
Capriccio : Scalable Threads for
Internet Services

- Ron von Behren &et al

- University of California , Berkeley.

Presented By:
Rajesh Subbiah

Background

2

Each incoming request is dispatched to a separate thread

Note: Diagram taken from SEDA paper, SOSP 2001

Background

3

The main thread processes incoming events & executes the
finite state machines

Note: Diagram taken from SEDA paper, SOSP 2001

Motivation

 Internet services have increasing scalability
demands
◦ Need simplified & user friendly programming model

 Available design approaches
◦ Event model vs. Thread model

 Problems
◦ Event model

 Hides the control flow

 Difficult to debug

◦ Thread model
 Consume too much stack space

 No scalability

 No resource aware scheduling

4

Capriccio: Design Objectives

 Use existing threads APIs

 Improve scalability

◦ One thread – one connection for Internet servers

 Do efficient memory management

 Perform resource aware scheduling

5

Capriccio Thread Package:
Architecture

6

Capriccio

Kernel

Apache web
server

App 1 App 2

Scheduler Memory mgt

Asy I/O

Capriccio Thread Package Advantages

 Flexible to address application specific needs

◦ Creates one level of indirection between
application & the kernel

◦ Easily scales up to 100k threads

 Efficient memory management

◦ Using compiler analysis

◦ By Implementing linked stack

 Efficient resource aware scheduling

◦ By generating blocking graphs

 7

Capriccio: Implementation
 Context switches
◦ Uses Toering’s coroutine library
◦ Threads voluntarily yield

 I/O
◦ Uses latest Linux asynchronous I/O mechanisms
 epoll and AIO

◦ Increases over head
 Scheduling
◦ Resource based scheduling

 Synchronization
◦ Takes advantage of co-operative scheduling
◦ Uses simple check like boolean locked/unlocked flag

 Efficiency
◦ All O(1) expect for sleep queue

 8

Comparison Of Different Thread Packages

Capriccio Capriccio_notrace Linux Thread NPTL

Thread creation 21.5 21.5 37.9 17.7

Thread context
switch

0.56 0.24 0.71 0.65

Uncontended
mutex lock

0.04 0.04 0.14 0.15

9

 2X 2.4 GHz Xeon processors, 1 GB of memory.

 2X 10k RPM SCSI Ultra II hard drives

 3 Gigabit Ethernet interfaces.

 Operating System: Linux 2.5.70 (epoll supported)

Latencies (in micro seconds) of thread primitives for different thread
packages

Capriccio: Memory Management

 Does a complier analysis

◦ Generates weighted call graph

 Linked stack management

◦ Use dynamic allocation policy.

◦ Allocate memory chunks on demand

◦ Problems ?

10

Example

11

main ()

{<data type declaration>

function_A(<paramlist>);

function_C(<paramlist>);

}

function_A(<paramlist>)

{<data type declaration>

 function_B(<paramlist>;

function_D(<paramlist>);

}

function_B(<paramlist>)

{<data type declaration>

}

function_D(<paramlist>)

{<data type declaration>

}

function_C(<paramlist>)

{<data type declaration>

 function_E(<paramlist>;

 function_D(<paramlist>;

}

function_E(<paramlist>)

{<data type declaration>

 function_C(<paramlist>

}

Weighted Call Graph

12

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

Weighted Call Graph

 Each function is represented as a node

◦ Weighted by the max stack size it need for execution

 Each edge represents a direct function call

 Checkpoints

◦ Inserted at call sites at compile time.

◦ Checks whether there is enough stack size left for reaching next
checkpoint.

◦ If there is no enough stack space ; it allocates a stack chunk.

◦ Problem ?

◦ Where we should insert checkpoints ?

13

Weighted Call Graph

14

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

Insert one check point in every cycle back edge

Weighted Call Graph

15

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

• Use Bottom up approach & MaxPath = 1.0 K
• Check longest path from node to checkpoint, if

MaxPath limit is exceeded, add checkpoint

Weighted Call Graph

16

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

Memory Allocation - Runtime

17

• Internal wasted space
• MaxPath

• External wasted space
• MinChunk

Resource Aware Scheduling

 Application is viewed as a sequence of
stages separated by blocking points

 Uses blocking graph
◦ It is generated at run-time.

◦ Each node is location in program that is blocked

◦ Node is composed of call chain used to reach
blocking point

◦ Resource usage are annotated.

 Resource usage is monitored & scheduling is done based
on the resource usage patterns.

 18

Blocking Graph

19

Pitfalls

 Resource’s maximum capacity is difficult to
determine.

 It is difficult to detect thrashing

◦ Involves system overhead.

 Non yielding threads lead to unfairness and
starvation

20

Experiments & Results

 Thread Scalability

◦ Producer & Consumer

 I/O Performance test

 Web Server tests

◦ 4*500 MHz Pentium server with 2GB memory

◦ Linux 2.4.20

 No use of epoll or Linux AIO

21

Thread Scalability

 Drop between 100 and 1000 due to cache footprint

22

 I/O Performance

 Concurrently passing 12 byte token to fixed
number of pipes

 Disk head scheduling

◦ A number of threads perform random 4 KB reads
from a 1 GB file

 Disk I/O through buffer cache

◦ 200 threads reading with a fixed miss rate

23

When concurrency is low, performance also decreases

24

Benefits of disk head scheduling

25

26

Web Server Performance Test Results

 Apache web server performance
improved by 15%

 Knot’s performance matched the
performance of event-based Haboob
webserver

27

Web Server Performance Test Results

Conclusion

 Capriccio illustrates that using user-level
threads we can get

◦ High scalability

◦ Efficient memory/stack management

◦ Resource based scheduling

 Drawbacks

◦ Lack of multi-cpu support

28

Future Work

 Extending Capriccio to multi processor
environment.

 Producing profiling tools to tune stack
parameters according to the application
needs

29

Critique

 Capriccio thread library improves the
scalability , memory management & thread
scheduling

◦ The techniques used by Capriccio are novel

 Presently there is no support for Capriccio
thread library

30

