
Effective Data-Race
Detection for the Kernel

John Erickson, Madanlal Musuvathi, Sebastian
Burckhardt, Kirk Olynyk

Presented by Thaddeus Czauski
06 Aug 2011

CS 5204

Microsoft Research

2

How do we prevent data
races in programs?

• User Mode

• 'Synchronized' code
blocks

• Locks on clearly
defined objects/code
blocks

• Kernel Mode

• Interrupt services

• Deferred procedure calls

• Kernel to Hardware Sync

• Direct Memory Accesses

The kernel employs a variety of non-trivial
synchronization mechanisms

3

Traditional methods of
detecting data races

• Happens-Before

•Monitor thread
execution

•Observe all shared
accesses are sequential

• Lock-Set

• Monitor memory accesses

• Observe that at least one
synchronization primitive
is in use

Need to know how synchronization primitives work
4

How does DataCollider work?
• What is a data race?

• Looking for races w/o knowing what a lock is

• DataCollider overview

• Static Analysis before application launches

• Dynamic Analysis as application executes

• Heuristically filtering benign races when the
application finishes

• Testing DataCollider

• What we found out about DataCollider

5

What is a data race?
• Conflicting memory access by different threads to the same

location

• The memory being accessed is

• Not disjoint, or is the at the same location

• At least one access is a write

• The data being access is not related to a synchronization
structure like a lock.

• When an application can be executed on a multiprocessor in
such a way that two conflicting memory accesses are performed
simultaneously (by processors or any other device).

6

Hybrid Analysis: Looking for races
without knowing how locks work

1.Monitor memory accesses via code breakpoint

2.Pause the current thread when a breakpoint is hit

3.See if any other thread writes to the shared
memory via data breakpoint

Don't need to be aware of synchronization primitives or
program ordering to identify when a conflict occurs

7

Static analysis: just before
the application executes

Disassemble the program Scan for memory
accesses

Prune out local stack accesses &
synchronization accesses

X
Add in any memory accesses
explicitly annotated in code

+ #explicit
8

Dynamic analysis: monitoring running programs

Submit code breakpoints based on
scanned locations

1Stop @ line 1234

Submit data breakpoint to monitor shared
memory conflicts3

Stop @ 0x1234ABCD

Code breakpoint is hit

2

HIT!
Pause current thread,
and see if any other

threads modify shared
memory

4

9

Pausing threads and looking
for racing threads

• Ensure that other threads are still executing by
monitoring other breakpoints being hit

• Resume execution if no other code
breakpoints are firing

• Pause the current thread for a max of 15 ms

• Reduce this time to <1ms for threads with
higher IRQLs, like those running at
DISPATCH

10

Have the CPU find the racing
thread

• Submitting data breakpoints to the CPU

• Modern CPUs can break when a particular address is
accessed

• With paging enabled, the CPU uses virtual addressing. This
can cause problems:

• Kernel threads accessing user space can map to
different physical addresses

• Session memory can have one virtual address which
maps to different physical addresses

• Direct Memory Accesses don’t involve another thread,
so thread to break on

11

When data breakpoints
don’t work

• Repeatedly reading a particular address, and
looking for modifications. Has a few limitations:

• Cannot detect multiple reads of an
address

• Cannot detect multiple writes, which set
the same value

• Only catches one thread in the conflict.
Need to manually identify the racing
thread.

12

Using heuristics to remove false-
positives when the program finishes

Should be left with actual data races

Statistics Counters
Safe Flag Updates

Special Cases

13

Experimental setup:
testing DataCollider

• Ran DataCollider as a part of Windows 7
kernel (x86) stress tests to look for data races.

14

More on testing DataCollider
• Tested Windows 7 running within a VM

• Host Machine

• Windows Server 2008

• 2x Intel Core2
(Quad Core @ 2.4 GHz)

• 4GB RAM

• Measured time elapsed to complete boot-shutdown
sequence with DataCollider versus non-
DataCollider executions within the VM

• Virtual Machine

• Windows 7 (x86)

• Limited to 50% of host CPU

• 512MB RAM

15

Here’s what we found
during our execution tests

Data Races Reported Count
Fixed 12
Confirmed as being fixed 13
Under investigation 8
Harmless 5
Total 38

16

25 issues confirmed as races, and 12 have already been
fixed

Bit Field Accesses
 struct{
 int status :4;
 int pktRcvd:28;
 } st;

 struct{
 int status :4;
 int pktRcvd:28;
 } st;

Thread 1

st.status = 1;

Thread 2

st.pktRcvd++;

Updates to pktRcvd can hide updates to status
17

Flag Accesses
 void AddToCache() {
 // ...
 A: x &= ~(FLAG_NOT_DELETED);
 B: x |= FLAG_CACHED;
 MemoryBarrier();
 // ...
 }

 AddToCache();
 assert(x & FLAG_CACHED);

If preempted before reaching B, then flag
assertion may fail in concurrent threads which

are past the barrier

18

Boot Time Hangs
• Vendor was seeing a hang at boot

• Could not replicate in the lab without vendor
hardware

• Developer manually had to find the issue

• Driver data corruption (non-atomic status
update)

• DataCollider found the same issue within one
hour of stress testing

DataCollider did not need a hang condition to find this data race
19

Performance when running
DataCollider with Windows 7

• Was able to run DataCollider with <5% overhead

• Overhead required is fairly linear as the average
number of code breakpoints is increased

20

Conclusion
• DataCollider is a great application for

finding data races in low-level code

• Light-weight and simple application

• Identifies data races with low overhead

• Effective at identifying race conditions

• Does not need to know how locks work

• Can identify which threads are racing

21

Questions?

22

Thank You!

23

