
FAQ on π-Calculus

Jeannette M. Wing
Visiting Researcher, Microsoft Research

Professor of Computer Science, Carnegie Mellon University

27 December 2002

1. What is π-calculus?

π -calculus is a model of computation for concurrent systems.

The syntax of π-calculus lets you represent processes, parallel composition of processes,
synchronous communication between processes through channels, creation of fresh
channels, replication of processes, and nondeterminism. That’s it!

2. What do you mean by process? By channel?

A process is an abstraction of an independent thread of control. A channel is an
abstraction of the communication link between two processes. Processes interact with
each other by sending and receiving messages over channels.

3. Could you be a little more concrete?

Let P and Q denote processes. Then

• P | Q denotes a process composed of P and Q running in parallel.
• a(x).P denotes a process that waits to read a value x from the channel a and then,

having received it, behaves like P.
• ā〈x〉.P denotes a process that first waits to send the value x along the channel a

and then, after x has been accepted by some input process, behaves like P.
• (νa)P ensures that a is a fresh channel in P. (Read the Greek letter “nu” as “new.”)
• !P denotes an infinite number of copies of P, all running in parallel.
• P + Q denotes a process that behaves like either P or Q.
• 0 denotes the inert process that does nothing.

All concurrent behavior that you can imagine would have to be written in terms of just
the above constructs.

4. How about an example? (Impatient readers should feel free to skip this question.)

Suppose you want to model a remote procedure call between a client and a server.

Consider the following function, incr, running on the server. incr returns the integer
one greater than its argument, x:

 1

int incr(int x) { return x+1; }

First, we model the “incr” server as a process in π-calculus as follows:

!incr(a, x).ā〈x+1〉

Ignoring the ! for now, this process expression says that the incr channel accepts two
inputs: one is the name of the channel, a, which we will use to return the result of calling
incr, and the other is the argument, x, which will be instantiated with an integer value
upon a client call. After the call, the process will send back the result of incrementing its
argument, x, on the channel a. The use of the replication operator, !, in the above process
expression means that the “incr” server will happily make multiple copies of itself, one
for each client interaction.

Now let’s model a client call to the “incr” server. In the following assignment statement,
the result of calling incr with 17 gets bound to the integer variable y:

y := incr(17)

and would look like this in π-calculus:

 (νa)(incr〈a, 17〉 | a(y))

which says in parallel: (1) send on the incr channel both the channel a (for passing back
the result value) and the integer value 17, and (2) receive on the channel a the result y.
The use of the ν operator guarantees that a private channel of communication is set up for
each client interaction with the “incr” server.

Putting the client and server processes in parallel together we get the final process
expression:
 !incr(a, x).ā〈x+1〉 | (νa)(incr〈a, 17〉 | a(y))

which expresses the client call to the “incr” server with the argument 17 and the
assignment of the returned value 18 to y.

5. What is the analogy between π-calculus and λ-calculus?

λ-calculus is to sequential programs as π-calculus is to concurrent programs.

More precisely, λ-calculus is the core language of functional computation, in which
“everything is a function” and all computation proceeds by function application; π-
calculus is the core calculus of message-based concurrency, in which “everything is a
process” and all computation proceeds by communication on channels. λ-calculus can
claim to be a canonical model of functional computation; however, π-calculus cannot
make such a claim for concurrent computation [Pierce95].

 2

Benjamin Pierce puts it best:

The lambda-calculus holds an enviable position: it is recognized as
embodying, in miniature, all of the essential features of functional
computation. Moreover, other foundations for functional computation, such
as Turing machines, have exactly the same expressive power. The
“inevitability” of the lambda-calculus arises from the fact that the only way
to observe a functional computation is to watch which output values it yields
when presented with different input values.

Unfortunately, the world of concurrent computation is not so orderly.
Different notions of what can be observed may be appropriate for different
circumstances, giving rise to different definitions of when two concurrent
systems have “the same behavior”: for example, we may wish to observe or
ignore the degree of inherent parallelism of a system, the circumstances
under which it may deadlock, the distribution of its processes among physical
processors, or its resilience to various kinds of failures. Moreover,
concurrent systems can be described in terms of many different constructs for
creating processes (fork/wait, cobegin/coend, futures, data parallelism, etc.),
exchanging information between them (shared memory, rendezvous,
message-passing, dataflow, etc.), and managing their use of shared resources
(semaphores, monitors, transactions, etc.).

This variability has given rise to a large class of formal systems called
process calculi (sometimes process algebras), each embodying the essence
of a particular concurrent or distributed programming paradigm [Pierce 95].

π-calculus is just one of many such process calculi.

An interesting aside: λ-calculus can be encoded in π-calculus.

6. Why is the term “process algebra” sometimes used? What is a process algebra?

An algebra is a mathematical structure with a set of values and a set of operations on the
values. These operations enjoy algebraic properties such as commutativity, associativity,
idempotency, and distributivity. In a typical process algebra, processes are values and
parallel composition is defined to be a commutative and associative operation on
processes.

7. What’s the difference between π-calculus and its predecessor process calculi?

What distinguishes π−calculus from earlier process calculi—in particular Robin Milner’s
own work on Calculus of Communicating Systems (CCS) [Milner80] and Tony Hoare’s
similar work on Communicating Sequential Processes (CSP) [Hoare85]—is the ability to
pass channels as data along other channels. This feature allows you to express process

 3

mobility, which in turn allows you to express changes in process structure. For example,
suppose you’re talking on your cell phone while driving in your car; the ability to model
process mobility is useful for describing how your phone communicates with different
base stations along the way.

8. Can you program in π-calculus?

Yes, but you wouldn’t want to.

Just as λ-calculus can be viewed as an assembly language for sequential programs, so can
π-calculus for concurrent programs. Both are simple, flexible, efficiently implementable,
and suitable targets for compilation of higher-level language features [Pierce95]. But
both would be impractical to use as a source-level programming language. For example,
if your concurrent programming model is based on shared memory, as is the case with all
Threads libraries, then encoding each globally shared variable in terms of channels would
be cumbersome.

Rather, π-calculus is best viewed as a formal framework for providing the underlying
semantics for a high-level concurrent or distributed programming language. For
example, Jim Larus, Sriram Rajamani, and Jakob Rehof give the semantics of their new
Sharpie language, for asynchronous programming, in terms of π-calculus [LRR02].

Older languages that define their semantics in terms of π-calculus or other process calculi
include Pict [PierceTurner97], Amber [Cardelli86], Concurrent ML [Reppy91], and
Facile [Amadio94]. Notably, even though these languages are higher-level than π-
calculus, none of them are used in practice. (In contrast, in the sequential programming
world, Scheme, ML, and Haskell are three popular functional programming languages
whose semantics build from λ-calculus—all three are used widely in teaching and in
research.)

9. What good is π-calculus as a practical tool?

π-calculus, or any process calculus for that matter, is good as a modeling language.

In particular, people have successfully used process calculi to model protocols.
Protocols, after all, describe ways in which processes should communicate with each
other. People have used process calculi to model and verify telecommunications
protocols, often with support from model checking tools such as the Concurrency
Workbench [CPS93] and FDR [FDR93]. Others have used a π-calculus variant, called
Spi-calculus, to reason about cryptographic protocols [AbadiGordon97].

As with using any modeling language, there still remains a huge gap between the model
and the code, i.e., between the specification of desired behavior and the program that
implements it. Either you refine your model till you spit out “correct” code or you write
code and prove its “correctness” against your model. Both approaches are used, with

 4

varying degrees of automated support, to varying degrees of success. Attacking this gap
is still an active area of research.

To illustrate how large this gap can be, consider again the modeling of remote procedure
call in Question 4. An implementation of RPC would have to consider details such as
marshalling and unmarshalling arguments and results, handling failures such as links or
servers going down, synchronizing clocks, locating the server in the first place, and so on.
Clearly, at a level of understanding a high-level protocol, where you are interested in only
the interactions between various clients and servers (e.g., users making reservations
through an on-line travel agency), you want to ignore that level of detail. Here, π-
calculus as a modeling language is a win. But, eventually you have to implement not just
RPC, but also the application-specific protocol (e.g., travelers should not double book).
How to guarantee you have correctly implemented your communications protocol such as
RPC as well as your application-specific protocol is still a hard problem.

10. What does π-calculus, or more generally process calculi, have to do with
software engineering?

One place where process calculi have recently played a role in software engineering
research is in the field of software architecture. A software architecture describes a
system’s components (e.g., clients and servers, peer processes, distributed agents) and
connectors (e.g., remote procedure call, event broadcast, publish-subscribe, Unix pipes).
A connector describes the protocol by which components communicate. Rob Allen and
David Garlan define a software architecture language called Wright [AllenGarlan97],
suitable for defining different kinds of connectors, i.e., different ways in which
components can interact. They give the semantics of Wright in terms of CSP [Hoare95],
a process algebra in the same family as CCS, the predecessor of π-calculus. Moreover,
they use the FDR model checker [FDR93], whose semantics are also given in terms of
CSP, to find bugs in architecture-level descriptions of software systems.

11. What good is π-calculus as a formalism?

π-calculus, as with any formalism, can help answer fundamental questions about
seemingly disparate issues, all within a single framework. For example, consider
synchronous versus asynchronous communication. Making a telephone call is an
example of synchronous communication; sending e-mail is an example of asynchronous
communication.

Synchronous π-calculus requires that senders and receivers rendezvous when
communicating. Asynchrony is inherent in distributed systems, because it takes time for
a message to travel from one machine to another. Thus, many researchers use
asynchronous π-calculus, which is a fragment of synchronous π-calculus, as their model
of concurrency, especially for modeling distributed computation.

A question that naturally arises is whether these two mechanisms are equivalent, i.e., can
one implement the other? It is well known how to implement asynchronous

 5

communication in terms of synchronous. But what about the other direction? Catuscia
Palamidessi uses the π-calculus as a uniform framework to answer this question in the
negative: synchronous communication is more powerful [Palamidessi02].

12. Why are there so many formalisms such as π-calculus and Abstract State
Machines (ASM)?

There are many classes of formalisms. They differ in the types of systems they are
suitable for describing (e.g., hardware, real-time, programs, protocols), in the types of
properties they can be used to prove (e.g., correctness, deadlock freedom, timing,
liveness), in their underlying logical power (e.g., first-order, higher-order), in their
underlying semantic model (e.g., type of algebraic structure), in their usability (e.g.,
expressive power, tool support, scalability), etc.

π-calculus is a natural choice for describing concurrent processes that communicate
through message passing. It is not a natural choice for describing abstract data types. It
is not a natural choice for describing states with rich or complex data structures.

ASM is a natural choice for describing abstract states and single-step transitions that
change state. Its model of concurrency is based on abstract shared global state. See Yuri
Gurevich’s web site http://research.microsoft.com/~gurevich/annotated.html for ASM-
related papers, including the Lipari 1993 guide (#103) that defines sequential, parallel,
and distributed ASMs in terms of evolving algebras [Gurevich93].

See http://archive.comlab.ox.ac.uk/formal-methods.html for a wealth of information
about other formalisms: their notations, methods, and tools. As of today, π-calculus and
ASM are two of the 92 listed.

13. Where can I read more about π-calculus?

Standard references on π-calculus are Milner’s tutorial “The Polyadic π-calculus”
[Milner91]; Milner, Parrow, and Walker’s two-part article “A Calculus of Mobile
Processes” [MPW92]; and Milner’s book, Communicating and Mobile Systems: the π-
calculus [Milner99]. Sangiorgi and Walker’s graduate-level textbook, The π-calculus: A
Theory of Mobile Processes [SangiorgiWalker01], gives a detailed encoding of λ-
calculus in π-calculus and shows how to do object-oriented programming in π-calculus.

Benjamin Pierce gives an excellent introduction [Pierce95] to both λ-calculus and π-
calculus.

See http://liinwww.ira.uka.de/bibliography/Theory/pi.html for a bibliography on calculi
for mobile processes.

 6

http://research.microsoft.com/~gurevich/annotated.html
http://archive.comlab.ox.ac.uk/formal-methods.html
http://liinwww.ira.uka.de/bibliography/Theory/pi.html

Acknowledgments

I thank Jim Larus, Dan Ling, and Jim Kajiya for their general comments. Thanks to Jim
Larus for his specific suggestion to add Question 2, and to Jakob Rehof and Sriram
Rajamani for their help with the example for Question 4. Thanks to Yuri Gurevich for
clarifying my understanding of ASMs and for his helpful pointers. I took most of the
answer in Question 5 from Benjamin Pierce’s CRC Handbook article [Pierce95].

References

[AbadiGordon97] Martin Abadi and Andrew Gordon, Reasoning about Cryptographic
Protocols in the Spi Calculus, CONCUR’97: Concurrency Theory, Lecture Notes in
Computer Science, volume 1243, Springer-Verlag, July 1997, pp. 59-73.
http://research.microsoft.com/~adg/Publications/details.htm

[AllenGarlan97] Robert Allen and David Garlan, A Formal Basis for Architectural
Connection, ACM Trans. on Soft. Eng. and Methodology, July 1997.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/able/www/paper_abstracts/wright-
tosem97.html

[Amadio94] Roberto M. Amadio, Translating core Facile, Technical Report ECRC-TR-3-
94, European Computer-Industry Research Center, GmbH, Munich, 1994.

[Cardelli86] Luca Cardelli, Amber, Combinators and Functional Programming
Languages, Lecture Notes in Computer Science, volume 242, Springer-Verlag, 1986, pp.
21-47.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen, The Concurrency
Workbench: A semantics-based tool for the verification of concurrent systems, ACM
Trans. on Prog. Lang. and Systems, 15(1): 36-72, January 1993.
http://www.cs.sunysb.edu/~rance/publications/./1993.html

[FDR93] Formal Systems (Europe) Ltd., Failures-Divergences-Refinement, User Manual
and Tutorial, 1993.

[Gurevich93] Yuri Gurevich, Evolving Algebras 1993: Lipari Guide, in Specification and
Validation Methods, ed. E. Börger, Oxford University Press, 1995, pp. 9-36.
http://research.microsoft.com/~gurevich/Opera/103.pdf

[Hoare85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[LLR02] Jim Larus, Sriram Rajamani, and Jakob Rehof, Behavioral Types of
Asynchronous Programming, Microsoft Research Technical Report, November 2002,
submitted to PLDI.
http://www.research.microsoft.com/behave/sharpie-report-abs.html

 7

http://research.microsoft.com/~adg/Publications/details.htm
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/able/www/paper_abstracts/wright-tosem97.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/able/www/paper_abstracts/wright-tosem97.html
http://www.cs.sunysb.edu/~rance/publications/1993.html
http://research.microsoft.com/~gurevich/Opera/103.pdf
http://www.research.microsoft.com/behave/sharpie-report-abs.html

 8

[Milner80] Robin Milner, A Calculus of Communicating Systems, Lecture Notes in
Computer Science, volume 92, Springer-Verlag, 1980.

[Milner91] Robin Milner, The Polyadic π-calculus, Technical Report ECS-LFCS-91-
180, Lab. for Foundations of Computer Science, Dept. of Computer Science, University
of Edinburgh, UK, October 1991.
http://www.lfcs.informatics.ed.ac.uk/reports/91/ECS-LFCS-91-180/

[Milner99] Robin Milner, Communicating and mobile systems: the π-calculus,
Cambridge University Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker, A Calculus of Mobile
Processes, Parts I and II, Information and Computation, 100(1): 1-40 and 41-77.
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-86/

[Palamidessi02] Catuscia Palamidessi, Comparing the Expressive Power of the
Synchronous and the Asynchronous π-calculi, to appear in Math. Struct. in Comp. Sci.,
2002.
http://www.cse.psu.edu/~catuscia/papers/pi_calc/mscs.ps

[Pierce95] Benjamin C. Pierce, Foundational Calculi for Programming Languages, CRC
Handbook of Computer Science and Engineering, Chapter 136, CRC Press, 1996.
http://www.cis.upenn.edu/~bcpierce/papers/

[PierceTurner97] Benjamin C. Pierce and David N. Turner, Pict: A Programming
Language Based on the Pi-Calculus, Indiana University CSCI Technical Report #476,
1997.
http://www.cis.upenn.edu/~bcpierce/papers/

[Reppy91] John Reppy, CML: A higher-order concurrent language, Proc. of
Programming Language Design and Implementation, ACM SIGPLAN, June 1991, pp.
293-259.

[SangiorgiWalker01] Davide Sangiorgi and David Walker, The π-calculus: a Theory of
Mobile Processes, Cambridge University Press, 2001.

http://www.lfcs.informatics.ed.ac.uk/reports/91/ECS-LFCS-91-180/
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-86/
http://www.cse.psu.edu/~catuscia/papers/pi_calc/mscs.ps
http://www.cis.upenn.edu/~bcpierce/papers/
http://www.cis.upenn.edu/~bcpierce/papers/

	References

