− 1 degree polynomial and our construction of the private keys components
di and Di.

Challenge The adversary, A, will submit two challenge messages M1 and M0 to the simulator.
The simulator flips a fair binary coin, ν, and returns an encryption of Mν . The ciphertext is output
as:

E = (α, E′ = MνZ,E′′ = C, {Ei = Cf(i)}i∈α).

If µ = 0, then Z = e(g, g)abc. Then the ciphertext is:

E = (α, E′ = Mνe(g, g)abc, E′′ = gc, {Ei = (gc)f(i) = T (i)c}i∈α).

This is a valid ciphertext for the message Mν under the identity α.
Otherwise, if µ = 1, then Z = e(g, g)z and E′ = Mνe(g, g)z. Since z is random, E′ will be a

random element of G2 from the adversaries view and the message contains no information about
Mν .

Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν ′ of ν. If ν = ν ′ the simulator will output µ′ = 0 to indicate that
it was given a BDH-tuple otherwise it will output µ′ = 1 to indicate it was given a random 4-tuple.

As shown in the construction the simulator’s generation of public parameters and private keys
is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. Therefore, we have Pr[ν 6=
ν ′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when ν 6= ν ′, we have Pr[µ′ = µ|µ = 1] = 1
2 .
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If µ = 0 then the adversary sees an encryption of Mν . The adversary’s advantage in this
situation is ε by definition. Therefore, we have Pr[ν = ν ′|µ = 0] = 1

2 + ε. Since the simulator
guesses µ′ = 0 when ν = ν ′, we have Pr[µ′ = µ|µ = 0] = 1

2 + ε.
The overall advantage of the simulator in the Decisional BDH game is 1

2Pr[µ′ = µ|µ = 0] +
1
2Pr[µ′ = µ|µ = 1]− 1

2 = 1
2(1

2 + ε) + 1
2

1
2 −

1
2 = 1

2ε.

7 Conclusions

We introduced the concept of Fuzzy Identity Based Encryption, which allows for error-tolerance
between the identity of a private key and the public key used to encrypt a ciphertext. We de-
scribed two practical applications of Fuzzy-IBE of encryption using biometrics and attribute-based
encryption.

We presented our construction of a Fuzzy IBE scheme that uses set overlap as the distance metric
between identities. Finally, we proved our scheme under the Selective-ID model by reducing it to
an assumption that can be viewed as a modified version of the Bilinear Decisional Diffie-Hellman
assumption.

This work motivates a few interesting open problems. The first is whether it is possible to
create a Fuzzy IBE scheme where the attributes come from multiple authorities. While, it is
natural for one authority to certify all attributes that compromise a biometric, in attribute-based
encryption systems there will often not be one party that can act as an authority for all attributes.
Also, a Fuzzy-IBE scheme that hides the public key that was used to encrypt the ciphertext [1]
is intriguing. Our scheme uses set-overlap as a similarity measure between identities. (We note
a Hamming-distance construction can also be built using our techniques.) An open problem is to
build other Fuzzy-IBE schemes that use different distance metrics between identities.
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