
Dynamo: Amazon’s Highly
Available Key-Value Store

DeCandia et al.
Amazon.com

1

Presented by
Sushil

CS 5204

Motivation

• A storage system that attains high
availability, performance and durability

• Decentralized techniques
– Data partitioning

2

– Data partitioning

– Replica synchronization

– Membership

Agenda

• Introduction

• System Architecture

• Implementation

• Experiments

3

• Experiments

• Conclusion

Amazon.com

• One of the largest e-business platform
– 3 million checkouts on a peak day

• Also a major cloud hosting service
– Customer trust

4

– Customer trust

• Hundreds of thousands of machines
• Network failures/ disk failures is a norm

Availablility?

Service Oriented Architecture

• Loosely coupled
replicated services

• Stateless

• Persistent store

5

• Persistent store

• Services e.g

- Recommendation,
top selling, catalog,
etc

Service Requirements

• Query Model – key, value
– Code versioning systems

• Must be able to make tradeoffs between
availability, consistency, durability

6

availability, consistency, durability

• 99.99 percentile SLA

• Example – Shopping Cart service

• why not relational database?

Design Considerations

• Highly available (writes)
– Eventually consistent

– Merge during read

– Handled by applications

7

– Handled by applications

• Less manual interaction

• Incrementally scalable

• Completely decentralized
– Contrast Bigtable?

Challenges

• Partitioning

• Availability (writes)

• Handling Failures
– Temporary

8

– Temporary

– Permanent

• Membership

Partitioning
• Consistent Hashing

– Contrast linear hashing?
– MD5 hash

• Replication – N nodes
– Preference list

• Multiple data centers
– Coordinator

• Is this a global view?
– Hierarchical namespace?

9

– Hierarchical namespace?

Ring partitioning

• Problems
– Non uniform data

– Heterogeneity

10

• Use virtual nodes
– Multiple tokens per node

– Add/remove node keeps system load steady

– Incorrect buckets are bounded.

Data Versioning

• Asynchronous updates

• Merging – maintain new immutable version
– Objects as blobs

– Syntactic and semantic

11

– Syntactic and semantic

– Associative and commutative?

• Multiple branches

• Reconcile versions – during read
– Last write wins

• Vector clocks

Vector clocks

• list (node, counter)

• Partial ordering

• Merged during read

12

Get and Put

• API
– get(key) returns list<object>

– put(key, context, object)

• Context – contains metadata & version

13

• Context – contains metadata & version

• Load balancer or client library

• Request forwarding to coordinator

• Quorum – durability and anti-entropy
– R nodes for read

– W nodes for write

Hinted Handoff

• Sloppy quorum
– Use first N healthy nodes

– N=3, B unresponsive

– Sent to E, metadata hints B

14

– Sent to E, metadata hints B

Replica Synchronization

• Anti-entropy

• Merkle trees
– Leaf – hash value of key

– Parents - hash of childs

15

– Parents - hash of childs

– One tree per key range/virtual node

– Peers compare merkle trees

• Advantages
– Less reads

Gossip

• Admin issue command to join/remove
node

• Serving node records in its local
membership history

16

membership history

• Gossip based protocol used to agree on
the memberships

• Partition and Placement information sent
during gossip

Failure detection

17

Implementation

• Local persistence
– BerkleyDataBase Transactional Data Store

• Request Coordination
– SEDA architecture

18

– SEDA architecture

Read Operation

• Send read requests to nodes

• Wait for minimum no of responses (R)

• Too few replies fail within time bound

• Gather and find conflicting versions

19

• Gather and find conflicting versions

• Create context (opaque to caller)

• Read repair

Values of N, R and W

• N represents durability
– Typical value 3

• W and R affect durability, availability,
consistency

20

consistency
– What if W is low?

• Durability and Availability go hand-in-
hand?

Results

21

Out of balance nodes

22

Partition Strategies

• T random tokens per node and partition by
token value
– Scan a range
– Updating merkle trees

23

– Updating merkle trees

• T random tokens per node and equal
partitions
– Decoupling partition and placement
– Changing the placement scheme at runtime

• Q/S tokens per node, equal partitions

Conclusion

• Dynamo has provided high availability and
fault tolerance

• Provides owners to customize according
to their SLA requirements

24

to their SLA requirements

• Decentralized techniques can provide
highly available system

Current State

• Some of the principles used by S3

• Open source implementation
– Cassandra

– Voldemort

25

– Voldemort

