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Abstract
High performance parallel programs are currently difficultto write
and debug. One major source of difficulty is protecting concurrent
accesses to shared data with an appropriate synchronization mech-
anism. Locks are the most common mechanism but they have a
number of disadvantages, including possibly unnecessary serializa-
tion, and possible deadlock. Transactional memory is an alternative
mechanism that makes parallel programming easier. With transac-
tional memory, a transaction provides atomic and serializable oper-
ations on an arbitrary set of memory locations. When a transaction
commits, all operations within the transaction become visible to
other threads. When it aborts, all operations in the transaction are
rolled back.

Transactional memory can be implemented in either hardware
or software. A straightforward hardware approach can have high
performance, but imposes strict limits on the amount of dataup-
dated in each transaction. A software approach removes these lim-
its, but incurs high overhead. We propose a novel hybrid hardware-
software transactional memory scheme that approaches the perfor-
mance of a hardware scheme when resources are not exhausted and
gracefully falls back to a software scheme otherwise.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel programming

General Terms Algorithms, Languages, Performance

Keywords Transactional Memory, Transactions, Architecture
Support, Nonblocking

1. Introduction
Parallel programming is a challenging task because parallel pro-
grams that achieve good parallel speedups are difficult to write and
debug. Programmers must consider a number of issues that may
impact the performance and correctness of parallel programs. One
major issue is protecting accesses to shared data by using anappro-
priate synchronization mechanism, the most popular of which is
locks. However, lock-based programs have a number of disadvan-
tages. These disadvantages pose a high hurdle to wide-scaleadop-
tion of parallel programming and motivate the need for an alterna-
tive synchronization mechanism.

Some of the disadvantages of locks are as follows. First, lock-
based modules do not compose well [4]. In addition, programmers
must keep track of the implicit association between each lock and
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the data it guards. Second, locks serialize execution at critical sec-
tions even when there are no conflicting data accesses. Third, pro-
grammers need to balance the granularity of locks to achievegood
performance with a reasonable increase in programming complex-
ity. Additionally, while finer-grained locks may expose more paral-
lelism, they can increase overhead when multiple locks needto be
obtained simultaneously. Fourth, lock-based programs have to be
written carefully to avoid deadlocks. Fifth, locks can cause priority
inversion and convoying. Finally, if one process dies whilehold-
ing a lock, the other processes that need the lock might get blocked
forever waiting for the lock to be released.

In 1993, Herlihy et al. [16] proposed transactional memory as
an efficient method for programmers to implement lock-free data
structures. Transactional memory is an alternative way to protect
shared data that avoids many of the problems of lock-based pro-
grams. A transaction provides atomic and serializable operations
on an arbitrary set of memory locations [8]. Transactional memory
borrows the notion of transactions from databases. A transaction is
a code sequence that guarantees an all-or-nothing scenario. That is,
if it commits, all operations within a transaction become visible to
other threads. If it aborts, none of the operations are performed. In
addition, transactional memory guarantees that a set of transactions
executed in concurrent threads are guaranteed to appear to be per-
formed in some serial order. This makes them very intuitive from a
programmer’s perspective.

Transactional memory addresses the problems associated with
locks [14]. The benefits of transactional memory include:

1. Easier to write correct parallel programs. Transaction-based
programs compose naturally [13]. Also, programmers do not
need to keep track of the association between locks and data.

2. Easier to get good parallel performance.Programmers do not
need to worry about the granularity of locks. Unlike locks, se-
rialization of transactions depends only on whether they are ac-
cessing the same data. This gives transactional memory pro-
grams the benefit of fine grain locking automatically.

3. Eliminates deadlocks.Transactions can be aborted at any time,
for any reason. Therefore, deadlocks in parallel programs can
be avoided by aborting one or more transactions that depend on
each other and automatically restarting them.

4. Easier to maintain data in a consistent state.A transaction
can be aborted at any point until it is committed. When a
transaction is aborted, all changes made within the transaction
are automatically discarded.

5. Avoids priority inversion and convoying. If a thread executing
a transaction blocks other threads (because they try to access the
same data), the transaction can be aborted if that transaction has
a low priority or if it is blocked on a long-latency operation.

6. Fault tolerance. If a thread dies while executing a transaction,
the transaction is automatically aborted leaving the shared data
in a consistent state.

Herlihy et al. originally proposed a hardware transactional
memory implementation that allowed transactional (atomicand
serializable) accesses to a small, bounded number of memoryloca-



tions [16]. The proposal included new instructions to start, commit,
and abort transactions, and instructions to transactionally access
memory. Transactional data is stored in a transactional cache un-
til commit. This cache detects conflicting accesses to transactional
data and aborts a transaction when such conflicts occur. Thisap-
proach incurs low execution time overhead but has strict resource
limits—the number of locations that can be accessed in a transac-
tional way. The resource limits makes transactional memorydif-
ficult to use and restricts its use to programmers who implement
optimized libraries. It cannot be used by general purpose program-
mers who write modular programs.

Shavit et al. [25] were the first to propose a software transac-
tional memory. More recently, Herlihy et al. [15] proposed asoft-
ware scheme that includes an API to make transactions available
to general-purpose programmers. The implementation employs a
level of indirection to transactional objects so that a new version
can be atomically “swapped in” on a commit. It also requires mak-
ing a copy of all transactional objects modified during a transac-
tion so that they can be discarded on abort. The benefit of this
approach is that it is implementable on current systems without
any additional hardware and it has no resource limits. However,
the execution time overhead of manipulating transactionalobjects
and maintaining multiple versions of transactional data issignif-
icant (frequently an order of magnitude slower than locks).This
high overhead makes this scheme unusable in practice for general
purpose parallel programs.

There are several proposals [1, 11, 19, 22] that address the re-
source limit of hardware transactional memory using a combination
of software and hardware (Discussed in more detail in Section 6).

Our approach We propose a novel hybrid hardware-software
transactional memory scheme that uses a hardware mechanismas
long as transactions do not exceed resource limits and gracefully
falls back to a software mechanism when those limits are exceeded.
This approach combines the performance benefits of a pure hard-
ware scheme with the flexibility of a pure software scheme.

A simple approach to supporting a hybrid scheme is to require
all concurrent transactions to use the same mode (either hardware
or software) at a given point in time. In such a scheme, all concur-
rent threads would try to execute transactions in a hardwaremode
as long as all transactions stay within the resource limits.As soon
as any transaction exceeds the limits, all threads would transition to
a software mode. This naı̈ve approach is not scalable—for parallel
programs with many threads, a single long transaction can cause all
the threads in the program to incur large overheads.

To enable scalability, our scheme allows each transaction to in-
dependently choose an execution mode. This is challenging be-
cause the hardware and software modes employ very differenttech-
niques to implement transactions. The fundamental difference be-
tween the two modes is that the hardware mode detects data con-
flicts at the cache line granularity while the software mode detects
data conflicts at the object granularity.

Our work makes the following contributions:
1. We propose transactional memory hardware that is just slightly

more complex in terms of chip area and design complexity than
Herlihy et al.’s original proposal [16]. Unlike the original pro-
posal, our proposal can efficiently support the hybrid scheme
described in this paper. We also use a buffer to hold transac-
tional data, and make extensions to the ISA for flexibility. How-
ever, we rely on a standard cache coherence protocol to detect
conflicts with both software and hardware transactions. Further,
our hardware supports simultaneous-multithreaded processors,
multiprocessor systems, and the combination of the two.

2. We present a hybrid transactional memory scheme that com-
bines the best of both hardware and software transactional
memory: low performance overhead as well as access to un-

Instruction Description
XBA Begin Transaction All – all memory accesses are

transactional by default
XBS Begin Transaction Select – all memory accesses

are non-transactional by default
XC Commit Transaction
XA Abort Transaction
LDX/STX Transactional Load/Store (overrides the

default)
LDR/STR Regular (Non-Transactional) Load/Store

(overrides the default)
SSTATE Checkpoint the register state
RSTATE Restore the register state to the checkpointed

state
XHAND Specifies the handler to be executed if a

transaction is aborted due to data conflict

Table 1. ISA Extensions for Transactional Memory

bounded number of memory locations. Our scheme is based on
Herlihy et al.’s software scheme [15].

3. We compare the behavior of our hybrid transactional memory
scheme to fine-grained locking, and to pure software and hard-
ware schemes on a set of microbenchmarks that represent some
very common scenarios where synchronization is important.
We find that our hybrid scheme greatly accelerates the software
scheme, even in the presence of a high number of conflicts.

2. Proposed Architectural Support for Hybrid
Transactional Memory

This section discusses our proposed architectural supportfor a hy-
brid transactional memory scheme. Our scheme supports hybrid
transactional memory for simultaneous-multithreaded processors,
multiprocessor systems, and a combination of the two. Our pro-
posed hardware is only slightly more complex than a solutionfor a
pure hardware transactional memory system.

To support transactional memory in hardware, applicationsmust
execute special instructions at the beginning and end of each trans-
action to indicate the boundaries of the transaction. Hardware needs
to do the following to support transactional memory: 1) store spec-
ulative results produced during transactions, 2) detect conflicts be-
tween transactional data accesses, and 3) allow for aborting trans-
actions or atomically committing them.

In this work we consider a chip multiprocessor system (CMP),
where each processor is capable of running multiple threadssimul-
taneously. Each processor has a private L1 cache, and the proces-
sors share a large L2 cache that is broken into multiple banksand
distributed across a network fabric. Our scheme is applicable to
traditional multiple-chip multiprocessor systems as well.

2.1 ISA Extensions

New transactional memory instructions are added to the ISA (Ta-
ble 1). These instructions are based on those proposed by Herlihy
et al. [16] but have been extended to make them more flexible. This
ISA extension not only enables our hybrid transactional memory
scheme but can also be used to speed up locks using techniques
similar to those proposed recently [21, 17].

Transactions running in hardware mode assume by default that
memory accesses during the transaction are speculative (i.e., they
use XBA). Transactions in software mode assume by default that
memory accesses during the transaction are not speculative(i.e.,
they use XBS). In some cases it is necessary to override these
defaults; thus, we provide memory access instructions thatare
explicitly speculative (LDX/STX) or non-speculative (LDR/STR).



The SSTATE and RSTATE instructions provide fast support
for register checkpointing—with these, register state canbe rolled
back to just before a transaction began in case it is aborted.These
instructions are relatively cheap to implement in modern processors
because such rollback mechanisms are already incorporatedfor
other reasons (e.g., branch misprediction recovery).

Our hardware abort mechanism involves raising an exception
when a conflict is detected or when the capacity or associativity
of the buffer holding speculative memory state is exceeded.The
XHAND instruction allows the exception handler to be specified.

2.2 Storing Speculative Results

There is a large body of work on buffering speculative memory
state [1, 3, 5, 7, 10, 11, 16, 19, 20, 21, 22, 26, 27]. The key design
decisions for a transactional memory system are where to buffer
speculative memory state and how to handle buffer overflows.

Most schemes involve buffering state in the data caches [1, 3, 5,
7, 11, 20, 21, 22, 26, 27], but some schemes buffer speculative state
in a special buffer [16, 10]. A third option is to store speculative
memory state directly in main memory (with an undo log) [19].
We discuss the design tradeoffs between the first two optionsfor a
transactional memory system later (Section 2.7).

For transactional memory schemes that buffer speculative mem-
ory state in a finite buffer or cache, another key design decision is
how to handle buffer overflows, i.e., what should be done if the as-
sociativity or capacity of the buffer or cache holding speculative
data is exceeded. Thread-level speculation systems typically stall a
speculative thread until it becomes non-speculative; however, this
approach will not work for transactional memory because transac-
tions only become non-speculative when they commit. Some trans-
actional memory systems allow data to overflow into main mem-
ory [1, 22], but need special support to track this spilled state.
Schemes that do not include this support either need the program-
mer to be aware of the transactional buffering limitations and never
exceed them [16] or need another fallback mechanism [21].

Garzaran et al. discuss the speculative buffering design space in
more detail in the context of thread-level speculation [6].

Figure 1 shows a processor with four hardware contexts and
our proposed hybrid transactional memory hardware support. The
processor has an L1 data cache in parallel with atransactional
buffer, a highly associative buffer that holds speculatively accessed
data from transactions. Each entry in the transactional buffer holds
both the latest committed version of a line (Old) and any specula-
tive version it is currently working with (New), bit vectorsto in-
dicate which hardware contexts have speculatively read or written
the line (transactional read/write vectors), and the conventional tag
and state information. We discuss the transactional state table later.

When a previously non-speculative line is speculatively written
to, a copy is made and that copy is updated with the new data. The
buffer makes a copy and holds both versions because that version
of the line is the only guaranteed up-to-date copy of the datain the
memory system—on an abort we must be able to revert back to
that version. Further speculative writes modify the copy ofthe line.
The state of the line indicates which version should be returned
on each access. Lines that have been speculatively read or written
and not yet committed cannot be evicted from the transactional
buffer for correctness reasons. Therefore, if the transactional buffer
attempts to evict such a line for capacity or associativity reasons,
the transaction aborts and the application is notified that the abort
is due to resource limits.

2.3 Detecting Conflicts

Conflicts that hardware is responsible for detecting are those that
occur between transactions (or between a transaction and non-
transactional code) when a thread writes a line that anotherthread

has read or written speculatively and has not yet committed,or
when a thread reads a line that another thread has speculatively
written and has not yet committed.

To detect conflicts, we leverage ideas from Herlihy et al. [16].
We use the cache coherence mechanism to enforce two policies:
1) no more than one processor has permission to write to a lineat
a time, and 2) there can be no readers of a line if a processor has
permission to write to it. These policies ensure that if a processor
has speculatively read or written a line, it will be notified if a
thread on another processor wants to write the line. Likewise, if a
thread has speculatively written a line, it will be notified if another
thread wants to read the line. Hardware will automatically know if
simultaneously executing threads on the same processor access the
same line as long as the hardware context id is communicated to
the memory system with all loads and stores. However, hardware
must still track which lines have been speculatively read orwritten
by a thread to know if a conflict has in fact occurred.

To this end, we provide two bit vectors for each line, with onebit
per hardware context on a processor, one vector for writes (transac-
tional write vector) and one for reads (transactional read vector).
A bit is set to indicate that the thread running on the corresponding
hardware context has speculatively written (or read) the line. We
also need to track whether each thread executing on a processor is
currently executing a transaction or not, and if so, in whichmode
it is executing. It could be executing in hardware (ALL) modevia
an XBA instruction (where all memory accesses are transactional),
or software (SELECT) mode via an XBS instruction (where only
selected accesses are transactional). This can be done withtwo bits
per hardware context (seetransactional state table in Figure 1).
This field is set at the beginning of a transaction and clearedon
an abort or commit. For every access to the cache, the hardware
will check if the thread that issued the read or write is currently
executing a transaction, what mode the transaction is, and if the
instruction is explicitly speculative or non-speculative, and if ap-
propriate, set the corresponding read or write vector bit. Figure 1
shows the design of a processor with transactional memory sup-
port. Hardware for transactional memory includes a transactional
state table and a transactional buffer. The transactional state table
provides an entry for each hardware context on the processorto
track the mode of transactional execution of that hardware context.
The transactional buffer provides a bounded number of entries for
speculatively accessed data. Each entry buffers two versions of data
and tracks which hardware context has speculatively read orwritten
that piece of data.

2.4 Resolving Conflicts

When a conflict is detected, it must be resolved. If the conflict is
between a transaction and non-transactional code, the transaction
is aborted (we discuss the abort mechanism below). If the conflict
is between two transactions, the hardware always decides infavor
of the transaction currently requesting the data. This scheme re-
quires no changes to the cache coherence protocol. Priorities could
be assigned to the transactions, and the conflict resolutioncould
proceed strictly by priority. However, existing schemes for honor-
ing priorities require significant changes to the coherenceprotocol
to prevent deadlock [21].

2.5 Aborting and Committing

To abort a transaction, the hardware invalidates all speculatively
written data in the transactional buffer, and clears all of the read and
write vector bits for that hardware context. Lines that werespecu-
latively read, but not speculatively written will remain valid in the
transactional buffer. It also sets an exception flag in the transac-
tional state table (Figure 1) for that hardware context to indicate
that the transaction has aborted. The transaction will continue to
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Figure 1. A processor with transactional memory hardware sup-
port. The transactional state table and the transactional buffer con-
tain states for four hardware contexts on the processor.

run until it executes another load or store, or it attempts tocom-
mit. If the exception flag for a thread is set, the next load or store it
executes will raise an exception. This is because we can no longer
guarantee that the data seen by the thread will be consistent. The
exception will trigger a software exception handler, whichis re-
sponsible for any necessary clean-up, and for restarting the trans-
action if desired. If a thread tries to commit a transaction with its
exception flag set, the commit will fail, and software is responsible
for restarting the transaction if desired.

To commit a transaction, the transactional read and write bits for
the corresponding hardware context are cleared from all entries in
the transactional buffer. This will atomically make all speculatively
written lines visible to the coherence mechanism, and all specula-
tively read lines invisible to the conflict detection mechanism. This
process may take multiple cycles if the buffer is large enough. To
guarantee atomicity, the transactional buffer delays all requests, in-
cluding coherence requests, until the commit is complete.

2.6 Example System

Figure 1 shows a processor with four hardware contexts and trans-
actional memory hardware support. Looking at the transactional
state table, we see that two of the contexts (the second and fourth)
are currently executing threads that are running transactions, one
in SELECT mode, and one in ALL mode, and neither has its ex-
ception flag set. Examining the transactional buffer, we seefrom
the transactional read and write vectors that both threads in trans-
actions have speculatively read line A, and thread four has specu-
latively read and written line B. Additionally, line C was specula-
tively written by a thread that has since committed since it is in a
dirty state, but has no read or write vector bits set. We now describe
a few possible scenarios and how the hardware would behave in
those situations. These scenarios are also applicable to threads run-
ning on different processors in a multiprocessor system, although

each processor would have its own L1 cache, transaction state table,
and transactional buffer.

Scenario 1: If the fourth thread were to write to line A, the
hardware would abort the second thread’s transaction, clearing its
read vector bit for that line and setting its exception flag. The write
would also need to wait for permission from the L2 cache sincethe
line is in a read-only state.

Scenario 2: If the fourth thread were to write to line C, the
corresponding write vector bit would be set. The data in the “New”
field (z’) would be copied to the “Old” field, and then the write
would happen in the “New” field since the line is already dirty
in the transactional buffer – permission from the L2 cache isnot
required.

Scenario 3:If the second thread were to read line B, the hard-
ware would abort the fourth thread’s transaction, clearingthe fourth
bit of all read and write vectors, invalidating the speculative copy
of line B, and setting the fourth thread’s exception flag. If the read
was explicitly speculative the hardware would set the second read
vector bit for line B. Finally, the non-speculative versionof line B
would be returned.

2.7 Advantages and Disadvantages

There are many tradeoffs in the design of hardware support for
transactional memory. Our proposal has the following key advan-
tages and disadvantages compared to the clear alternatives:
1. Keeping a non-speculative copy of each speculatively modi-

fied line in the transactional buffer allows us to retain the stan-
dard coherence protocol. If instead we kept only one version
of a line in the buffer, we would need to ensure that a non-
speculative copy was in the L2 cache, which would likely re-
quire changes to the coherence protocol. However, our scheme
comes at the cost of additional space requirements for the trans-
actional buffer.

2. Keeping the read and write sets (list of speculatively accessed
lines) in a highly associative buffer separate from the L1 de-
creases the chances of aborting a transaction due to conflict
misses. It also allows transaction commits and aborts to happen
quickly since there are only a small number of read and write
vector bits to clear. However, keeping the read and write sets
in the L1 cache directly would provide more space for them,
and would increase the amount of cache space available to non-
transactional code (since otherwise some space is reservedfor
the buffer). One way to make the transactional buffer space use-
ful for non-transactional code would be to make it availableas
a victim cache – invalid or committed lines could be replaced
with victims from L1 evictions.

3. Tracking which hardware contexts have speculatively read or
written a line using bit vectors allows for fast commit and abort.
However, the hardware cost may be significant if there are many
hardware contexts per processor. Since we do not anticipate
this number scaling very high, we believe this cost will remain
small.

3. Hybrid Transactional Memory
In addition to the architectural support described in Section 2, our
hybrid scheme also relies on algorithmic changes to the transac-
tional memory implementation. In the following sections, we de-
scribe Herlihy’s pure software scheme [15] and how we extend
its Transactional Memory Object to facilitate our hybrid scheme.
Then, we detail how our hybrid scheme operates.

3.1 Dynamic Software Transactional Memory

Herlihy et al. proposed an API, called Dynamic Software Transac-
tional Memory (DSTM) [15], which eases the process for program-



Figure 2. A TMObject in DSTM.

mers to create and use transactions by eliminating the resource lim-
itations of a purely hardware transactional memory scheme.DSTM
is a pure software implementation, and thus needs no additional
hardware support from the processor. DSTM is dynamic in two
ways: it allows transactional objects to be dynamically created; and
the set of objects accessed transactionally does not need tobe spec-
ified at the beginning of a transaction.

3.1.1 DSTM API

The DSTM API requires objects for which transactional properties
are desired to be encapsulated by wrapper objects (inTMObject).
To access an object within a transaction, a corresponding wrapper
object needs to be opened (using the open API call) for reading
or writing before accessing it. The transaction can be terminated
by calling the commit or abort API function. Two points are worth
noting here. First, non-transactional objects retain their modified
values even on transaction aborts; this allows programmersto make
appropriate decisions when a transaction is aborted. Second, once
an object is opened, it looks like a regular object that can bepassed
to other modules and legacy libraries that are not transaction-aware.
While DSTM’s API can be a little tedious to use, type system en-
hancements should simplify the use of DSTM by using a compiler
to insert the API calls.

3.1.2 DSTM Implementation

DSTM uses aState object for each dynamically started transaction.
It stores the state of the transaction, which is either ACTIVE,
COMMITTED, or ABORTED. All transactional objects that are
opened by a transaction have pointers to theState object of that
transaction. This is a key feature because it allows a transaction to
be committed or aborted by a single atomic write to itsState object.

Fundamentally, DSTM relies on two main techniques to support
transactions: indirection and object copying. It uses object copying
to keep the old version of the object around while it is modifying the
copy within a transaction. If the transaction is aborted, itdiscards
the new version. If the transaction is committed, it replaces the old
version with the new version. To allow replacing the object under
the covers, it uses indirection.

DSTM employs Transactional Memory Objects (TMObject) to
introduce the indirection. Figure 2 shows the fields of aTMObject
and how they relate to the data. ALocator object contains three
fields:State, Old Object, andNew Object. TheState field stores a
pointer to theState object of the last transaction that opened the
object for writing. The twoObject fields point to old and new ver-
sions of the data. There is always one current data object that is
determined by theState field. If theState field is ACTIVE, a trans-
action is currently working on the data pointed to byNew Object.
Since the transaction has not yet committed, the data pointed to by
Old Object is kept in case the transaction is aborted. When theState
field is ABORTED, a transaction failed the commit, thus the data
pointed to byNew Object is invalid andOld Object points to the
current version. Finally, when theState field is COMMITTED, the
data pointed to byNew Object is the current version.

Figure 3. Opening a committedTMObject in DSTM.

Opening aTMObject for reading involves finding the current
version of the object and recording (locally in a per-threadhash
table) the version of the object—if at commit time the version is
detected to have changed, the transaction will abort instead.

Opening aTMObject for writing is more involved and requires
modifying the TMObject. Figure 3 shows an example. Suppose
Transaction 1 has already committed a version of the object in the
figure, and nowTransaction 2 wishes to open that object for writ-
ing. Transaction 2 first creates a newLocator object (Locator 2).
Then, based on theState field in Locator 1, it can set the pointers
and copy data. If theState field is COMMITTED, Locator 2 sets
its Old Object pointer to theData pointed to byLocator 1’s New
Object, which is the correct version of the data. ThenLocator 2
makes a copy of the data forTransaction 2 to modify transaction-
ally. Similarly, if Locator 1’s State field was ABORTED, the same
process is run except the correct version of the data is pointed to
by Locator 1’s Old Object. After Locator 2 has been created, a
compare-and-swap (CAS) operation is used to safely change the
TMObject pointer fromLocator 1 to Locator 2. If the CAS fails,
another transaction has opened the object for writing whileLoca-
tor 2 was being set up; thus, the process of setting upLocator 2
must be repeated.

When a transaction tries to open aTMObject for writing and
finds it in ACTIVE state (i.e., currently being modified by another
transaction), one of these two transactions has to be aborted to
resolve the conflict. The decision about which transaction is aborted
is made by the Contention Manager (3.2.4). A transaction canabort
any transaction (including itself) by atomically replacing ACTIVE
by ABORTED (using CAS) in theState object for that transaction.

Transactions commit themselves by atomically replacing AC-
TIVE with COMMITTED (using CAS) in itsState object after
checking to make sure that objects opened for reading are still the
same version. Committing automatically updates the current ver-
sion of all objects written during the transaction (since the current
version for any transactional object is defined by the value of the
State object to which it points). This will (eventually) abort any
transactions that opened those objects for reading.

While DSTM is a simple and a pure software method to pro-
vide transactional memory semantics to programmers, it comes at
the expense of requiring versioning overhead. This overhead can
become a significant performance bottleneck, since every open for
writing involves an allocation and copy of data and aLocator. How-
ever, in contrast to a hardware method, DSTM allows for an un-
bounded number of transactional locations.
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Figure 4. The hybrid modelTMObject.

3.2 Hybrid Transactional Memory

The most obvious difference between the hardware and software
schemes described earlier are the resource constraints andhard-
ware cost of the hardware scheme and the performance overhead
of the software scheme. In addition, the two schemes detect con-
flicts at different granularities: the hardware scheme tracks transac-
tionally accessed data at the cache line granularity, whilethe soft-
ware scheme tracks it at the object granularity. Each case ismore
efficient for certain classes of access patterns. Ideally, atransac-
tional memory implementation would have the speed of a hardware
scheme, lack resource constraints like a software scheme, use the
most appropriate granularity for tracking transactionally accessed
data, and have little hardware cost. Our proposed hybrid technique
is able to combine the benefits of both techniques by using the
DSTM API, but allowing the transactional processing ofTMOb-
jects to be used in either a hardware or software manner.

The correctness of DSTM relies on theData object never chang-
ing once the transaction that created it has committed. However, to
avoid overhead of allocation and copying, our hybrid schememodi-
fies theData objects in-place in hardware-mode transactions. Con-
sequently, the DSTM algorithm needs to be modified to support
our hybrid scheme. It should be noted that, like DSTM, aLocator
object is never modified after initialization in our hybrid scheme.

Figure 4 shows the extensions made to the DSTMLocator for
our hybrid scheme. The main change is that we use theLocator
to track readers (and writers) instead of using per-thread hash
tables. This change is crucial for our hybrid scheme. It alsoallows
reader conflicts to be detected early and may accelerate commits.
In DSTM, commits require verification of the version of all objects
that were opened for reading. In our scheme, writers directly abort
readers when they open the object, so transactions no longerneed
to verify versions on commit. To support this change, theLocator
includes a newValid Field field that indicates whetherTMObject is
currently open for read-only or for writing. In addition, our hybrid
Locator now includes separateWrite State andRead State fields.
At any point in time, there can be at most one writer or multiple
readers. TheValid Field indicates which of the twoState fields
is valid1. Finally, theObject Size field remembers the size of the
transactional object (i.e.Data). This is needed to create duplicates
of theData. In contrast, DSTM requires the programmer to provide
a dup method on transactional objects for this purpose.

3.2.1 Hybrid Open TMObject

In our hybrid scheme, anyTMObject can be opened in either hard-
ware or software mode. All objects within a transaction are opened
in the same mode; the mode is picked at the start of each transac-
tion (Section 3.2.3). These two methods for opening aTMObject
act very differently. Opening in software mode requires allocation

1 Since only one of the two fields is valid at any time, we really do not need
two separate fields inLocator. However, for simplifying this discussion, we
show them separately.

and versioning overhead similar to DSTM. Opening in hardware
mode is much simpler and requires no memory allocation sincethe
hardware mode modifiesData in-place.

When a transaction opens an object in software mode, it creates
its ownState (beginning as ACTIVE) and transactionally loads the
memory location of theState object. In this mode, theState object
is the only location that is required to be in the transactional buffer.
This ensures that the transactional buffer resource limitsare never
exceeded in the software mode. After creating theState object, the
software mode uses a load-transactional (usingLDX instruction in
Table 1) on that location to bring it into the transactional buffer.
The rest of the hybrid technique relies on this location having been
read transactionally; whenever another transaction (in either mode)
writes to thatState location, the transactional buffer will detect a
conflict and abort the transaction. Otherwise, opening an object in
the software mode works very similarly to DSTM as described in
Section 3.1. The software-mode open of theTMObject first checks
to see if any other software-mode transactions need to be aborted.
This is done by checking the write and readState fields of theLoca-
tor for conflicts. We discuss how software-mode transactions abort
conflicting hardware-mode transactions later. At this point, similar
to DSTM, aLocator object is allocated, initialized, and theTMOb-
ject is atomically switched to point to this newLocator using a
CAS instruction. However, Hybrid TM has to honor an additional
ordering constraint. When opening an object for writing, the copy
to create a duplicateData can be performed only after theTMOb-
ject has been switched. This is because transactions executing in
hardware mode modifyData in-place.

In hardware mode, opening an object is much simpler. Similar
to the software mode, the hardware mode first checks for and aborts
conflicting software-mode transactions. To do this, it reads the
State fields of theLocator and see if any are currently ACTIVE,
and atomically replace them with ABORTED. The write causes
an abort, as this location was loaded into the transactionalbuffer
by the corresponding software-mode transactions. After aborting
conflicting software-mode transactions, the hardware-mode open
can return the current validData. In contrast to the software mode,
the hardware mode does not perform any memory allocation or
copying. Also, it does not have aLocator associated with it. A
hardware-mode transaction can be aborted by other transactions
(both hardware-mode and software-mode) totally in hardware.

3.2.2 Hybrid Abort Transaction

With a purely hardware transactional memory technique, aborting
another transaction is as simple as writing to a cache line that the
other transaction is using. The transactional buffer keepstrack of
the readers and writers of each cache line and can abort the transac-
tions when necessary. With a software technique, transaction aborts
are accomplished by checking theState fields of theLocators and
setting them to ABORTED and through changing the version of an
object. By combining hardware and software techniques in our hy-
brid model, aborting other transactions which could concurrently
be in either hardware or software modes seemingly becomes com-
plex. However, because of how the transactional buffer is managed
in both modes, an elegant solution arises for managing transactions.

There are a total of four different cases in which one mode
of transaction can try and abort another. Figure 5 is used to help
illustrate these four cases.

1. Hardware aborts Hardware. When a transaction wishes to
open aTMObject in hardware mode and another hardware-
mode transaction already has the object open, the former trans-
action will always get the current valid data. As soon as this
transaction performs a load or store on that data (by default
transactional), the other transaction will be aborted by the trans-
actional buffer if this is a conflicting access. Any changes by the
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Figure 5. Aborting Transactions in the Hybrid Technique.

aborted transaction will be discarded. Thus, any access to Cin
Figure 5 by a hardware transaction may automatically abort an-
other hardware transaction.

2. Hardware aborts Software.A hardware-mode transaction can
easily abort a software-mode transaction by writing ABORTED
to the transaction’sState field (B in Figure 5). Whenever a
software-mode transaction opens aTMObject, it loads its own
State into the transactional buffer. Thus, as soon as a hardware-
mode transaction writes to thatState, the transactional buffer
will detect a conflict and abort the software-mode transaction.
In addition, since theState field is now ABORTED, if the
software-mode transaction was writing an object, other trans-
actions will automatically use the old object field as the correct
version of the data.

3. Software aborts Hardware. When a software-mode transac-
tion opens aTMObject for writing, the open is not fully com-
plete until it swaps theTMObject pointer to the newLocator
that it created. Since the hardware transaction has read this
pointer (A in Figure 5), when the software performs the swap it
will cause the transactional buffer to abort the hardware-mode
transaction.

4. Software aborts Software.A software-mode transaction can
abort another software-mode transaction by writing ABORTED
to theState field (B in Figure 5) through the writer and reader
state pointers in theLocator.

When a transaction executes in hardware mode, all memory
accesses, are performed in a transactional manner (except those
in the Hybrid TM library performed viaLDR andSTR). This has
two interesting consequences. First, when a programmer explicitly
aborts a transaction (by using a DSTM API call), all updates within
the transaction will be discarded. However, the semantics require
updates to nontransactional objects to survive. This is handled by
reexecuting the explicitly aborted transaction in software mode.
Second, even updates to the stack are discarded by an abort. So
the implementation cannot recover from an aborted transaction
by unwinding the stack. This is handled by making a complete
register checkpoint using theSSTATE instruction before starting
the transaction. An alternative would be to modify the runtime
system so that the relevant information in the stack frame (like
the return address) is stored nontransactionally (usingLDR andSTR
instructions).

3.2.3 Choosing the execution mode

At the start of each transaction, our hybrid scheme chooses between
hardware and software modes. All objects opened within a transac-
tion use the same mode. It makes sense to pick the hardware mode
when the amount of data a transaction accesses is within the re-
source bounds of the transactional buffer. In this case, thehard-
ware mode will perform faster than the software mode as it hasless
overheads. Currently, we use a simple policy: it always tries the
hardware mode the first three times that it is executes a transaction.

If the transaction fails to commit successfully within three tries, it
falls back into software mode and retries until it succeeds.

A number of improvements are possible here. First, a distinction
can be made between transactions that abort due to conflicts with
other threads as opposed to exceeding hardware resource bounds.
In the former case, it is more efficient to repeatedly retry inthe
hardware mode. However, this requires the hardware tellingthe ex-
ception handler which of these two cases occurred. Second, profil-
ing and programmer supplied hints could be used to influence this
policy. In this work, we address the high overhead of transactional
memory and evaluate using microbenchmarks. The right policy re-
quires an application-driven study that we leave as future work.

3.2.4 Contention Management

One of the advantages of DSTM is that it separates the mechanism
(detection and resolution of conflicts between transactions) from
the contention management policy. The contention management
policy is responsible for ensuring forward progress even inthe
presence of contention as well as other issues like fairnessand
priority. Recent research [9, 15, 24] has proposed a varietyof
contention management techniques.

This paper focuses on reducing the overhead of the mechanism
used to implement DSTM. Our proposed technique raises new chal-
lenges to designing the right policy for hybrid transactional mem-
ory where the transactions executed in hardware mode are invisible
to other processors. We leave this problem as future work. For this
paper, we use two of the commonly used policies that are adequate
for our experiments. When possible (i.e., when a transaction can
detect a conflicting transaction because the conflicting transaction
is executing in the software mode), transactions use thePolite pol-
icy with randomized exponential backoff—that is, they abort them-
selves. When the conflicting transaction is executing in thehard-
ware mode, the hardware will automatically abort the conflicting
transaction. This is effectively theAggressive policy with random-
ized exponential backoff. Prior research [15] has shown that Polite
policy usually performs better thanAggressive policy.

Extremely long transactions pose a problem to our proposed
scheme. Currently, a transaction (in both software and hardware
modes) is aborted on a context switch. This transaction willsimply
be restarted when thread is context switched back in. Considering
that millions of instructions can be executed within a time slice on
modern operating systems, most transactions will completebefore
the next context switch. However, if a transaction is longerthan
a time slice, a transaction would never finish successfully.This
unlikely scenario can be handled by introducing a third modein
which all other threads are blocked and the transaction is allowed
to complete without interference and without using any of the
transactional hardware proposed in this paper. Such an approach
would guarantee completeness without hurting performancesince
this case would be extremely rare in practice.

4. Evaluation Framework
4.1 Systems Modeled

We use a cycle accurate, execution driven multiprocessor simulator
for our experiments. This simulator has been validated against
real systems and has been extensively used by our lab. Table 2
summarizes our base system configuration, and also shows the
changes for our hybrid transactional memory scheme.

Each processor is in-order and capable of simultaneously exe-
cuting instructions from multiple threads. We assume a chipmulti-
processor (CMP), where each processor has a private L1 cache, and
all processors share an L2 cache. We assume a perfect instruction
cache for this study since we consider only very small codes that
would easily fit into a conventional instruction cache. The proces-



Processor Parameters
# Processors 1–64
Processor width 2

Memory Hierarchy Parameters
Private (L1) cache Base & SW TM: 64KB, 4-way

HW TM & Hybrid TM: 32KB, 4-way
Trans. buffer Base & SW TM: None

HW TM & Hybrid TM: 32KB, 16-way
Shared L2 cache 16 banks, 8-way
Interconnection network Bi-directional ring

Contentionless Memory Latencies
L1 hit 3 cycles
Trans. buffer hit 4 cycles
L2 hit 18–58 cycles

Table 2. Simulated system parameters

sors are connected with a bi-directional ring, and the L2 cache is
broken into multiple banks and distributed around the ring.

We model systems both with and without hardware support for
transactional memory. This hardware support includes additions to
the ISA, a transactional state table for each processor, anda trans-
actional buffer for each processor, as described in Section2. Co-
herence is maintained between the L1 cache and the transactional
buffer in hardware. For experiments with the transactionalbuffer,
we reduce the size of the L1 cache so that the cache space plus
buffer space is the same as for the base system. We consider a
large transactional buffer for our experiments. We examineonly
microbenchmarks in this study; thus, the buffer size is not partic-
ularly important since we can tune the data sets to fit or not fitin
the buffer as we desire. Further study is needed to determinean
appropriate size for the buffer for real applications. For these same
reasons, we assume the data sets fit in the L2 cache, and that the
cache is warm at the start of our experiments.

We created a library that implements our transactional memory
API using the ISA extensions in Section 2.1. This library supports
running transactions in hardware-only mode, software-only mode,
and in hybrid hardware-software mode. We experiment with all
three of these flavors of transactional memory, as well as with
a base system that uses locks rather than transactional memory.
We use an efficient implementation of ticket locks [18] in our
experiments.

We use a very simple dynamic memory management scheme
(malloc/free) for our experiments for several reasons. First, the
memory allocator that is available on our infrastructure has poor
scaling. Second, we wanted to factor out the cost of memory man-
agement because it can vary significantly depending on the scheme
used (malloc/free vs. garbage collection vs. custom allocation).

The dynamic memory management scheme used has extremely
low overhead. Each thread is assigned a separate large spacefrom
which it allocates space and, therefore, requires no locking. The
allocated objects are never freed. Consequently, no metadata needs
to be maintained by the allocator. Allocation overhead is small as it
simply involves incrementing a index. The main potential problem
with this scheme is that it would generate a lot of memory traffic
due to cold misses. To address this, we set the memory latency(on
a L2 miss) to zero so that these are not unfairly penalized. Recall
that the L2 used in our experiments is large enough that the memory
allocator is the only source of memory traffic.

It should be noted that the memory allocator is used on the crit-
ical path extensively byTM-SW (an allocation on each “start trans-
action” and two allocations for each “object open”) and sometimes
by TM-Hybrid (similar toTM-SW but only in the small fraction of
instances when it falls back into software mode due to contention).

Benchmark Problem Size Parameter
Vector reduction VR-high VR-low
Vector size 16 2048
No. of Operations 128000 128000
Hash Table HT-high HT-low
Table size 37 1439
No. of Operations 65536 65536
Prepopulation 75 % 75 %
Lookups/Inserts/Deletes 80/10/10 % 34/33/33 %
Graph Update GU-high GU-low
No. of Nodes 256 4096
No. of Operations 65536 65536
No. of Objects Accessed 1 – 7 1 – 7
Objects Read-only/Modified 50/50 % 80/20 %

Table 3. Benchmarks Problem Sizes

4.2 Benchmarks and Experiments

We study three microbenchmarks. These microbenchmarks repre-
sent some very commonly used operations that present challenges
for parallelization. Each benchmark is evaluated under twodiffer-
ent scenarios—low and high contention. The problem sizes used
are specified in Table 3.

Vector Reduction (VR): This benchmark involves atomic up-
dates (additions) to elements in a vector (array). This operation is
commonly used in sparse linear algebra codes. In this benchmark,
during each iteration, an element of the vector is selected at ran-
dom (outside the critical section) and atomically incremented (in
the critical section). This benchmark exposes the overheads associ-
ated with starting and committing transactions because it has very
small critical sections. In addition, the amount of contention can be
varied by changing the size of the vector. We consider both a small
vector, where contention for each element is high (VR-high), and a
large vector, where contention is low (VR-low). When using locks,
each element of the vector is protected by its own lock. When using
transactional memory, each atomic update is a transaction.

Hash Table (HT): This benchmark involves operations on a
hash table. During each iteration, both an operation (either an
insert, delete, or lookup) and a key are randomly chosen (outside
the critical section) and the chosen operation is performedon the
hash table (in the critical section). This benchmark exposes the per
object overheads associated with transactions. When usinglocks,
a lock-acquire and a lock-release is required for each operation on
the hash table because each bucket is protected by its own lock—
the hash function is used to compute the desired bucket, the lock for
that bucket is grabbed, the operation is performed, and the lock is
released. In contrast, when using transactions, each of theobjects
(in the worst case) in the particular bucket needs to be “opened”
before it can be used. In addition, when using transactions,multiple
lookup operations can be performed simultaneously on the same
bucket because lookup operations do not modify any objects.2 We
start our experiments with a partially prepopulated hash table. As
before, we consider both a small hash table, where contention for
each bucket is significant (HT-high), and a large table, where there
is little contention (HT-low).

Graph Update (GU): This benchmark is designed to demon-
strate the strength of transactional memory. When using locks, the
programmer needs to keep track of the mapping between each
object and the lock that guards it. In addition, when performing
atomic operations on multiple elements, the programmer typically
avoids deadlocks by acquiring all the relevant locks in a total or-
der. In some instances (e.g., maxflow [2]), this can tricky but im-
plementable. In other instances (e.g., Red-Black Trees [15], Effi-

2 Similar behavior can be achieved with locks by using readers-writers
locks. Currently, we do not use readers-writers locks.
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Figure 6. Benchmark Scalability:Parallel speedup with TM-HW
version

cient doubly-linked lists [15], and Heaps), all the locks that will
be needed cannot be determined at the start of the critical section.
Therefore, a total order is difficult to achieve. In all thesecases,
programmers usually resort to using a single coarse-grained lock
to guard the entire operation and, therefore, suffer serialization. In
contrast, with transactional memory, the programmer can get the
benefit of fine-grained locking with little effort. In this benchmark,
a set of elements (representing nodes in a graph) are maintained.
During each iteration, a subset of nodes are chosen at random(out-
side the critical section) and accessed and modified (withinthe crit-
ical section). A single coarse-grained lock is used to guardthe en-
tire critical section. In this benchmark, the contention can be varied
by changing the total number of nodes and the number of differ-
ent objects that are accessed within a critical section (GU-high and
GU-low).

We run each benchmark with each of the four systems: the
base system with locks (Lock), the base system with software-
only transactional memory (TM-SW), the system with hardware
support for transactional memory with hardware-only transactions
(TM-HW), and the system with hardware support for transactional
memory with hybrid transactional memory (TM-Hybrid).

For all of our benchmarks, all elements (vector, hash elements,
and tree nodes), and all locks are placed on their own cache line
to prevent performance artifacts from false sharing. Also,the con-
tention management policy (Section 3.2.4) requires setting a pa-
rameterk where2

k is the maximum backoff. Based on experi-
ments, we use14, 8, and10 as values fork for TM-HW, TM-SW,
andTM-Hybrid respectively.

5. Performance Evaluation
In this section, we evaluate the effectiveness of the HybridTrans-
actional Memory technique presented in this paper. In particular,
we compare the performance of the hybrid transactional memory
(TM-Hybrid) with the other transactional memory implementations
(TM-HW & TM-SW) as well as with the lock version (Lock).

Figure 6 presents the parallel speedups for theTM-HW version
(which is used as the baseline in Figure 7). It shows that thelow and
high versions for the different benchmarks do result in significantly
different contention and speedup.

Figure 7 presents the results of the three benchmarks (VR, HT,
andGU) on the four schemes (Lock, TM-Hybrid, TM-HW, andTM-
SW). In addition, each benchmark is evaluated under two different
scenarios—low andhigh contention. All results are normalized to

the system with hardware transactions (TM-HW) for each processor
configuration.

Figure 8 shows the ratio of the number transactions started
to the number of transactions committed. A ratio of 1 indicates
that none of the transactions were aborted. It should be noted
that, by design, all aborted transactions are due to contention in
these experiments; no transactions are aborted due to resource
constraints. Otherwise, the pure hardware version (TM-HW) would
never run to completion.

Table 4 presents the average number of instructions as well as
the number of cycles taken to execute the synchronization oper-
ations (transactions and locks) in theVR benchmark on a single
processor. The execution time reported is in some cases signifi-
cantly higher for thelow version than thehigh version because the
dataset size is much larger for thelow version and does not fit in
the L1 cache. However, as the number of processors increase,syn-
chronization and contention for the shared cache lines havea much
larger impact on thehigh version.

5.1 TM-Hybrid vs. TM-HW vs. TM-SW

Overhead on one processor. Figure 7 shows thatTM-HW usu-
ally outperforms the other two versions of transactional memory.
This is becauseTM-HW incurs minimal overheads. It requires only
10 and 5 instructions to begin and commit a transaction, respec-
tively (Table 4). It incurs no per object overheads (i.e., “Open Ob-
jects”).

TM-SW incurs significantly higher overheads that mainly come
from two sources. First,TM-SW requires dynamic memory alloca-
tion, initialization and copying: each “begin transaction” requires
one allocation while each “open” operation requires two alloca-
tions. Second,TM-SW incurs additional overheads due to indirec-
tion: each object open requires two additional cache line accesses
(one to accessTMObject and one to accessLocator). Due to these
overheads,TM-SW performs between 2.48x (forHT-low) and 7.36x
(for VR-high) slower thanTM-HW on one processor3.

In the common case,TM-Hybrid avoids the larger of the two
sources of overheads inTM-SW. It incurs only the overhead due
to indirections while avoiding the overheads due to allocation,
initialization, and copying. As a result, it experiences atmost 2.63x
(for GU-high) slowdown compared toTM-HW on one processor. It
is worth emphasizing here that the performance ofTM-HW comes
at a loss of generality—TM-HW works only when transactions
are small enough so as to not exceed the resource bounds of the
transactional hardware.

ComparingTM-Hybrid with TM-SW shows thatTM-Hybrid is
between 1.6x (forHT-low) and 3.27x (forVR-high) faster thanTM-
SW on 1 processor. It should be noted that this understates the
potential improvement for several reasons. First, our experimental
setup understates the actual cost of dynamic memory allocation3

(which has a bigger impact onTM-SW). Second, in our experiments
all transactional objects are small (one cache line). Recall that
TM-SW incurs copying overhead proportional to the size of object
while the indirection overhead (which is the primary overhead in

3 Section 4.1 explained that we understate the performance difference be-
tweenTM-SW and otherTM schemes due to the simple dynamic memory
management scheme used in our experiments. To get some perspective, we
measured the cost of doing malloc and free operations using libc by per-
forming a random sequence of malloc and free operations. Ourmeasure-
ments show that, on average, a pair of malloc and free operations execute
426 instructions (not counting time spent in system calls).In contrast, a
pair of malloc and free in our experiments costs only 37 instructions. This
is a significant difference and explains the difference in performance on one
processor in our experiments when compared to prior work [15]. That work
reported thatTM-SW was about 22x slower thanLock on one processor.
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Operation Lock TM-SW TM-HW TM-Hybrid
Lock or Begin Transaction 26 [ 88.24, 37.03] 67 [ 152.49, 152.52] 10 [ 13.06, 13.07] 40 [ 37.45, 36.99]
Unlock or Commit Transaction 7 [ 29.86, 16.00] 22 [ 30.43, 30.43] 5 [ 7.01, 7.07] 26 [ 34.00, 34.00]
Open Write – 194 [ 305.89, 213.71] – 19 [ 144.31, 36.00]

Table 4. One processor execution ofVR benchmark: Each entry is of the formX [ Y, Z ] —X is the average number of instructions per
operation;Y andZ are the average number of cycles per operation forVR-low andVR-high, respectively.

TM-Hybrid) is constant. Finally, indirection overheads might be
reduced by using prefetching techniques.

Scaling. Scaling of the transactional memory implementations
is determined by two main factors. First, transactional memory
overheads increase the effective size of a transaction. This reduces
the likelihood that a transaction will complete successfully. This
is because the smaller the critical section, the less likelythat a
transaction is going to conflict with another, causing one ofthe
two transactions to be aborted. Second, the policy used to resolve
contention impacts scaling. Recall thatTM-HW uses theAggressive
policy (with longer backoff) while theTM-SW uses thePolite policy
with less aggressive backoff (Section 3.2.4). ForTM-Hybrid, the
ratio of transactions executed in hardware mode vs. software mode
is an additional factor that impacts scaling. This ratio is determined
by the policy that picks the execution mode (Section 3.2.3).

For thelow contention experiments, the scaling of all threeTM
implementations are similar (Figure 7). ComparingTM-SW with
TM-HW in thehigh contention experiments shows that the scaling
depends on which of the two above mentioned factors has a big-
ger influence. On the one hand, the contention management policy
favorsTM-SW in VR-high andGU-high (i.e., TM-SW scales well
for both benchmarks). On the other hand, the lower overhead (and
therefore, a significantly smaller number of aborted transactions)
favors TM-HW in HT-high. ComparingTM-Hybrid with TM-HW
in the high contention experiments shows that both have similar
scaling forGU-high, thatTM-Hybrid scales better forVR-high, and
thatTM-Hybrid scales worse forHT-high. In VR-high, TM-Hybrid
scales better because of the better contention management policy.
In HT-high, for a large number of processors, the number of trans-
actions that fallback into the software mode is significant enough
that it affects scaling. An alternate policy that is more aggressive
and tries the hardware mode several more times before falling back
to software mode yields expected scaling (Section 3.2.3). That is,
the corresponding scaling numbers forTM-Hybrid running HT-
high for 32 and 64 processors would become 2.2 and 2.4, respec-
tively.

5.2 TM-Hybrid vs. Lock

Overheads on one processor. ComparingTM-Hybrid with Lock
in Figure 7 shows thatTM-Hybrid incurs varying overhead for the
different benchmarks. For one processor execution, the overhead
of using locks is proportional to the number of locks acquired and
released in a critical section. In contrast, the overhead incurred
by TM-Hybrid includes a constant part (cost of beginning and
committing a transaction) and a variable part that is proportional
to the number of objects accessed (“open” operations). In our
experiments,TM-Hybrid performed between 2.42x (forGU-high)
to 17% slower (forVR-low). This is due to a combination of extra
instructions and worse cache behavior.

Scaling. As the number of processors increases, contention for
shared data becomes an additional factor that impacts performance.
With locks, the contention is on the locks. With transactions, con-
tention occurs when multiple transactions try to perform conflicting
operations on the same object. InVR andHT benchmarks, the con-
tention experienced by locks and transactions are similar.There-
fore, the scaling is similar up to 64 processors. The outliers in HT-

high (32 and 64 processors) are due to a large number of trans-
actions that fall back into the software mode as discussed above.
In GU benchmark, the lock version has a lot of contention (i.e.,
the operations are essentially serialized) and therefore do not scale
with the number of processors; in fact, it experiences a slowdown.
With transactions, contention is dynamically detected; therefore,
the system is more aggressive at extracting parallelism leading to
the benchmark achieving significant speedups, thereby outperform-
ing locks.

6. Related Work
There is a large body of related work [23]. Due to space constraints,
we discuss only the most relevant ones here.

Harris and Fraser [12] proposed a software transactional mem-
ory at the word granularity. They map conditional critical regions
(CCRs) onto a software transactional memory. CCRs allow pro-
grammers to group operations that will be executed atomically and
guard these operations with a boolean condition. They use hash-
ing to track conflicts; this can be an expensive overhead for every
read and write. More recently, Harris et al. [13] implemented soft-
ware transactional memory in Concurrent Haskel. However, perfor-
mance results are not available for this implementation.

Hammond et al. [11] proposed Transactional memory Coher-
ence and Consistency (TCC) as an alternative to a conventional
cache coherence protocol in shared memory systems. Insteadof
using a coherence protocol to keep cache lines coherent for every
memory access, TCC buffers all writes of a transaction, arbitrates
system-wide for permission to commit these writes at the endof
the transaction, and broadcasts these writes to the rest of the sys-
tem. Other processors may hold copies of the same lines in their
caches and must invalidate these copies during the broadcast and
abort their ongoing transactions. To use TCC programmers simply
insert transactional boundaries in their code. However, program-
mersmust use transactions for everything since traditional synchro-
nization such as locks does not exist under TCC.

Ananian et al. [1] proposed Unbounded Transactional Mem-
ory (UTM) to address the resource limit associated with hardware
transactional memory. UTM maintains transactional logs invirtual
memory. New transaction values are stored in memory while old
values are stored in transactional logs. For acceptable performance,
caches can be used to keep the latest values while original val-
ues are kept in main memory. However, UTM requires significant
changes to processors, caches, and main memory. The authorspro-
posed Large Transactional Memory (LTM) as a less costly alterna-
tive that limits the footprint of a transaction to physical memory.
Like UTM, the cache keeps the latest data value while the original
value is kept in main memory. When a transaction state overflows
the cache, the overflowed values are spilled into a hash tablein
main memory.

Rajwar et al. [22] proposed Virtual Transactional Memory, a
combined hardware-software scheme that addresses the resource
limit of hardware transactional memory. VTM extends a hardware
transactional memory scheme with a software overflow buffer, a
software filter table, and additional hardware to check and handle
overflows. VTM sends overflows to the overflow buffer and may
need to walk this buffer for subsequent memory accesses after an



overflow has occurred in order to check for access conflicts. It uses
a 10-MB filter table to hash addresses and skip the buffer walkif
the hash function returns negative (a false positive requires walking
the buffer). VTM optimizes the non-overflow case by checking
for an overflow counter and skipping the filter table lookup and
the buffer walk if no overflow has occurred. However, once an
overflow occurs, the filter table lookup is needed for every memory
access and a buffer walk is necessary for a hit in the filter table.
Performance evaluation was not included in the paper.

Moore et al. [19] proposed LogTM, a hardware assisted trans-
actional memory scheme that stores new data values in place and
old values in per-thread software logs. By modifying data inplace,
LogTM optimizes for commits as the old values in the logs are sim-
ply discarded on commits. Aborts require the unrolling of the logs
to restore the old values. In its current form, LogTM does nothan-
dle paging, context switches, thread migrations and OS interactions
within transactions.

7. Conclusions
Transactional memory is a promising technique that makes the task
of writing parallel programs that scale well easier. In thiswork,
we propose a novel hybrid hardware-software transactionalmem-
ory scheme that uses a hardware transactional memory schemeas
long as transactions do not exceed resource limits and gracefully
falls back to a software scheme when those limits are exceeded.
This approach combines the performance benefits of a pure hard-
ware scheme with the flexibility of a pure software scheme. The
hardware for our hybrid scheme is just slightly more complexin
terms of chip area and design complexity than Herlihy et al.’s orig-
inal hardware transactional proposal [16]. Results show that our
hybrid scheme greatly accelerates the software scheme, even in the
presence of a high number of conflicts.
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