
Resource Containers: A new facility
for resource management in server
systems G. Banga, P. Druschel, Rice Univ.

J. C. Mogul, Compaq
OSDI 1999

CS 5204 Operating Systems

Outline
 Background

 Previous Approaches & Problems

Motivation

 The Novel Idea: Resource Containers

 Performance & Evaluation
 Conclusion
 Current Status of R.C.

2

3

B
ac

kg
ro

un
d

HTTP Servers …
 Many users’ perceived computing performance is

based on the capacity of the remote servers. The
underlying OS & hardware are hard to provide
specific concerns on web browsing.

 Servers can accomplish different tasks each
consuming different types of resources. However,
depending on the resource allocation mechanisms
of the systems it is hard to achieve QoS, fairness,
etc. for clients.

4

B
ac

kg
ro

un
d

Terms …
 Resource Principal:

• entities for which separate resource allocation and
accounting are done. So resource principals are the
units at whose granularity resource scheduling is
done.

 Protection Domain:

• entities that need to be isolated from each other.

5

Traditional Process Abstraction (a dual function)

B
ac

kg
ro

un
d

 Protection domain and Resource principal
coincide in the process abstraction.

 Do NOT allow process to directly control resource
consumption of its kernel part.

 Process is what constitutes an independent
activity.

Process-per Connection …
 A master process

listens on port for new
connection requests

 For each new
connection a new
process is forked

 Drawbacks:
• Forking overhead
• Suffers from context

switch
• IPC

6

Pr
ev

io
us

 A
pp

ro
ac

he
s

Single-Process Event-Driven Server …
 Single process runs

handlers in main loop
for each ready
connection

 Avoid IPC & context
switches

 Drawbacks:
• Not really concurrent
• But can fork multi-

processes if on multi-
processor system

7

Pr
ev

io
us

 A
pp

ro
ac

he
s

Multi-threaded Server …

8

Pr
ev

io
us

 A
pp

ro
ac

he
s

 Each connection gets
its own thread

 Threads are
scheduled by thread
scheduler

 Idle threads listen for
next connection

 Avoids context
switches and scales
better

9

Other resources …
 Dynamic Resources:

• Such as pages created in response to user input
• This usually results in another process being created

to handle the dynamic request
 Kernel Resources:

• Kernel does network processing
• Buffers, sockets, etc.
• Separate from server app and charged to either one or

any unlucky process!
 Pr

ev
io

us
 A

pp
ro

ac
he

s

10

General Assumptions of Servers

Pr
ob

le
m

s

A network-intensive app.
 The resources

consumed by the kernel
are unaccounted. i.e.
The process is the right
unit for protection, but it
does not encompass all
the resource
consumption being
done for the application

11

Pr
ob

le
m

s

A multi-process app.
 An application

composed of multiple
user space processes,
which are cooperating
to perform a single
activity. So the unit of
resource management
is set of all the
processes rather than
individual process

12

Pr
ob

le
m

s

A single-process multi-threaded server

 The process is using
multiple independent
threads, one for each
connection. The correct
unit of resource
management is smaller
than a process, It is the
set of all resources
used to accomplish a
single independent
activity
 13

Pr
ob

le
m

s

Integrating network processing with resource
management
 Lazy Receiver Processing

 Maintains equivalence

between resource principal &
process

 However, still associates
protection domain and
resource (i.e. an equivalence
in between)

14

Pr
ob

le
m

s

15

A good story to tell …
 Dual function – protection domain and resource

principal coincidence is not a good idea:
• System does not allow app to directly control resource

consumption, e.g. via priority
• App has no control over resource management that is

performed by kernel on behalf of app

 Web servers should be able to provide some kind of
guarantee to clients, accurately accounting for the
resources consumed

M
ot

iv
at

io
n

16

Resource Containers!!!

 “An abstract OS entity that logically contains all system
resources being used by an app to achieve a particular
independent activity”

• Resources:
• CPU, mem, socket, buffer

• Attributes:
• Scheduling Para, resource limits, network QoS

values

Th
e

N
ov

el
 Id

ea

17

R
es

ou
rc

e
C

on
ta

in
er

s

18

 Resources

 Processes / Threads

• Resource binding is the relation between resource /
processing domains and the associated resource
principals, effectively decoupling the two

• Charge resources within kernel like LRP

• Dynamic resource binding: based on the activity or
purpose they are serving

R
es

ou
rc

e
C

on
ta

in
er

s

 Threads may serve one
container or many, existing
within the same protection
domain

 To avoid rescheduling threads
after every resource container
binding, a list of containers is
associated with a thread and
the thread is scheduled based
on combined attributes

 Threads initially inherit their
parents’ container

19

 Scheduling

R
es

ou
rc

e
C

on
ta

in
er

s

20

 Implementation
Modifications to Digital UNIX 4.0D

• Changes to the CPU scheduler to treat resource
containers as the resource principals.

• A resource container can obtain a fixed share over a time
scale of several seconds, or it can choose to time-share
the resources assigned to its parent container with its
sibling containers. (scheduling algorithm used ?)

• TCP/IP subsystem modified to implement LRP

 Server software: single-process, event-driven
 Clients used the S-Client software

R
es

ou
rc

e
C

on
ta

in
er

s

21

 Isolation of separate activities
 Can static requests maintain throughput under pressure

of many dynamic requests?

 Constrain the resource usage of dynamic requests

Pe
rf

or
m

an
ce

 &
 E

va
l

Priority based scheduling
 Assign resource

container ‘T-high’ to
high priority
connections

 How does ‘T-high’
response time change
with increase in low
priority connections

22

Pe
rf

or
m

an
ce

 &
 E

va
l

Protecting against SYN flooding
 They had a set of

known mis-behaving
clients SYN flooding
attach to the server

Measured the
concurrent throughput
to other clients

23

Pe
rf

or
m

an
ce

 &
 E

va
l

24

Conclusion
 Resource containers decouple resource principals

from protection domains and allow explicit and fine-
grained control over resource consumption at both
user-level and kernel-level in the system

 Combined with accurate resource accounting can
help web servers provide differentiated QoS

Since R.C. was the work done 12 yrs ago, there are so
many subsequent implementation work

 Resource Containers in
K42 (2003)
• User-based rather than

process-based
• API

• rcid = create(# of CPU,
max # pages)

• bind(rcid)

25

C
ur

re
nt

 S
ta

tu
s

Since R.C. was the work done 12 yrs ago, there are so
many subsequent implementation work …

 FreeBSD Foundation announces Resource
Containers Project (2010)
• Goal:

• create a single, unified framework for controlling
resource utilization API

• to use that framework to implement per-jail resource limits

26

C
ur

re
nt

 S
ta

tu
s

27

Thank you!

Any Questions?

	Resource Containers: A new facility for resource management in server systems
	Outline
	HTTP Servers …
	Terms …
	Traditional Process Abstraction (a dual function)
	Process-per Connection …
	Single-Process Event-Driven Server …
	Multi-threaded Server …
	Other resources …
	General Assumptions of Servers
	A network-intensive app.
	A multi-process app.
	A single-process multi-threaded server
	Integrating network processing with resource management
	A good story to tell …
	Resource Containers!!!
	幻灯片编号 17
	 Resources
	 Scheduling
	 Implementation
	 Isolation of separate activities
	Priority based scheduling
	Protecting against SYN flooding
	Conclusion
	Since R.C. was the work done 12 yrs ago, there are so many subsequent implementation work
	Since R.C. was the work done 12 yrs ago, there are so many subsequent implementation work …
	幻灯片编号 27

