
Introduction to the TPM 1.2

Mark Ryan

University of Birmingham

DRAFT of March 24, 2009
Comments welcome

1 Introduction

The Trusted Platform Module (TPM) is a hardware chip designed to enable commodity
computers to achieve greater levels of security than was previously possible. There are 100
million TPMs currently in existence [2], mostly in high-end laptops made by HP, Dell, Sony,
Lenovo, Toshiba, and others. The TPM stores cryptographic keys and other sensitive data
in its shielded memory, and provides ways for platform software to use those keys to achieve
security goals. Application software such as Microsoft’s BitLocker and HP’s ProtectTools use
the TPM in order to guarantee security properties.

TPMs are manufactured by chip producers, including Atmel, Broadcom, Infineon, Sinosun,
STMicroelectronics, and Winbond. It is specified by the Trusted Computing Group (TCG)
industry consortium, that includes Intel, HP, Microsoft, AMD, IBM, Sun, Lenovo, and about
130 other members, in three documents [1] totalling about 800 pages. This introduction is
intended to give a flavour and overview of its operation, and is specifically about TPM version
1.2. Some details are inevitably missing and some issues may be oversimplified here. The
TPM specification is, of course, the authoritative source and overrides anything written here.

To aid readability, a glossary is included in section 9.

2 The TPM functionality

The TPM offers three kinds of functionality:

• Secure storage. User processes can store content that is encrypted by keys only available
to the TPM.

• Platform measurement and reporting. A platform can create reports of its integrity and
configuration state that can be relied on by a remote verifier.

• Platform authentication. A platform can obtain keys by which it can authenticate itself
reliably.

3 Secure storage

To store data using a TPM, one creates TPM keys and uses them to encrypt the data.
TPM keys are arranged in a tree structure. After the TPM has been initialised, a process

1

Figure 1: TPM architecture

called TPM TakeOwnership is invoked that creates the Storage Root Key (SRK). At any time
afterwards, a user process can call TPM CreateWrapKey to create a child key of an existing
key. Once a key has been created, it may be loaded using TPM LoadKey2, and then can be
used in an operation requiring a key (e.g., TPM Seal).

To each TPM key is associated a 160-bit string called authdata, which is analogous to
a password that authorises use of the key. Authdata is specified by the user process at the
time the key is created. A processes issuing a command that uses a key provides proof of
knowledge of the relevant authdata by including an argument that is the value of an HMAC
of other command arguments, keyed on a value based on the authdata.

The TPM CreateWrapKey command takes arguments that include the parent key of the
key to be created, new encrypted authdata of the key to be created, and other information
such as the key type (sealing, binding, signature etc.), and the authorisation HMAC based
on the authdata of the parent key. It returns a blob consisting of the public part of the new
key and an encrypted package; the package contains the private part and the authdata of the
new key, and is encrypted with the parent key. The private key of a non-migratable TPM key
never leaves the TPM, except encrypted by another key. Thus, the command creates the key
but does not store it; it simply returns it to the user process (protected by an encryption).
The newly created key is not yet available to the TPM for use.

To use a TPM key, it must be loaded. TPM LoadKey2 takes as argument the key blob,
and returns a handle, that is, a pointer to the key stored in the TPM memory. Commands
that use the loaded key refer to it by this handle. Since TPM LoadKey2 involves a decryption
by the parent key, it requires the parent key to be loaded and it requires an authorisation
HMAC based on the parent key authdata. SRK is permanently loaded and has a well-known
handle value, and therefore never requires to be loaded.

Once the key is loaded, an encryption command such as TPM Seal can be used. It takes
arguments including the handle of the encrypting key, the data to be encrypted, information
about PCRs to which the seal should be bound, and encrypted authdata for the sealed blob.
Of course, it requires an authorisation HMAC based on the authdata for the encrypting key.
It returns a sealed blob. TPM Unseal works the other way; it requires arguments including
the handle and the sealed blob, and it returns the original data. It requires two authorisation
HMACs; one is based on the encrypting key authdata, and the other on the sealed blob

2

authdata.

4 Authorisation sessions

All of the commands mentioned above require to be executed within an authorisation session.
There are two kinds:

• Object Independent Authorisation Protocol (OIAP), which creates a session that can
manipulate any object, but works only for certain commands.

• Object Specific Authorisation Protocol (OSAP), which creates a session that manipulates
a specific object specified when the session is set up.

An authorisation session begins when the command TPM OIAP or TPM OSAP is successfully
executed.

4.1 OIAP

The TPM OIAP command starts a session with the TPM that may be used for several
commands. This session type has the advantage commands may manipulate different objects
(that’s the “object independence” part), but it has the disadvantage that it cannot be used
for commands such as TPM CreateWrapKey that introduce new authdata to the TPM.

To set up an OIAP session, the user process sends the command TPM OIAP to the TPM,
together with a nonce argument. Nonces from the user process are called “odd” nonces, and
nonces from the TPM are called “even” nonces. The user process that called TPM OIAP
receives back an authorisation handle, together with a new even nonce. Then, each command
within the session sends the authorisation handle as part of its arguments, and also a new
odd nonce. The response from the TPM includes a new even nonce. This system of rotating
nonces guarantees new entropy in the commands and responses. All authorisation HMACs
include the most recent odd nonce and even nonce. In an OIAP session, the authorisation
HMACs are keyed on the authdata for the resource (e.g., key) requiring authorisation.

4.2 OSAP

An OSAP session can also be used for several commands, but the commands must manipulate
a single object specified at the time the session was set up. The advantage of an OSAP session
that it can be used for commands that introduce new authdata to the TPM.

To set up an OSAP session, the user process sends the command TPM OSAP to the TPM,
together with the name of the object (e.g., key handle) for the OSAP session, and an OSAP
odd nonce. The response includes an authorisation handle, and an even nonce for the rolling
nonces, and an OSAP even nonce. Then, the user process and the TPM each computes a
secret consisting of an HMAC of the odd OSAP nonce and the even OSAP nonce, keyed on
the object’s authdata. This secret is called the “OSAP secret.” Now commands within the
authorisation session may be executed. In an OSAP session, the authorisation HMACs are
keyed on the OSAP secret. The purpose of this arrangement is to permit the user process
to cache the session key for a possibly extended session duration, without compromising the
security of the authdata on which it is based.

3

Command Main inputs Main outputs Authorisation

TPM CreateWrapKey

Creates a new TPM key. The new key
is returned to the user, with the pri-
vate part, the authdata, and key at-
tributes encrypted with another TPM
key, called the parent key

parent key handle;
ADIP-encrypted new
authdata;
information about the key
to be created

wrapped key
(i.e. newly
created key,
encrypted with
parent key)

parent key

TPM LoadKey2

Given a wrapped key, loads it on to the
TPM for usage

wrapped key key handle parent key

TPM Seal

Given some data, encrypts it with a
TPM key. Some PCR values that
should hold on unseal may also be
specified

key handle;
encrypted new authdata
for the sealed blob;
PCRs for unseal;
data to be sealed

sealed blob key

TPM Unseal

Given sealed data, decrypts it. Checks
that the PCR values specified in the
blob are indeed current

key handle;
sealed blob

unsealed data key;
sealed blob

TPM Extend

Updates a PCR by “hashing in” a mea-
surement value

PCR;
measurement

(none) (none)

TPM Quote

Obtains a signed report of the current
PCR values

key handle; PCRs;
external data

a signature on
PCR values and
the external
data

(none)

TPM MakeIdentity

Create an application identity key

(AIK)

new encrypted auth
info about the identity and
the privacy CA

new key blob owner
srk

TPM ActivateIdentity

Decrypt an AIK certificate obtained
from a Privacy CA

AIK handle
blob from Privacy CA

session key to
decrypt the
certificate

owner
AIK auth

Figure 2: Some commands of the TPM

4

4.2.1 ADIP encryption

When new authdata is introduced by a command, it is encrypted with a mechanism known
as AuthData Insertion Protocol (ADIP). As mentioned, only OSAP sessions can be used to
insert new authdata. Roughly speaking, the new authdata is encrypted by XORing it with
the OSAP secret. More precisely, a one-time key is computed as SHA-1(s, ne), where s is the
OSAP shared secret and ne is the current even nonce, and encryption is done by XORing the
new auth data with this key. Some commands introduce two new authdata simultaneously
(such as TPM CreateWrapKey). In this case, the second one is encrypted in a similar fashion
using the key SHA-1(s, no), where no is the current odd nonce.

Because this arrangement could expose the OSAP secret to cryptanalytic attacks if used
multiple times, an OSAP session that is used to introduce new authdata with ADIP is subse-
quently terminated by the TPM. Commands that want to continue to manipulate the object
have to create a new session.

4.3 Authenticating the TPM

Authdata and the authorisation sessions serve the purpose of ensuring that the calling software
is authorised to carry out the command (this is done by ensuring that it knows the value of the
relevant authdata). Additionally, authdata is used to enable the calling software to be sure
that the response it receives is indeed the response of the TPM. An authentication HMAC
is constructed by the TPM to accompany responses to authorised commands. The HMAC
message is a selection of the returned values in the response, and the key is based on the
relevant authdata in the same way as the authorisation HMAC.

4.4 Example

The figure shows the steps to create a key using TPM CreateWrapKey (figure 3), to load a
key using TPM LoadKey2 (figure 4), using the key to encrypt data TPM Seal (figure 5).

5 Platform measurement and reporting

The TPM contains a number of 160-bit registers called platform configuration registers (PCRs)
intended to enable a relying party to obtain unforgeable information about the platform state.
We think of the platform as consisting of several “components”, which may receive control
and pass on control to another component. Typical components are the BIOS, the master
boot record, boot sectors, the boot loader, and ultimately the operating system and applica-
tion software. A component can “measure” another component (compute its hash) and insert
that measurement into a PCR (for example, before passing control to it). This insertion
is an irreversible process, known as “extending” the PCR. A PCR p is extended with the
measurement m by the assignment

p := SHA-1(p||m)

A given PCR can be extended with any number of measurements. The current value of the
PCR represents the accumulation of them all. A secure chain of trust can be established by
ensuring that the very first code segment executed on power-up is measured and that mea-
surement is extended into a PCR. Then, every component A that loads another component

5

User process TPM

TPM OSAP(parentKeyHandle, NoOSAP)

authHandle, Ne, NeOSAP

K = hmac(parenthKeyAuth; NeOSAP, NoOSAP)

TPM CreateWrapKey(parentKeyHandle, encAuth,
keyInfo, authHandle, No)

hmac(K; encAuth, keyInfo, Ne, No)

Ne’, keyBlob
hmac(K; Ne’, No)

Figure 3: Creating a key

User process TPM

TPM OIAP()

authHandle, Ne

TPM LoadKey2(parentKeyHandle, wrappedKey,
authHandle, No)

hmac(parentKeyAuth; wrappedKey, Ne, No)

Ne’, keyBlob
hmac(parentKeyAuth; Ne’, No)

Figure 4: Loading a key

6

User process TPM

TPM OSAP(keyHandle, NoOSAP)

authHandle, Ne, NeOSAP

K = hmac(keyAuth; NeOSAP, NoOSAP)

TPM Seal(keyHandle, encAuth, pcrInfo, data,
No, authHandle)

hmac(K; encAuth, pcrInfo, data, Ne, No)

Ne’, sealedblob
hmac(K; Ne’, No)

Figure 5: Using a key

B and passes control to it ensures that B is first measured and the measurement is extended
into a PCR. The PCRs then represent an accumulated measurement of the history of the
executed code from power-up to the present.

A TPM signing key (created by TPM CreateWrapKey) can be used to sign the values of
the PCRs, by means of the command TPM Quote. In this way, application software can send
assurance about the dtate of the platform to a third party. Additionally, PCR values can
be used to ensure that certain data is accessible only to authorised software. The TPM Seal
command can take some (PCR, value) pairs as argument; then, TPM Unseal is performed
by the TPM only if the specified PCRs have the values that were stipulated at seal time.
Similarly, TPM key can be locked to work only if certain PCRs have certain values (specified
at the time the key was created).

6 Platform authentication

Each TPM has a unique public/private key pair called the endorsement key (EK), set at
manufacture time and usually certified by the manufacturer. It may be changed by the
platform owner, but this is probably only sensible if the owner is willing to certify the new
key and the platform is required only to be trusted by parties that trust that certification
(e.g., within a corporation). EK is intended to be a long-term key and can be taken to be
the identity of the TPM. In addition to EK, when ownership of the TPM is taken using
the command TPM TakeOwnership, the TPM generates a public/private key pair called the
storage root key (SRK) which is the root of the tree of storage keys; and it also generates
a secret random value called tpmProof which is used by the TPM to identify blobs that it
creates. SRK and tpmProof can also be changed, by revoking and re-taking ownership, but

7

Figure 6: The measurement process, starting with the Core Root of Trust for Measurement
(CRTM)

User process TPM PCA

TPM MakeIdentity()

AIK

EK,AIK

{CertPCA(AIK)}K , {K,AIK}EK

TPM ActivateIdentity({K,AIK}
EK

)

K

Figure 7: Attestation protocol with a Privacy CA

8

that destroys the ability to use all existing storage keys and therefore it is probably only done
on disposal of the platform. Thus, EK, SRK and tpmProof are long-term keys which are
normally not changed during the platform lifetime.

To ensure user privacy, there is no functionality that allows any of these keys to be used
as platform identity. TpmProof is a secret known only to the TPM, so it cannot be used
as an identity. There is no command to use SRK or EK for signing. They are both used
only as encryption keys, but the TPM will only decrypt using the private parts in particular
circumstances1 that are not designed to allow them to be used as platform identifiers.

For platform authentication, one may create signing keys known as application identity
keys (AIKs). These may be used to sign (appropriately tagged) application-specific data, and
to sign PCR values using TPM Quote. For such signatures to be useful, AIKs need to be
certified as belonging to a TPM. For reasons of user privacy, the certificate will not specify
which TPM they belong to; it will just specify that they belong to a TPM. There are two
ways to obtain a certificate on an AIK: using privacy CAs, and using Direct Anonymous
Attestation.

6.1 Privacy CAs

A Privacy CA is a trusted party that will sign the public part of AIKs; such certificates
are used to prove that an AIK really does belong to a valid TPM. The user software uses
TPM MakeIdentity to create an AIK and obtain the public part. It sends the public AIK
and the certified public EK to the Privacy CA. The Privacy CA can check the certificate
on EK (and check if it is revoked). Then the Privacy CA signs a certificate for the public
AIK, and encrypts the certificate with a newly created session key (creating blob B1). It
encrypts the session key and the public AIK with EK (creating blob B2), and sends both
blobs back to the user software. The user software requests the TPM to decrypt B2, using
TPM ActivateIdentity. The TPM checks that the AIK in B2 really is one of its AIKs, and
releases the session key. The user software uses the session to decrypt B1 and obtain the AIK
certificate.

The Privacy CA solution works, but it requires a trusted party which makes it unattrac-
tive. The Privacy CA is required to be trusted by the platform owner. If the Privacy CA
colludes with the relying party, then anonymity is lost. Additionally, the Privacy CA is a
potential bottleneck.

6.2 Direct Anonymous Attestation

Direct Anonymous Attestation [3] (DAA) was created to avoid requiring the platform owner
to trust an external party. In DAA, there are four parties:

• The host, consisting of a platform running operating system and application sofware.

• The TPM, inside the host.

• The issuer. It checks the EK certificate and issues a credential that can be used to
sign the AIK. The issuer role is similar to the role of the Privacy CA, but because

1EK: decryption of owner authdata during TPM TakeOwnership, and decryption of certificates and cre-
dentials during certification of AIKs; SRK: decryption of child keys during TPM LoadKey2; ((check if SRK
can be used for Unbind or Unseal)).

9

the protocol ensures that the issuer is not able to link the credential and the EK, the
platform owner does not have to trust the issuer.

• The verifer, or relying party, that will check the certificate on the AIK.

An AIK certificate is obtained as follows. First, the DAA-Join protocol is run, in which the
TPM in the host chooses a secret f , and the issuer creates a ‘credential’ cre which is a blind
signature on the value f . The credential cre is encrypted by EK and sent to the TPM, which
then releases it to the host. The issuer knows the value of cre, but because of the properties of
the blind signature, he does not know the value of f . Next, the host engages in the DAA-Sign
protocol with the TPM to obtain a DAA signature on AIK using the key (f, cre). The values
(f, cre) can be used to sign several AIKs if required. The issuer and the verifier (even if they
collaborate) cannot link the DAA signaure and the cre used to produce it. [This is the mode
b = 0 in DAA where the signed value (the AIK) is obtained from the TPM; there is also a
mode b = 1 where the signed value is from outside the TPM.]

To guarantee anonymity, the platform owner does not have to trust the issuer or the ver-
ifier, but she does have to trust the host software. To guarantee the validity of the signature,
the verifier has to trust the issuer (and have an authentic copy of its public key), but does
not have to trust the host software. DAA employs zero-knowledge proofs and has been the
subject of considerable analysis (e.g. [4, 5]).

7 Key migration

This section is not finished!

Non-migratable keys are those whose private parts never leave the TPM (except under
an encryption). This is inflexible, since one might want to migrate encrypted data (and the
possibility to decrypt it) from one TPM to another, or to archive and backup data that is
encrypted by a TPM. Migrateable keys aim to solve this problem.

There are two types of migratable keys

• Migratable keys, introduced in TPM 1.1. Migration may be of type MIGRATE or
REWRAP.

• Certifiable migratable keys, introduced in TPM 1.2. Migration may be of type RE-
STRICT APPROVE or RESTRICT MIGRATE.

If a key is to be migrated, authorisation from the TPM owner is required. TPM Authorize-
MigrationKey is called with arguments the public part of key to be migrated and the migration
type (one of the four types mentioned above), and an authorisation HMAC based on owner-
Auth. The response is an “authorisation digest” that has tpmProof and the migration type
embedded inside.

7.1 Migratable keys

Migratable keys are created (like non-migratable keys) by TPM CreateWrapKey. When
TPM CreateWrapKey is called, the caller specifies whether the key is migratable or not,
and if it is, the authdata allowing it to be migrated. (For non-migratable keys, the migration

10

authdata is set to tpmProof, ensuring that the TPM can recognise the wrapped key as its
own during TPM LoadKey.)

The migration process starts with TPM CreateMigrationBlob, which takes as input a
wrapped key, its parent key handle, a migration public key, the migration type, and the
authorisation digest. It requires parent key usage authorisation and wrapped key migration
authorisation.

• If type is REWRAP, it unwraps the migrating key with the parent key, rewraps it with
the migration public key, and returns the rewrapped key. This is appropriate if the
migration public key is a TPM key belonging to another TPM.

• If type is MIGRATE, it unwraps the migrating key with the parent key, creates a
random password r, and XOR-encrypts the private key with r. It then wraps the key
(still having the r-encrypted private part) to form a “migration blob” and returns this
blob and r.

In the case of MIGRATE, the purpose of r is to avoid having to treat the migration blob as
sensitive data. Later (on another TPM), one will use TPM ConvertMigrationBlob to convert
the migration blob and r into a normal wrapped key. The parent key for resulting wrapped
key is the same as that for the migration blob.

TPM MigrateKey can be used to perform further unwrap-rewraps, to support store-and-
forward use cases. It takes a migration blob, a public key and a key handle pointing to a key
of type TPM KEY MIGRATE. The authorisation HMAC is based on the key handle usage
auth. It decrypts the blob with the key handle, and returns a new migration blob encrypted
with the public key. This function doesn’t have the r value so it cannot use the key.

7.2 Certifiable migratable keys

Certifiable migratable keys are created with TPM CMK CreateKey (rather than TPM CreateWrapKey),
and they are certified with TPM CertifyKey2 (rather than TPM CertifyKey). The certificate
created by TPM CertifyKey2 specifies

• one or more Migration Selection Authorities (MSAs), which are trusted parties that
restrict migration destinations to be TPMs. Such destinations are “dynamically ap-
proved”.

• zero or more Pre-approved Destinations (PADs) (also called “statically approved”).
They are likely to be backup or escrow entities. A PAD’s key can be protected by a
TPM ((so I guess that means there is some TPM functionality that supports being a
PAD)).

A relying party can inspect the certificate and decide whether he trusts the migration policies
of the listed MSAs and PADs.

As well as MSAs and PADs, there are Intermediate Authorities (IAs) that perform store-
and-forward roles. IAs don’t know the password r. ((MSA’s pubkey is a signature verif key.
PAD’s pubkey is an encryption key.))

11

7.2.1 Creating a CMK

• TPM CMK ApproveMA: owner of source TPM creates a ticket to approve some MSAs
and some PDAs. Result: ticket that is a tpmProof-keyed HMAC of list of MSAs/PADs.

• TPM CMK CreateKey: like TPM CreateWrapKey, but specifically for CMKs. Takes
ticket from TPM CMK ApproveMA. Result is a migratable key, but whose migration-
Auth is an HMAC of the migration authority and the new key’s public key, signed by
tpmProof (instead of being a user chosen value or tpmProof).

• TPM AuthoriseMigrationKey: owner of source TPM approves migration of this partic-
ular key. Result: migrationKeyAuth.

So now we have the wrapped migration key, and migrationKeyAuth.

7.2.2 Exporting a CMK

The export can be to a PAD or an MSA. This is determined by the scheme specified in migra-
tionKeyAuth, which may be RESTRICT APPROVE (implies MSA) or RESTRICT MIGRATE
(implies PAD).

• In the case of MSA: We obtain some kind of signed input called restrictTicket from
an MSA. Then TPM CMK CreateTicket takes a public key, some signed data, and
a signature. It checks the signature using the public key as verification key. Result:
sigTicket, consisting of an HMAC of the data keyed with tpmProof.2

• TPM CMK CreateBlob. Takes as argument

– the CMK wrapped key

– the migrationKeyAuth; in particular, this specifies whether the export is to MSA
or PAD.

– the MSA list (which must agree with the digest in migrationKeyAuth)

– [in case of MSA] the sigTicket and the restrictTicket (that contains the digests of
the pubkeys belonging to the Migration Authority, the destination parent key and
the key-to-be-migrated)

In the case of MSA, the TPM checks that sigTicket is the tpmProof-keyed-HMAC of
one of the items in MSA list, and that the restrictTicket.destinationKey is SHA1 of
migrationKeyAuth.migrationKey, and that restrictTicket.sourceKeyDigest is the digest
of the public key being migrated.

In the case of PAD, the TPM verifies that the intended migration destination is an MA
(??PAD), i.e., that SHA-1[migrationKeyAuth.migrationKey equals one of the MSA list
digests.

2Looks fishy. It doesn’t do any check on the public key. An attacker can specify any data, signed with any
throw-away key, and get it signed by tpmProof. Need to check this out.

12

7.2.3 Handling exported CMKs

7.2.4 Importing CMKs

8 Delegation

This section is not finished!

The requirement that the calling environment possesses the authdata for resources that
it uses is inflexible. It does not support use cases in which

• the TPM owner wants to delegate some (but not all) the privileges of owner to another
party, and possibly withdraw those privileges later;

• the owner of a TPM key wants to delegate some (but not all) of the capabilities afforded
by that key to another party.

To support use cases like this, the TPM allows the owner of a resource to create another
authdata value for the resource, specifying a list of commands on the resource that the
possessor of the new authdata is allowed to execute.

8.1 How to create delegation

The owner of a key can use TPM Delegate CreateKeyDelegation to create a blob that specifies

• a set of commands that can be performed using the key;

• a new authdata value.

The blob is returned encrypted with a key known only to the TPM. The blob is not confidential
data, but the new authdata value is. Later, anyone that can demonstrate possession of the
new authdata (and that supplies the blob) can execute the specified commands on the key.

A similar command called TPM Delegate CreateOwnerDelegation can be used to create
a blob supporting delegation of TPM owner capabilities. Again, specific commands can be
stipulated.

8.2 How to use a delegation blob

The authorisation protocols OIAP and OSAP are supplemented by a third one called Delegate-
specific Authorisation Protocol (DSAP). Similarly to OSAP sessions, DSAP sessions are re-
stricted to a single object. To set up a DSAP session, the user process sends the command
TPM DSAP to the TPM, together with the name of the object (e.g., key handle or owner)
for the session, and a DSAP odd nonce. Unlike in the case of OSAP, in DSAP the caller addi-
tionally sends a delegation blob. The TPM verifies that the object matches the one included
in the blob. The TPM’s response includes an authorisation handle, and an even nonce for the
rolling nonces, and a DSAP even nonce. Similarly to OSAP, a secret is calculated from the
the odd and even DSAP nonces, keyed on the delegation authdata extracted from the blob.
Now commands within the authorisation session may be executed, using the session secret
in place of authdata for the object. The TPM will check that the commands are permitted
according to the delegation blob.

13

Command Main inputs Main outputs Authorisation

TPM Delegate CreateOwnerDelegation

Creates a delegation for the owner.
A boolean input indicates whether
the specified family verificationCount
should be incremented first.

delegation permissions and
family id;
increment;
encrypted auth

delegation blob owner

TPM Delegate CreateKeyDelegation

Creates a delegation for usage of a key.
key handle;
delegation permissions and
family id;
encrypted auth

delegation blob key usage

TPM DSAP

Create an authorisation session based
on a delegation. The TPM checks that
the delegation is still valid, by compar-
ing its verificationCount with the rele-
vant family member verificationCount.

object (key handle or
owner);
delegation blob or row

authorisation
session handle

(none)

TPM Delegate UpdateVerification

Sets a delegation’s verificationCount to
the current family value. If the input is
a delegation blob, returns a new blob.

delegation blob or row delegation blob owner

TPM Delegate LoadOwnerDelegation

Loads an owner delegation blob into
the delegate table

blob (none) owner, or none
if no owner is
installed

Figure 8: Delegation commands of the TPM. ((Check CreateOwnerDelegation in case that
no owner installed.))

14

8.3 The family and delegate tables

As well as being presented as encrypted blobs stored off the TPM, owner delegations may
also exist as rows in a table held in non-volatile memory of the TPM, called the delegate table.

Revocation of delegations is provided by means of a counter called verificationCount that
is specified at the time the delegation is created, and is stored inside the blob or the delegation
table row. When a delegation blob or delegation table row is used, the value of verification-
Count must match a value stored inside the TPM. If it does not, the delegation has been
revoked.

To permit fine-grained revocation, each delegation (whether presented as a blob or as a
delegate table row) is associated to a delegation family that is specified when the delegation is
created. The family table in non-volatile memory inside the TPM lists the delegation families
that exist, and each family has associated with it a value of verificationCount that is the
current one for delegations in the family. As well as providing the currently accepted value of
verificationCount, the family table also groups delegations for management purposes. Entities
identified in the delegate table rows as belonging to the same family can edit information in
the other delegate table rows with the same family id3.

A delegate’s authorisation may include the commands necessary to create further del-
egations. But in this case, the TPM checks that the created delegate’s permissions are
a subset of the primary delegate’s permissions. ((If a delegation includes the command
TPM UpdateVerification, then ???))

((Think about everlasting delegations. From the spec:

TPM Delegate CreateOwnerDelegation includes the ability to void all existing
delegations (by incrementing the verification count) before creating the new dele-
gation. This ensures that the new delegation will be the only delegation that can
operate at Owner privilege in this family. This new delegation could be used to en-
able a security monitor (a local separate entity, or remote separate entity, or local
host entity) to reinitialize a family and perhaps perform external verification of
delegation settings. Normally the ordinals for a delegated security monitor would
include TPM Delegate CreateOwnerDelegation (this command) in order to permit
the monitor to create further delegations, and TPM Delegate UpdateVerification
to reactivate some previously voided delegations.

If the verification count is incremented and the new delegation does not delegate
any privileges (to any ordinals) at all, or uses an authorisation value that is then
discarded, this family’s delegations are all void and delegation must be managed
using actual Owner authorisation.

))

TPM Delegate Manage is used for managing the entries of the delegation and family ta-
bles. Families may be created and enabled or disabled. TPM Delegate LoadOwnerDelegation
loads an existing delegation blob into the delegate table. Both these commands require owner
authorisation if an owner is installed. They may be run without authorisation (e.g. to initialise
tables by the manufacturer) if there is no owner installed.

3Is this really true? To be checked.

15

9 Glossary

Platform The machine on which the TPM is installed.

HMAC A keyed-Hash Message Authentication Code (see the Wikipedia article). In TPM 1.2,
HMACs are based on the hash function SHA-1. An important use of HMACs in the
TPM is for user processes to demonstrate knowledge of authdata.

Blob A Binary Large Object (blob) is some binary data. Although the data may be mean-
ingful to relevant applications, the term blob emphasises its treatment as unstructured
binary data that needs to be stored or transported. In the context of the TPM, blobs
are data items that the user is expected to store on behalf of the TPM, and to produce
them when necessary.

SRK The Storage Root Key is the public/private key pair at the root of the storage key
hierarchy of the TPM. It is created when ownership of the is taken (this takes place
typically once, when the platform is used for the first time). The public part of SRK
is known to the platform owner and may be widely disseminated. The private part is
known only to the TPM. The authdata associated with SRK is known to the platform
owner, and possibly selected other aents.

Authdata Authdata (standing for authentication data or authorisation data) are passwords sed
for proving authorisation to use TPM resources, such as keys.

PCR A Platform Configuration Register is a register of the TPM which is used for storing
data representing some aspect of the platform configuration. Typically, the boot process
includes ‘measurements’ of hardware and software components which are inserted into
PCRs. Later, the TPM can give assurances about the platform state by quoting the
current value of the PCRs.

Seal In the context of the TPM, sealing data against some PCR values means encrypting
the data in such a way that the TPM will later decrypt only if the PCRs have the given
values. This may be used to ensure that the data can be opened only if the platform is
in the intended state.

Acknowledgments

Most of my knowledge of the TPM was acquired during my visit to the System Security
Lab at Hewlett Packard Labs in Bristol, UK, from January to June 2008. I was also a
member of the TCG TPM Working Group during that time. I warmly thank colleagues
at HP including Liqun Chen, Graeme Proudler, Dirk Kuhlmann, Boris Balacheff, Martin
Sadler, David Palquin, Serdar Cabuk, Rich Smith and many others for interesting discussion
and explanation.

Video

A ten minute video about the TPM is available at: www.youtube.com/???

16

References

[1] Trusted Computing Group. TPM Specification version 1.2. Parts 1–3. www.

trustedcomputinggroup.org/specs/TPM/

[2] Quote from Brian Berger in TCG press release by Wave Systems.
www.trustedcomputinggroup.org/news/press/member releases/WAVETCGPROMOTIONMW5 31 FINAL .pdf

See also “TCG timeline”, revised April 2008.
www.trustedcomputinggroup.org/about/corporate documents/TCG timeline rev april 2008.pdf

[3] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In B. Pfitzmann
and P. Liu (Eds.), Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security (CCS 2004), pp. 132-145, ACM press, 2004.

[4] B. Smyth, M. Ryan, and L. Chen. Direct Anonymous Attestation (DAA): Ensuring
privacy with corrupt administrators. In proceedings of the Fourth European Workshop
on Security and Privacy in Ad hoc and Sensor Networks (ESAS’07). Lecture Notes in
Computer Science (LNCS), volume 4572, pp. 218-231, Springer-Verlag.

[5] M. Backes, M. Maffei, and D. Unruh. Zero-Knowledge in the Applied Pi-calculus and
Automated Verification of the Direct Anonymous Attestation Protocol. in Proceedings
of 29th IEEE Symposium on Security and Privacy, May 2008.

17

