Capriccio : Scalable Threads for
Internet Services

Ron von Behren &et al
University of California , Berkeley.

Presented By:
Rajesh Subbiah

Background

network

dispatcher

dispatch

5
% request 2

send result
—_—

network

=
e

Each incoming request is dispatched to a separate thread

Note: Diagram taken from SEDA paper, SOSP 2001

Background

disk — =

network —m=

request FSM 4

The main thread processes incoming events & executes the
finite state machines

Note: Diagram taken from SEDA paper, SOSP 2001

Motivation

* Internet services have increasing scalability
demands

> Need simplified & user friendly programming model

* Available design approaches
> Event model vs. Thread model

e Problems

> Event model
Hides the control flow
Difficult to debug

° Thread model
Consume too much stack space

No scalability
No resource aware scheduling

Capriccio: Design Objectives

» Use existing threads APlIs
* Improve scalability

> One thread — one connection for Internet servers
e Do efficient memory management
» Perform resource aware scheduling

Capriccio Thread Package:

Architecture
e | aep1 | poo2
Scheduler Memory mgt
Asy 1/0

Capriccio

Capriccio Thread Package Advantages

» Flexible to address application specific needs

o Creates one level of indirection between
application & the kernel

° Easily scales up to 100k threads
o Efficient memory management
o Using compiler analysis
> By Implementing linked stack
» Efficient resource aware scheduling
> By generating blocking graphs

Capriccio: Implementation

» Context switches
o Uses Toering’s coroutine library
° Threads voluntarily yield
* |/O
> Uses latest Linux asynchronous I/O mechanisms
epoll and AIO

° Increases over head
* Scheduling
> Resource based scheduling

» Synchronization

o Takes advantage of co-operative scheduling
> Uses simple check like boolean locked/unlocked flag

* Efficiency
> All O(1) expect for sleep queue

Comparison Of Different Thread Packages
T Capricio | Capricaio_notrace | Linux Thread | NPTL

Thread creation 21.5 21.5 37.9 17.7
Thread context 0.56 0.24 0.71 0.65
switch

Uncontended 0.04 0.04 0.14 0.15
mutex lock

Latencies (in micro seconds) of thread primitives for different thread
packages

2X 2.4 GHz Xeon processors, 1 GB of memory.

e 2X 10k RPM SCSI Ultra Il hard drives

» 3 Gigabit Ethernet interfaces.

* Operating System: Linux 2.5.70 (epoll supported)

Capriccio: Memory Management

» Does a complier analysis

° Generates weighted call graph
* Linked stack management

o Use dynamic allocation policy.

> Allocate memory chunks on demand
° Problems ?

10

Example

main ()

{<data type declaration>
function A(<paramlist>);
function C(<paramlist>);

}

function A(<paramlist>)
{<data type declaration>
function B (<paramlist>;

function B (<paramlist>)
{<data type declaration>
}

{<data type declaration>
}

function C(<paramlist>)
{<data type declaration>
function E (<paramlist>;

function E (<paramlist>)
{<data type declaration>
function C(<paramlist>

}

11

Weighted Call Graph

12

Weighted Call Graph

o Each function is represented as a node

> Weighted by the max stack size it need for execution

» Each edge represents a direct function call

e Checkpoints

o

o

Inserted at call sites at compile time.

Checks whether there is enough stack size left for reaching next
checkpoint.

If there is no enough stack space ; it allocates a stack chunk.
Problem ?

Where we should insert checkpoints ?

13

Weighted Call Graph

Insert one check point in every cycle back edge

0.2K

14

Weighted Call Graph

1.0K

e Use Bottom up approach & MaxPath=1.0K
* Check longest path from node to checkpoint, if
MaxPath limit is exceeded, add checkpoint

0.2K

15

Weighted Call Graph

16

Memory Allocation - Runtime

Co

Main

gl

C—P‘
Main 0 Main
C
D
[
A
D

* Internal wasted space

* External wasted space

MaxPath

MinChunk

—
Co Main
C
E
C, C
Cc,__C
D
L 1

17

Resource Aware Scheduling

» Application is viewed as a sequence of
stages separated by blocking points

» Uses blocking graph

It is generated at run-time.

(o)

(0]

Each node is location in program that is blocked

> Node is composed of call chain used to reach
blocking point

> Resource usage are annotated.

Resource usage is monitored & scheduling is done based
on the resource usage patterns.

18

Blocking Graph

19

Pitfalls

* Resource’s maximum capacity is difficult to
determine.

o |t is difficult to detect thrashing
° Involves system overhead.

* Non vielding threads lead to unfairness and
starvation

20

Experiments & Results

» Thread Scalability

> Producer & Consumer
 |/O Performance test

e Web Server tests

> 4*500 MHz Pentium server with 2GB memory

° Linux 2.4.20
No use of epoll or Linux AIO

21

Throughput (requests/sec)

250000

o S o .Capll'iccl;ilo —0—l o
LinuxThreads ---x---
| R) NPTL ------
200000 |
150000 [W
100000 _Z-___\?Kf’/ \‘\\
50000 |- N a
X\ X %
\X\\ \\X___%\
0 Ll T R T R R T N L
1 10 100 1000 10000 100000

Drop between 100 and 1000 due to cache footprint

Number of producers/consumers

22

/O Performance

Concurrently passing 12 byte token to fixed
number of pipes

Disk head scheduling

° A number of threads perform random 4 KB reads
from a 1 GB file

e Disk I/O through buffer cache

o 200 threads reading with a fixed miss rate

23

900000

800000

/700000

600000

500000

400000

300000

Throughput (tokens/sec)

200000

100000

0

TR BB - -

- -

% | Pt
P >K‘
N _
%w;‘ill‘ggx
. «Hhﬁ %% -
Capriccio —+— _
LinuxThreads ---x--- B
NPTL - -
Poll --a-- " i
. |Ep(.)II _-:.-._I- : T BE‘lﬂL—: r
10 100 1000 10000 10000C

Number of pipes(threads)

When concurrency is low, performance also decreases

24

Throughput (MB/s)

2.2

0.6

A K -
K=~ - ;gﬁ_‘ ?‘F——_: -
~se”

Capriccio —+—
LinuxThreads ---x---
| | NPTL ------

10 100 1000
Number of threads

Benefits of disk head scheduling

25

Web Server Performance Test Results

» Apache web server performance
improved by 15%

» Knot’s performance matched the
performance of event-based Haboob
webserver

26

Web Server Performance Test Results

Bandwidth (Mb/s)

350 -
.
300 - LY
" X‘.‘;ﬁ---ﬂ
f"p‘—“-ﬂ-—-ﬂ.__ﬂ X‘.‘
250 - at TEBrelg
200 -
150 -
—e— Apache
—-a- Apache with Capriccio
100 - --#--Haboob
—=%— Knot
50 A
U 'I I T T I 1
1 10 100 1000 10000 100000

Number of Clients

27

Conclusion

» Capriccio illustrates that using user-level
threads we can get

> High scalability
o Efficient memory/stack management
> Resource based scheduling
* Drawbacks
o Lack of multi-cpu support

28

Future Work

» Extending Capriccio to multi processor
environment.

* Producing profiling tools to tune stack
parameters according to the application
needs

29

Critique

» Capriccio thread library improves the
scalability , memory management & thread
scheduling

> The techniques used by Capriccio are novel

* Presently there is no support for Capriccio
thread library

30

