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1. INTRODUCTION

1.1 The ISIS Toolkit

The ISIS toolkit [8] provides a variety of tools for building software in loosely
coupled distributed environments. The system has been successful in address-
ing problems of distributed consistency, cooperative distributed algorithms
and fault-tolerance. At the time of this writing, Version 2.1 of the Toolkit
was in use at several hundred locations worldwide.

Two aspects of ISIS are key to its overall approach:

—An implementation of virtually synchronous process groups. Such a group
consists of a set of processes cooperating to execute a distributed algorithm,
replicate data, provide a service fault-tolerantly or otherwise exploit distri-
bution.

—A collection: of reliable multicast protocols with which processes and group
members interact with groups. Reliability in ISIS encompasses failure
atomicity, delivery ordering guarantees and a form of group addressing
atomicity, under which membership changes are synchronized with group
communication.

Although ISIS supports a wide range of multicast protocols, a protocol
called CBCAST accounts for the majority of communication in the system. In
fact, many of the ISIS tools are little more than invocations of this communi-
cation primitive. For example, the ISIS replicated data tool uses a single
(asynchronous) CBCAST to perform each update and locking operation; reads
require no communication at all. A consequence is that the cost of CBCAST
represents the dominant performance bottleneck in the ISIS system.

The original ISIS CBCAST protocol was costly in part for structural
reasons and in part because of the protocol used [6]. The implementation was
within a protocol server, hence all CBCAST communication was via an

/indirect path. Independent of the cost of the protocol itself, this indirection
was expensive. Furthermore, the protocol server proved difficult to scale,
limiting the initial versions of ISIS to networks of a few hundred nodes. With
respect to the protocol used, our initial implementation favored generality
over specialization thereby permitting extremely flexible destination address-
ing. It used a piggybacking algorithm that achieved the CBCAST ordering
property but required periodic garbage collection.

The case for flexibility in addressing seems weaker today. Experience with
ISIS has left us with substantial insight into how the system is used,
permitting us to focus on core functionality. The protocols described in this
paper support highly concurrent applications, scale to systems with large
numbers of potentially overlapping process groups and bound the overhead
associated with piggybacked information in proportion to the size of the
process groups to which the sender of a message belongs. Although slightly
less general than the earlier solution, the new protocols are able to support
the ISIS toolkit and all ISIS applications with which we are familiar. The
benefit of this reduction in generality has been a substantial increase in the
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performance and scalability of our system. In fact, the new protocol suite has
no evident limits to the scale of system it could support. In the common case
of an application with localized, bursty communication, most multicasts will
carry only a small overhead regardless of the size or number of groups used,
and a message will be delayed only if it actually arrives out of order.

The paper is structured as follows. Section 2 discusses the types of process
groups supported by ISIS and the patterns of group usage and communication
that have been observed among current ISIS applications. Section 3 surveys
prior work on multicast. Section 4 formalizes the virtually synchronous
multicasting problem and the properties that a CBCAST or ABCAST protocol
must satisfy. Section 5 introduces our new technique in a single process
group; multiple groups are considered in Section 6. Section 7 considers a
number of ISIS-specific implementation issues. The paper concludes with a
discussion of the performance of our initial implementation, in Section 8.

2. EXPERIENCE WITH ISIS USERS

We begin by reviewing the types of groups and patterns of group usage seen
in existing ISIS applications. This material is discussed in more detail by
Birman and Cooper [3].

ISIS supports four types of groups, illustrated in Figure 1. The simplest of
these is denoted the peer group. In a peer group, processes cooperate as
equals in order to get a task done. They may manage replicated data,
subdivide tasks, monitor one another’s status, or otherwise engage in a
closely coordinated distributed action. Another common structure is the
client [ server group. Here, a peer group of processes act as servers on behalf of
a potentially large set of clients. Clients interact with the servers in a
request /reply style, either by picking a favorite server and issuing RPC calls
to it, or by multicasting to the whole server group. In the later case, servers
will often multicast their replies both to the appropriate client and to one
another. A diffusion group is a type of client-server group in which the
servers multicast messages to the full set of servers and clients. Clients are
passive and simply receive messages. Diffusion groups arise in any applica-
tion that broadcasts information to large a number of sites, for example on a
brokerage trading floor. Finally, hierarchical group structures arise when
larger server groups are needed in a distributed system [10, 14]. Hierarchical
groups are tree-structured sets of groups. A root group maps the initial
connection request to an appropriate subgroup, and the application subse-
quently interacts only with this subgroup. Data is partitioned among the
subgroups, and although a large-group communication mechanism is avail-
able, it is rarely needed.

Many ISIS applications use more than one of these structures, employing
overlapping groups when mixed functionality is desired. For example, a
diffusion group used to disseminate stock quotes would almost always be
overlaid by a client/server group through which brokerage programs register
their interest in specific stocks. Nonetheless, existing ISIS applications rarely
use large numbers of groups. Groups change membership infrequently, and
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Fig. 1. Types of process groups.

generally contain just enough members for fault-tolerance or load-sharing
(e.g., 3-5 processes). On the other hand, the number of clients of a client/
server or diffusion group may be large (hundreds).

Through studies of ISIS users [3, 4] we have concluded that these patterns
are in part artifacts of the way ISIS evolved. In versions of ISIS prior to the
one discussed here, groups were fairly heavy-weight entities. Applications
obtained acceptable performance only by ensuring that communication to a
group was much more frequent than membership changes. Looking to the
future, we expect our system to continue supporting these four types of
groups. We also expect that groups will remain small, (except for the client
set of a client-server or diffusion group). However, as we rebuild ISIS around
the protocols described here and move the key modules into lower layers of
the operating system, groups and group communication can be expected to
get much cheaper. These costs seem to be a dominant factor preventing ISIS
users from employing very large numbers of groups, especially in cases where
process groups naturally model some sort of application-level data type or
object. As a result, we expect that for some applications, groups will substan-
tially outnumber processes. Furthermore, groups may become much more
dynamic, because the cost of joining or leaving a group can be substantially
reduced using the protocols developed in this paper.

To illustrate these points, we consider some applications that would have
these characteristics. A scientific simulation employing an n-dimensional
grid might use a process group to represent the neighbors of each grid
element. A network information service running on hundreds of sites might
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replicate individual data items using small process groups; the result would
be a large group containing many smaller data replication domains, perhaps
moving data in response to access patterns. Similarly, a process group could
be used to implement replicated objects in a modular application that imports
many such objects. In each case, the number of process groups would be huge
and the overlap between groups extensive.

The desire to support applications like these represents a primary motiva-
tion for the research reported here. The earlier ISIS protocols have proven
inflexible and difficult to scale; it seems unlikely that they could be used to
support the highly dynamic, large-scale applications that now interest us.
The protocols reported here respond to these new needs, enabling the explo-
ration of such issues as support for parallel processing, the use of multicast
communication hardware, and mechanisms to enforce realtime deadlines and
message priorities.

3. PRIOR WORK ON GROUP COMMUNICATION PROTOCOLS

Our communication protocols evolved from a causal message delivery proto-
col developed by Schiper [25], and are based on work by Fidge [13] and
Mattern [19]. In the case of a single process group, the algorithm was
influenced by protocols developed by Ladin [16] and Peterson [20]. However,
our work generalizes these protocols in the following respects:

—Both of the other multicast protocols address causality only in the context
of a single process group. Our solution transparently addresses the case of
multiple, overlapping groups. Elsewhere, we argue [4] that a multicast
protocol must respect causality to be used asynchronously (without block-
ing the sender until remote delivery oceurs). Asynchronous communication
is the key to high performance in group-structured distributed applications
and is a central feature of ISIS.

—The ISIS architecture treats client/server groups and diffusion groups as
sets of overlayed groups, and optimizes the management of causality
information for this case. Both the clients and servers can multicast
directly and fault-tolerantly within the subgroups of a client/server group.
Peterson’s protocols do not support these styles of group use and communi-
cation. Ladin’s protocol supports client/server interactions, but not diffu-
sion groups, and does not permit clients to multicast directly to server
groups.

—Ladin’s protocol uses stable storage as part of the fault-tolerance method.
Our protocol uses a notion of message stability that requires no external
storage.

Our CBCAST protocol can be extended to provide a total message delivery
ordering, inviting comparison with atomic broadcast (ABCAST) protocols [6,
9, 14, 22, 29]. Again, the extensions supporting multiple groups represent our
primary contribution. However, our ABCAST protocol also uses a delivery
order consistent with causality thereby permitting it to be used
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asynchronously. A delivery ordering might be total without being causal, and
indeed, several of the protocols cited would not provide this guarantee.

4. EXECUTION MODEL

We now formalize the model and the problem to be solved.

4.1 Basic System Model

The system is composed of processes P = { py, py, ..., p,} with disjoint mem-
ory spaces. Initially, we assume that this set is static and known in advance;
later we relax this assumption. Processes fail by crashing detectably (a
fail-stop assumption); notification is provided by a failure detection mecha-
nism, described below. When multiple processes need to cooperate, e.g., to
manage replicated data, subdivide a computation, monitor one another’s
state, and so forth, they can be structured into process groups. The set of such
groups is denoted by G = {g,, &, ... }.

FEach process group has a name and a set of member processes. Members
join and leave dynamically; a failure causes a departure from all groups to
which a process belongs. The members of a process group need not be
identical, nor is there any limit on the number of groups to which a process
may belong. The protocols presented below all assume that processes only
multicast to groups that they are members of, and that all multicasts are
directed to the full membership of a single group. (We discuss client /server
groups in Section 7.)

Our system model is unusual in assuming an external service that imple-
ments the process group abstraction. This accurately reflects our current
implementation, which obtains group membership management from a pre-
existing ISIS process-group server. In fact, however, this requirement can be
eliminated, as discussed in Section 7.4.

The interface by which a process joins and leaves a process group will not
concern us here, but the manner in which the group service communicates
membership information to a process is relevant. A view of a process group is
a list of its members. A view sequence for g is a list viewy(g), view,(g),.. .,
view,(g), where

(1) viewy(g) =0,
(2) vi:view,(g) < P, where P is the set of all processes in the system, and

(3) view,(g) and view,, (g) differ by the addition or subtraction of exactly
one process.

Processes learn of the failure of other group members only through this
view mechanism, never through any sort of direct observation.

We assume that direct communication between processes is always possi-
ble; the software implementing this is called the message transport layer.
Within our protocols, processes always communicate using point-to-point and
multicast messages; the latter may be transmitted using multiple point-to-
point messages if no more efficient alternative is available. The transport
communication primitives must provide lossless, uncorrupted, sequenced
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message delivery. The message transport layer is also assumed to intercept
and discard messages from a failed process once the failure detection has
been made. This guards against the possibility that a process might hang for
an extended period (e.g., waiting for a paging store to respond), but then
attempt to resume communication with the system. Obviously, transient
problems of this sort cannot be distinguished from permanent failures, hence
there is little choice but to treat both the same way by forcing the faulty
process to run a recovery protocol.

Our protocol architecture permits application builders to define new trans-
port protocols, perhaps to take advantage of special hardware. The imple-
mentation described in this paper uses a transport that we built over an
unreliable datagram layer.

The execution of a process is a partially ordered sequence of events, each
corresponding to the execution of an indivisible action. An acyclic event
order, denoted %, reflects the dependence of events occurring at process p
upon one another. The event send,(m) denotes the transmission of m by
process p to a set of one or more destinations, dests(m); the reception of
message m by process p is denoted rcv, (m). We omit the subscript when the
process is clear from the context. If | dests(m)| > 1 we will assume that send
puts messages into all communication channels in a single action that might
be interrupted by failure, but not by other send or rcv actions.

We denote by rcv,(view,(g)) the event by which a process p belonging to g
“learns” of view,/g).

We distinguish the event of receiving a message from the event of delivery,
since this allows us to model protocols that delay message delivery until some
condition is satisfied. The delivery event is denoted deliver,(m) where
rev,(m) 5 deliver (m).

When a process belongs to multiple groups, we may need to indicate the
group in which a message was sent, received, or delivered. We will do this by
extending our notation with a second argument; for example, deliver,(m, g),
will indicate that message m was delivered at process p, and was sent by
some other process in group g.

As Lamport [17], we define the potential causality relation for the system,
— , as the transitive closure of the relation defined as follows:

(1) Ifap:e® ¢, then e > ¢
(2) ¥vm: send(m) — rcv(m)

For messages m and m/, the notation m — m’ will be used as a shorthand
for send(m) — send(m’).

Finally, for demonstrating liveness, we assume that any message sent by a
process is eventually received unless the sender or destination fails, and that

failures are detected and eventually reflected in new group views omitting
the failed process.

4.2 Virtual Synchrony Properties Required of Multicast Protocols

Earlier, we stated that ISIS is a virtually synchronous programming environ-
ment. Intuitively, this means that users can program as if the system
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scheduled one distributed event at a time (i.e., group membership changes,
multicast, and failures). Were a system to actually behave this way, we
would call it synchronous; such an environment would greatly simplify the
development of distributed algorithms but offers little opportunity to exploit
concurrency. The “schedule” used by ISIS is, however, synchronous in ap-
pearance only. The ordering requirements of the tools in the ISIS toolkit
have been analyzed, and the system actually enforces only the degree of
synchronization needed in each case [6]. This results in what we call a
virtually synchronous execution, in which operations are often performed
concurrently and multicasts are often issued asynchronously (without block-
ing), but algorithms can still be developed and reasoned about using a
simple, synchronous model.
Virtual synchrony has two major aspects.

(1) Address expansion. It should be possible to use group identifiers as the
destination of a multicast. The protocol must expand a group identifier
into a destination list and deliver the message such that

(@ All the recipients are in identical group views when the message
arrives.

(b) The destination list consists of precisely the members of that view.

The effect of these rules is that the expansion of the destination list and
message delivery appear as a single, instantaneous event.

(2) Delivery atomicity and order. This involves delivery of messages fault-
tolerantly (either all operational destinations eventually receive a mes-
sage, or, and only if the sender fails, none do). Furthermore, when
multiple destinations receive the same message, they observe consistent
delivery orders, in one of the two senses detailed below.

Two types of delivery ordering will be of interest here. We define the
causal delivery ordering for multicast messages m and m’ as follows:

m > m' = Vpedests(m) N dests(m’): deliver(m) > deliver(m’).
CBCAST provides only the causal delivery ordering. If two CBCAST’s are
concurrent, the protocol places no constraints on their relative delivery

ordering at overlapping destinations. ABCAST extends the causal ordering
into a total one, by ordering concurrent messages m and m’ such that

am, m’, peg: deliver,(m, g) 5 deliver,(m’, g) =
vgeg: deliver (m, g) 5 deliver (m’, g).

Note that this definition of ABCAST only orders messages sent to the same
group; other definitions are possible. We discuss this further in Section 6.2.
Because the ABCAST protocol orders concurrent events, it is more costly
than CBCAST, thereby requiring synchronous solutions where the CBCAST
protocol admits efficient, asynchronous solutions.

Although one can define other sorts of delivery orderings, our work on ISIS
suggests that this is not necessary. The higher levels of the ISIS toolkit are
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themselves implemented almost entirely using asynchronous CBCAST {5,
26]. In fact, Schmuck shows [26] that many algorithms specified in terms of
ABCAST can be modified to use CBCAST without compromising correctness.
Further, he demonstrates that both protocols are complete for a class of
delivery orderings. For example, CBCAST can emulate any ordering prop-
erty that permits message delivery on the first round of communication.

Fault tolerance and message delivery ordering are not independent in our
model. A process will not receive further multicasts from a faulty sender
after observing it to fail; this requires that multicasts in progress at the time
of the failure be flushed from the system before the view corresponding to
the failure can be delivered to group members. Furthermore, failures will not
leave gaps in a causally related sequence of multicasts. That is, if m > m’
and a process p, has received m/, it need not be concerned that a failure could
somehow prevent m from being delivered to any of its destinations (even if
the destination of m and m’ don’t overlap). Failure atomicity alone would not
yield either guarantee.

4.3 Vector Time

Our delivery protocol is based on a type of logical clock called a vector clock.
The vector time protocol maintains sufficient information to represent —
precisely.

A vector time for a process p,, denoted VT'(p,), is a vector of length n
(where n = | P|), indexed by process-id.

(1) When p, starts execution, VT'(p,) is initialized to zeros.

(2) For each event send(m) at p,, VT'(p)li]is incremented by 1.

(3) Each message multicast by process p, is timestamped with the incre-
mented value of VT'(p,).

(4) When process p; delivers a message m from p, containing VT(m), p,
modifies its vector clock in the following manner:

vkel: - n:VT(p)|k] = max(VT(p,)[k],VT(m)[k]).

That is, the vector timestamp assighed to a message m counts the number of
messages, on a per-sender basis, that causally precede m.
Rules for comparing vector timestamps are

(1) VT, < VT, iff vi: VT,[i] < VT,[il
@) VT, < VT, if VT, < VT, and 3i: VT,[i] < VT,li]

It can be shown that given messages m and m’, m » m’iff VI'(m) < VT(m'):
vector timestamps represent causality precisely.

Vector times were proposed in this form by Fidge [13] and Mattern [19]; the
latter includes a good survey. Other researchers have also used vector times
or similar mechanisms [16, 18, 26, 30]. As noted earlier, our work is an
outgrowth of the protocol presented in [25], which uses vector times as the
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basis for a protocol that delivers point-to-point messages in an order consist-
ent with causality.

5. THE CBCAST AND ABCAST PROTOCOL

This section presents our new CBCAST and ABCAST protocols. We initially
consider the case of a single process group with fixed membership; multiple
group issues are addressed in the next section. This section first introduces
the causal delivery protocol, then extends it to a totally ordered ABCAST
protocol, and finally considers view changes.

5.1 CBCAST Protocol

Suppose that a set of processes P communicate using only broadcasts to the
full set of processes in the system; that is, vm: dests(m) = P. We now develop
a delivery protocol by which each process p receives messages sent to it,
delays them if necessary, and then delivers them in an order consistent with
causality:

m—m’ = vp: deliver,(m) > deliver,(m’).

Our solution is derived using vector timestamps. The basic idea is to label
each message with a timestamp, VT'(m) k], indicating precisely how many
multicasts by process p, precede m. A recipient of m will delay m until
VT'(m) k] messages have been delivered from p,. Since — is an acyclic
order accurately represented by the vector time, the resulting delivery order
is causal and deadlock free.

The protocol is as follows:

(1) Before sending m, process p, increments VT(p,)li] and timestamps m.

(2) On reception of message m sent by p, and timestamped with VT'(m),
process p, # p; delays delivery of m until:

VT(m)[k] = VT(p,)[k] +1 ifk=i

VhiLon VT(m)[k] = VT(p,)| k] otherwise

Process p, need not delay messages received from itself. Delayed mes-
sages are maintained on a queue, the CBCAST delay queue. This queue is
sorted by vector time, with concurrent messages ordered by time of
receipt (however, the queue order will not be used until later in the
paper).

(8) When a message m is delivered, VT'(p,) is updated in accordance with
the vector time protocol from Section 4.3.

Step 2 is the key to the protocol. This guarantees that any message m’
transmitted causally before m (and hence with VT(m’) < VT'(m)) will be
delivered at p, before m is delivered. An example in which this rule is used
to delay delivery of a message appears in Figure 2.

We prove the correctness of the protocol in two stages. We first show that
causality is never violated (safety) and then we demonstrate that the protocol
never delays a message indefinitely (liveness).
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Fig. 2. Using the VT rule to delay message delivery.

Safety. Consider the actions of a process p, that receives two messages
m, and m, such that m; — m,.

Case 1. m, and m, are both transmitted by the same process p,. Recall
that we assumed a lossless, live communication system, hence p, eventually
receives both m, and m,. By construction, VT'(m;) < VT (m,), hence under
step 2, m, can only be delivered after m, has been delivered.

Case 2. m, and m, are transmitted by two distinct processes p, and p,..
We will show by induction on the messages received by process p, that m,
cannot be delivered before m,. Assume that m, has not been delivered and
that p, has received k messages.

Observe first that m,; = m,, hence VT(m,) < VT'(m,) (basic property of
vector times). In particular, if we consider the field corresponding to process
p,, the sender of m,, we have

VT (my)[i] = VT (ms)[{]. (1)

Base case. The first message delivered by p, cannot be my. Recall that if
no messages have been delivered to p, then VT(p)li]=0. However,
VT(my)li] > 0 (because m, is sent by p,), hence VI'(m,)li]l > 0. By applica-
tion of step 2 of the protocol, m, cannot be delivered by p,.

Inductive step. Suppose p, has received k messages, none of which is a
message m such that m; — m. If m; has not yet been delivered, then

vr(p)li] < VE(m)[il. (@)
This follows because the only way to assign a value to VT'(p,)[i] greater than
VT(my)li] is to deliver a message from p, that was sent subsequent to m;,

and such a message would be causally dependent on m;. From relations 1
and 2 it follows that

VT (p)[i] < VT (ms)[i].
By application of step 2 of the protocol, the £ + 1st message delivered by p,
cannot be m..
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Liveness. Suppose there exists a broadcast message m sent by process p,
that can never be delivered to process p;- Step 2 implies that either:

VT(m)[k] # VT'(p,)[k] +1 for k=i, or

L n) ] > VT(p,)[ k] ki

and that m was not transmitted by process p,- We consider these cases in
turn.

—VT(m)lil # VT'(p)lil + 1; that is, m is not the next message to be deliv-
ered from p, to p;. Notice that only a finite number of messages can
precede m. Since all messages are multicast to all processes and channels
are lossless and sequenced, it follows that there must be some message m’
sent by p, that p, received previously, has not yet delivered, and that is
the next message from p,, i.e., VI (m)[i] = VI(p)lil + 1. If m’ is also
delayed, it must be under the other case.

—3k = : VT (m) k] > VT'(p)lk]. Let n = VT (m)(k]. The nth transmission
of process p,, must be some message m’ — m that has either not been
received at p, or was received and is delayed. Under the hypothesis that
all messages are sent to all processes, m’ was already multicast to p,. Since
the communication system eventually delivers all messages, we may as-
sume that m’ has been received by p,- The same reasoning that was
applied to m can now be applied to m’. The number of messages that must
be delivered before m is finite and > is acyclic, hence this leads to a
contradiction.

5.2 Causal ABCAST Protocol

The CBCAST protocol is readily extended into a causal, totally ordered,
ABCAST protocol. We should note that it is unusual for an ABCAST protocol
to guarantee that the total order used conforms with causality. For example,
say that a process p asynchronously transmits message m using ABCAST,
then sends message m’ using CBCAST, and that some recipient of m’ now
sends m” using ABCAST. Here we have m —» m’ —» m”, but m and m” are
transmitted by different processes. Many ABCAST protocols would use an
arbitrary ordering in this case; our solution will always deliver m before m”.
This property is actually quite important: without it, few algorithms could
safely use ABCAST asynchronously, and the delays introduced by blocking
until the protocol has committed its delivery ordering could be significant.
This issue is discussed further by Birman et al. [4].

Our solution is based on the ISIS replicated data update protocol described
by Birman and Joseph [7] and the ABCAST protocol developed by Birman
and Joseph [7] and Schmuck [26]. Associated with each view view,(g) of a

process group g will be a foken holder process, token(g) e view,(g). We also
assume that each message m is uniquely identified by wid(m).

To ABCAST m, a process holding the token uses CBCAST to transmit m
in the normal manner. If the sender is not holding the token, the ABCAST is
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kernel, so that the protocol can be moved closer to the hardware communica-
tion device. For example, both Mach and Chorus permit application develop-
ers to move modules of code into the network communication component of
the kernel. In our case, this would yield a significant speedup. The other
obvious speedup would result from the use of hardware multicast, an idea
that we are now exploring experimentally.

9. CONCLUSIONS

We have presented a protocol efficiently implementing a reliable, causally
ordered multicast primitive. The protocol is easily extended into a totally
ordered “atomic” multicast primitive and has been implemented as part of
Versions 2.1 and 3.0 of the ISIS Toolkit. Our protocol offers an inexpensive
way to achieve the benefits of virtual synchrony. It is fast and scales well; in
fact, there is no evident limit to the size of network in which it could be used.
Even in applications with large numbers of overlapping groups, the overhead
on a multicast is typically small and in systems with bursty communication,
most multicasts can be sent with no overhead other than that needed to
implement reliable, FIFO interprocess channels.With appropriate device
drivers or multicast communication hardware, the basic protocol will operate
safely in a completely asynchronous, streaming fashion, never blocking a
message or its sender unless out-of-order reception genuinely occurs. Our
conclusion is that systems such as ISIS can achieve performance competitive
with the best existing multicast facilities—a finding contradicting the
widespread concern that fault-tolerance may be unacceptably costly.
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