
An Introduction to the �-Calculus

Chapter to appear in Handbook of Process Algebra, ed. Bergstra, Ponse and Smolka,

Elsevier

Joachim Parrow�

Dep. Teleinformatics,

Royal Institute of Technology, Stockholm

Abstract

The �-calculus is a process algebra where processes interact by sending

communication links to each other. This paper is an overview of and intro-

duction to its basic theory. We explore the syntax, semantics, equivalences

and axiomatisations of the most common variants.

�
email joachim@it.kth.se

1



Contents

1 Introduction 3

2 The �-Calculus 6

2.1 Basic De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Structural Congruence . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Simple Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Variants of the Calculus 15

3.1 Match and Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The Polyadic Calculus . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Recursion and Replication . . . . . . . . . . . . . . . . . . . . . . 20
3.5 The Asynchronous Calculus . . . . . . . . . . . . . . . . . . . . . 21
3.6 The Higher-Order Calculus . . . . . . . . . . . . . . . . . . . . . . 23

4 Operational Semantics 25

5 Variants of the Semantics 28

5.1 The Role of Structural Congruence . . . . . . . . . . . . . . . . . 28
5.2 Symbolic Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 The Early Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Abstractions and Concretions . . . . . . . . . . . . . . . . . . . . 36

6 Bisimilarity and Congruence 39

6.1 Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Variants of Bisimilarity 43

7.1 Early Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Barbed Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Open Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Weak Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Algebraic Theory 54

8.1 Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 Variants of the Theory 60

9.1 Early Bisimilarity and Congruence . . . . . . . . . . . . . . . . . 60
9.2 Open Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3 Weak Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10 Sources 64

2



1 Introduction

The �-calculus is a mathematical model of processes whose interconnections
change as they interact. The basic computational step is the transfer of a com-
munication link between two processes; the recipient can then use the link for
further interaction with other parties. This makes the calculus suitable for mod-
elling systems where the accessible resources vary over time. It also provides
a signi�cant expressive power since the notions of access and resource underlie
much of the theory of concurrent computation, in the same way as the more
abstract and mathematically tractable concept of a function underlies functional
computation. This introduction to the �-calculus is intended for a theoretically
inclined reader who knows a little about the general principles of process algebra
and who wishes to learn the fundamentals of the calculus and its most common
and stable variants.

Let us �rst consider an example. Suppose a server controls access to a printer
and that a client wishes to use it. In the original state only the server itself has
access to the printer, represented by a communication link a. After an interac-
tion with the client along some other link b this access to the printer has been
transferred:

Server

After interaction:

b

c
a

Before interaction:

PrinterPrinter

Server
Client Client

In the �-calculus this is expressed as follows: the server that sends a along b
is ba : S ; the client that receives some link along b and then uses it to send data
along it is b(c) : cd : P . The interaction depicted above is formulated

ba : S j b(c) : cd : P
�
�! S j ad : P

We see here that a plays two di�erent roles. In the interaction between the server
and the client it is an object transferred from one to the other. In a further
interaction between the client and the printer it is the name of the communication

3



link. The idea that the names of the links belong to the same category as the
transferred objects is one of the cornerstones of the calculus, and is one way in
which it is di�erent from other process algebras. In the example a; b; c; d are
all just names which intuitively represent access rights: a accesses the printer, b
accesses the server, d accesses some data, and c is a placeholder for an access to
arrive along a. If a is the only way to access the printer then we can say that the
printer \moves" to the client, since after the interaction nothing else can access
it. For this reason the �-calculus has been called a calculus of \mobile" processes.
But the calculus is much more general than that. The printer may have many
links that make it do di�erent things, and the server can send these links to
di�erent clients to establish di�erent access capabilities to a shared resource.

At �rst sight it appears as if the �-calculus is just a specialised form of a
value-passing process algebra where the values are links. In such a comparison
the calculus may be thought rather poor since there are no data types and no
functions de�ned on the names; the transferable entities are simple atomic things
without any internal structure. The reason that the �-calculus nevertheless is
considered more expressive is that it admits migrating local scopes. This impor-
tant point deserves an explanation here.

Most process algebras have a way to declare a communication link local to a
set of processes. For example in CCS the fact that P and Q share a private port
a is symbolised by (P jQ)na, where the operator na is called restriction on a. The
signi�cance is that no other process can use the local link a, as if it were a name
distinct from all other names in all processes.

In the �-calculus this restriction is written (�a)(P jQ). It is similar in that
no other process can use a immediately as a link to P or Q. The di�erence is
that the name a is also a transferable object and as such can be sent, by P or
Q, to another process which then can use the restricted link. Returning to the
example above suppose that a is a local link between the server and the printer.
Represent the printer by R, then this is captured by (�a)(ba : S j R). The server
is still free to send a along b to the client. The result would be a private link
shared between all three processes, but still distinct from any other name in any
other process, and the transition is consequently written

(�a)(ba : S j R) j b(c) : cd : P
�
�! (�a)(S j R j ad : P )

So, although the transferable objects are simple atomic things they can also be
declared local with a de�ned scope, and in this way the calculus transcends the
ordinary value-passing process algebras. This is also the main source of diÆculty
in the development of the theory because the scope of an object, as represented
by the operands of its restriction, must migrate with the object as it is transferred
between processes.

The �-calculus is far from a single well de�ned body of work. The central idea,
a process algebraic de�nition of link-passing, has been developed in several direc-
tions to accommodate speci�c applications or to determine the e�ects of various

4



semantics. Proliferation is certainly a healthy sign for any scienti�c area although
it poses problems for those who wish to get a quick overview. Presumably some
readers new to the �-calculus will be satis�ed with a compact presentation of a
single version, while other may be interested in the spectrum of variations.

This paper aims to serve both these needs. In the following, the even-
numbered sections develop a single strand of the calculus. Section 2 presents
the syntax and give some small examples of how it is used. In Section 4 we
proceed to the semantics in its most common form as a labelled transition sys-
tem. In Section 6 we consider one of the main de�nitions of bisimulation and the
congruence it induces, and in Section 8 we look at their axiomatisations through
syntactic equalities of agents. These sections do not depend on the odd-numbered
sections and can be considered as a basic course of the calculus. There will be
full de�nitions and formulations of the central results, and sketches that explain
the ideas and structure of the proofs.

Each odd-numbered section presents variations on the material in the preced-
ing one. Thus, in Section 3 we explore di�erent versions of the calculus, such as
the e�ect of varying the operators, and the asynchronous, polyadic, and higher-
order calculus. Section 5 treats alternative ways to de�ne the semantics, with
di�erent versions of labelled and unlabelled transitions. Section 7 de�nes a few
other common bisimulation equivalences (the �-calculus, like any process alge-
bra, boasts a wide variety of equivalences but in this paper we concentrate on the
aspects particular to �), and their axiomatisations are treated in Section 9. In
these sections we do not always get a full formal account, but hopefully enough
explanations that the reader will gain an understanding of the basic ideas. Fi-
nally, Section 10 contains references to other work. We give a brief account of
how the calculus evolved and mention other overviews and introductory papers.
We also indicate sources for the material treated in this paper.

It must be emphasised that there are some aspects of the �-calculus we do
not treat at all, such as modal logics, analysis algorithms, implementations, and
ways to use the calculus to model concurrent systems and languages. Also, the
di�erent variants can be combined in many ways, giving rise to a large variety
of calculi. I hope that after this introduction a reader can explore the �eld with
some con�dence.

5



2 The �-Calculus

We begin with a sequence of de�nitions and conventions. The reader who makes
it to Section 2.3 will be rewarded with small but informative examples.

2.1 Basic De�nitions

We assume a potentially in�nite set of names N , ranged over by a; b; : : : ; z, which
will function as all of communication ports, variables and data values, and a set
of (agent) identi�ers ranged over by A, each with a �xed nonnegative arity. The
agents, ranged over by P;Q; : : : are de�ned Table 1. From that table we see that
the agents can be of the following forms:

1. The empty agent 0, which cannot perform any actions.

2. An Output Pre�x ax : P . The intuition is that the name x is sent along the
name a and thereafter the agent continues as P . So a can be thought of as
an output port and x as a datum sent out from that port.

3. An Input Pre�x a(x) : P , meaning that a name is received along a name a,
and x is a placeholder for the received name. After the input the agent will
continue as P but with the newly received name replacing x. So a can be
thought of as an input port and x as a variable which will get its value from
the input along a.

4. A Silent Pre�x � : P , which represents an agent that can evolve to P without
interaction with the environment. We use �, � to range over a(x), ax and �
and call them Pre�xes, and we say that � : P is a Pre�x form, or sometimes
just Pre�x when this cannot cause confusion.

5. A Sum P +Q representing an agent that can enact either P or Q.

6. A Parallel Composition P j Q, which represents the combined behaviour of
P and Q executing in parallel. The components P and Q can act indepen-
dently, and may also communicate if one performs an output and the other
an input along the same port.

7. A Match if x = y then P . As expected this agent will behave as P if x
and y are the same name, otherwise it does nothing.

8. A Mismatch if x 6= y then P . This agent will behave as P if x and y are
not the same name, otherwise it does nothing.

9. A Restriction (�x)P . This agent behaves as P but the name x is local,
meaning it cannot immediately be used as a port for communication be-
tween P and its environment. However, it can be used for communication
between components within P .

6



Pre�xes � ::= ax Output
a(x) Input
� Silent

Agents P ::= 0 Nil
� : P Pre�x
P + P Sum
P j P Parallel
if x = y then P Match
if x 6= y then P Mismatch
(�x)P Restriction
A(y1; : : : ; yn) Identi�er

De�nitions A(x1; : : : ; xn)
def
= P (where i 6= j ) xi 6= xj)

Table 1: The syntax of the �-calculus.

10. An Identi�er A(y1; : : : ; yn) where n is the arity of A. Every Identi�er has a

De�nition A(x1; : : : ; xn)
def
= P where the xi must be pairwise distinct, and

the intuition is that A(y1; : : : ; yn) behaves as P with yi replacing xi for each
i. So a De�nition can be thought of as a process declaration, x1; : : : ; xn as
formal parameters, and the Identi�er A(y1; : : : ; yn) as an invocation with
actual parameters y1; : : : ; yn.

The operators are familiar from other process algebras so we shall in the
following concentrate on some important aspects particular to the �-calculus,
trusting the reader to be con�dent with the more general principles.

The forms Nil, Sum and Parallel have exactly the same meaning and use as
in other process algebras, and the Pre�x forms are as in the algebras that admit
value-passing. The if constructs Match and Mismatch may appear limited in
comparison with value-passing algebras which usually admit arbitrary Boolean
expressions (evaluating to either true or false). But on closer consideration it is
apparent that combinations of Match and Mismatch are the only possible tests
that can be performed in the �-calculus: the objects transmitted are just names
and these have no structure and no operators are de�ned on them, so the only
thing we can do is compare names for equality. We can combine such tests
conjunctively by nesting them, for example

if x = y then if u 6= v then P

7



behaves as P if both x = y and u 6= v hold. We can combine them disjunctively
by using Sum, for example

if x = y then P + if u 6= v then P

behaves as P if at least one of x = y and u 6= v hold. Sometimes we shall use a
binary conditional

if x = y then P else Q

as an abbreviation for if x = y then P + if x 6= y then Q.
As in other algebras we say that P is guarded in Q if P is a proper subterm

of a Pre�x form in Q. Also, the input Pre�x a(x) : P is said to bind x in P , and
occurrences of x in P are then called bound. In contrast the output Pre�x ax : P
does not bind x. These Pre�xes are said to have subject a and object x, where
the object is called free in the output Pre�x and bound in the input Pre�x. The
silent Pre�x � has neither subject nor object.

The Restriction operator (�x)P also binds x in P . Its e�ect is as in other
algebras (where it is written nx in CCS and Æx in ACP) with one signi�cant
di�erence. In ordinary process algebras the things that are restricted are port
names and these cannot be transmitted between agents. Therefore the restriction
is static in the sense that the scope of a restricted name does not need to change
when an agent executes. In the �-calculus there is no di�erence between \port
names" and \values", and a name that represents a port can indeed be trans-
mitted between agents. If that name is restricted the scope of the restriction
must change, as we shall see, and indeed almost all of the increased complexity
and expressiveness of the �-calculus over value-passing algebras come from the
fact that restricted things move around. The reader may also think of (�x)P as
\new x in P", by analogy with the object-oriented use of the word \new", since
this construct can be thought of as declaring a new and hitherto unused name,
represented by x for the bene�t of P .

In summary, both input Pre�x and Restriction bind names, and we can de�ne
the bound names bn(P ) as those with a bound occurrence in P and the free
names fn(P ) as those with a not bound occurrence, and similarly bn(�) and
fn(�) for a Pre�x �. We sometimes write fn(P;Q) to mean fn(P ) [ fn(Q),
and just � for fn(�) [ bn(�) when it is apparent that it represents a set of

names, such as in \x 2 �". In a De�nition A(x1; : : : ; xn)
def
= P we assume

that fn(P ) � fx1; : : : ; xng. In some examples we shall elide the parameters of
Identi�ers and De�nitions when they are unimportant or can be inferred from
context.

A substitution is a function from names to names. We write fx=yg for the
substitution that maps y to x and is identity for all other names, and in general
fx1 : : : xn=y1 : : : yng, where the yi are pairwise distinct, for a function that maps
each yi to xi. We use � to range over substitutions, and sometimes write ~x for
a sequence of names when the length is unimportant or can be inferred from

8



context. The agent P� is P where all free names x are replaced by �(x), with
alpha-conversion wherever needed to avoid captures. This means that bound
names are renamed such that whenever x is replaced by �(x) then the so obtained
occurrence of �(x) is free. For example,

(a(x) : (�b)xb : cy : 0)fxb=ycg is a(z) : (�d)zd : bx : 0

A process algebra fan may have noticed that one common operator is not
present in the �-calculus: that of relabelling (in CCS written [a=b]). The primary
use of relabelling is to de�ne instances of agents from other agents, for example,
if B is a bu�er with ports i and o then B[i0=i; o0=o] is a bu�er with ports i0 and
o0. In the �-calculus we will instead de�ne instances through the parameters of
the Identi�ers, so for example a bu�er with ports i and o is B(i; o), and with
ports i0 and o0 it is B(i0; o0). For injective relabellings this is just another style of
speci�cation which allows us to economise on one operator. (A reader familiar
with the CCS relabelling should be warned that it has the same e�ect as port
substitution only if injective. In general they are di�erent.)

Finally some notational conventions: A sum of several agents P1 + � � � + Pn

is written
Pn

i=1
Pi, or just

P
j Pj when n is unimportant or obvious, and we here

allow the case n = 0 when the sum means 0. A sequence of distinct Restrictions
(�x1) � � � (�xn)P is often abbreviated to (�x1 � � �xn)P . In a Pre�x we sometimes
elide the object if it is not important, so a : P means a(x) : P where x is a name
that is never used, and similarly for output. And we sometimes elide a trailing
0, writing � for the agent � : 0, where this cannot cause confusion. We give
the unary operators precedence over the binary and j precedence over +, so for
example (�x)P j Q +R means (((�x)P ) j Q) +R.

2.2 Structural Congruence

The syntax of agents is in one sense too concrete. For example, the agents a(x) : bx
and a(y) : by are syntactically di�erent, although they only di�er in the choice of
bound name and therefore intuitively represent the same behaviour: an agent
that inputs something along a and then sends that along b. As another example
the agents P jQ and QjP represent the same thing: a parallel composition of the
agents P and Q. Our intuition about parallel composition is that it is inherently
unordered, and we are forced to syntactically distinguish between P jQ and QjP
only because our language is linear.

We therefore introduce a structural congruence to identify the agents which in-
tuitively represent the same thing. It should be emphasised that this has nothing
to do with the traditional behavioural equivalences in process algebra which are
de�ned in terms of the behaviour exhibited by an agent under some operational
semantics. We have yet to de�ne a semantics, and the structural congruence
identi�es only agents where it is immediately obvious from their structure that
they are the same.

9



The structural congruence � is de�ned as the smallest congruence satisfying the
following laws:

1. If P and Q are variants of alpha-conversion then P � Q.

2. The Abelian monoid laws for Parallel: commutativity P jQ � QjP , associa-
tivity (P jQ)jR � P j(QjR), and 0 as unit P j0 � P ; and the same laws for
Sum.

3. The unfolding law A(~y) � Pf~y=~xg if A(~x)
def
= P .

4. The scope extension laws

(�x)0 � 0

(�x)(P j Q) � P j (�x)Q if x 62 fn(P )
(�x)(P +Q) � P + (�x)Q if x 62 fn(P )
(�x)if u = v then P � if u = v then (�x)P if x 6= u and x 6= v
(�x)if u 6= v then P � if u 6= v then (�x)P if x 6= u and x 6= v
(�x)(�y)P � (�y)(�x)P

Table 2: The de�nition of structural congruence.

The reader will here correctly object that \represent the same thing" and
\immediately obvious" are not formally de�ned concepts, and indeed several
di�erent versions of the structural congruence can be found in the literature;
there is no canonical de�nition and each has di�erent merits. In Section 5.1 we
will meet some of them and explore their consequences. Until then we adopt a
particular structural congruence. The de�nition is given in Table 2. We brie
y
comment on the clauses in the de�nition.

1. Alpha-conversion, i.e., choice of bound names, identi�es agents like a(x) : bx
and a(y) : by.

2. The Abelian monoid laws mean that Parallel and Sum are unordered. For
example, when we think of a composition of three agents P ,Q,R it does
not matter if we write it as (P jQ)jR or (RjQ)jP . The same holds for Sum.
The fact that 0 is a unit means that P j0 � P and P + 0 � P , something
which follows from the intuition that 0 is empty and therefore contributes
nothing to a Parallel composition or Sum.

3. The unfolding just says that an Identi�er is the same as its De�nition, with
the appropriate parameter instantiation.

4. The scope extension laws come from our intuition that (�x)P just says that
x is a new unique name in P ; it can be thought of as marking the occurrences

10



of x in P with a special colour saying that this is a local name. It then
does not really matter where the symbols \(�x)" are placed as long as they
mark the same occurrences. For example, in 0 there are no occurrences
so the Restriction can be removed at will. In Parallel composition, if all
occurrences are in one of the components then it does not matter if the
Restriction covers only that component or the whole composition.

Note that we do not have that (�x)(P j Q) � (�x)P j (�x)Q. The same
occurrences are restricted in both agents, but in (�x)(P j Q) they are restricted
by the same binder (or if you will, coloured by the same colour), meaning that
P and Q can interact using x, in contrast to the situation in (�x)P j (�x)Q.

Through a combination of these laws we get that (�x)P � P if x 62 fn(P ):

P � P j 0 � P j (�x)0 � (�x)(P j 0) � (�x)P

So as a special case we get (�x)(�x)P � (�x)P for all P .
Another key fact is that all unguarded Restrictions can be pulled out to the

top level of an agent:

Proposition 1 Let P be an agent where (�x)Q is an unguarded subterm. Then
P is structurally congruent to an agent (�x0)P 0 where P 0 is obtained from P by
replacing (�x)Q with Qfx0=xg, for some name x0 not occurring in P .

The proof is by alpha-converting all bound names so that they become syntacti-
cally distinct, and then applying scope extension (from right to left) to move the
Restriction to the outermost level. This corresponds to the intuition that instead
of declaring something as local it can be given a syntactically distinct name: the
e�ect is the same in that nothing else can access the name.

Our scope extension laws are in fact chosen precisely such that Proposition 1
holds. For example, we have not given any scope extension law for Pre�xes
and can therefore only pull out unguarded Restrictions. The reader may have
expected a law like (�x)� : P � � : (�x)P for x 62 �. Indeed such a law would be
sound, in the sense that it conforms to intuition and does not disrupt any of the
results in this paper, and it will hold for the behavioural equivalences explored
later in sections 6 and 7. But it will not be necessary at this point, in particular
it is not necessary to prove Proposition 1.

Structural congruence is much stronger, i.e., identi�es fewer agents, than any
of the behavioural equivalences. The structural congruence is used in the de�ni-
tion of the operational semantics, which in turn is used to de�ne the behavioural
equivalences. The main technical reasons for taking this route are that many of
the following de�nitions and explanations become simpler and that we get a uni-
form treatment for those variants of the calculus that actually require a structural
congruence. In Section 5.1 we comment on the possibility to de�ne the calculus
without a structural congruence.

11



2.3 Simple Examples

Although we shall not present the operational semantics just yet (a reader who
wishes to look at it now will �nd it in Section 4) it might be illuminating to see
some examples of the scope migration mentioned in Section 1, that Restrictions
move with their objects. Formally, scope migration is a consequence of three
straightforward postulates. The �rst is the usual law for inferring interactions
between parallel components. This is present in most process algebras and implies
that

a(x) : cx j ab
�
�! cb j 0

or in general
a(x) : P j ab :Q

�
�! Pfb=xg j Q

The second postulate is that Restrictions do not a�ect silent transitions. P
�
�! Q

represents an interaction between the components of P , and a Restriction (�x)P
only restricts interactions between P and its environment. Therefore P

�
�! Q

implies (�x)P
�
�! (�x)Q. The third postulate is that structurally congruent

agents should never be distinguished and thus any semantics must assign them the
same behaviour. Now what are the implications for restricted objects? Suppose
that b is a restricted name, i.e., that we are considering a composition

a(x) : cx j (�b)ab

Will there be an interaction between the components and if so what should it
be? Structural congruence gives the answer, because b is not free in the left hand
component so the agent is by scope extension structurally congruent to

(�b)(a(x) : cx j ab)

and this agent has a transition between the components: because of

a(x) : cx j ab
�
�! cb j 0

we get that
(�b)(a(x) : cx j ab)

�
�! (�b)(cb j 0)

and the rightmost 0 can be omitted by the monoid laws. So by identifying
structurally congruent agents we obtain that

a(x) : cx j (�b)ab
�
�! (�b)cb

or in general that, provided b 62 fn(P ),

a(x) : P j (�b)ab :Q
�
�! (�b)(Pfb=xg j Q)

In other words, the scope of (�b) \moves" with b from the right hand component
to the left. This phenomenon is sometimes called scope extrusion. If b 2 fn(P ) a

12



similar interaction is possible by �rst alpha-converting the bound b to some name
b0 62 fn(P ), and we would get

a(x) : P j (�b)ab :Q
�
�! (�b0)(Pfb0=xg j Qfb0=bg)

So Pfb0=xg still contains b free and it is not the same as the received restricted
name b0.

For another example consider:

((�b)a(x) : P ) j ab :Q

Here the right hand component has a free b which should not be the same as the
bound b to the left. Is there an interaction between the components? We cannot
immediately extend the scope to the right hand component since it has b free.
But we can �rst alpha-convert the bound b to some new name b0 and then extend
the scope to obtain

(�b0)(a(x) : Pfb0=bg j ab :Q)

and it is clear that we have a transition

(�b0)(a(x) : Pfb0=bg j ab :Q)
�
�! (�b0)Pfb0=bgfb=xg j Q

So the restricted name, now b0, will still be local to the left hand component; the
attempt to intrude the scope is thwarted by an alpha-conversion. In summary,
through alpha-conversion and scope extension we can send restricted names as
objects, and Restrictions will always move with the objects and never include
free occurrences of that name.

This ability to send scopes along with restricted names is what makes the
calculus convenient for modelling exchange of private resources. For example,
suppose we have an agent R representing a resource, say a printer, and that it
is controlled by a server S which distributes access rights to R. In the simplest
case the access right is just to execute R. This can be modelled by introducing
a new name e as a trigger, and guarding R by that name, as in

(�e)(S j e : R)

Here R cannot execute until it receives a signal on e. The server can invoke it by
performing an action e, but moreover, the server can send e to a client wishing
to use R. For example, suppose that a client Q needs the printer. It asks S along
some predetermined channel c for the access key, here e, to R, and only upon
receipt of this key can R be executed. We have

c(x) : x : Q j (�e)(ce : S j e : R)
�
�! (�e)(e : Q j S j e : R)

�
�! (�e)(Q j S j R)

The �rst transition means that Q receives an access to R and the second that this
access is used. We can informally think of this as if the agent R is transmitted

13



(represented by its key e) from S to Q, so in a sense this gives us the power of
a higher-order communication where the objects are agents and not only names.
But our calculus is more general since a server can send e to many clients, meaning
that these will share R (rather than receiving separate copies of R). And R
can have several keys that make it do di�erent things, for example R can be
e1 : R1 j e2 : R2 � � �, and the server can send only some of the keys to clients
and retain some for itself, or send di�erent keys to di�erent clients representing
di�erent access privileges.

A related matter is if S wishes to send two names d and e to a client, and insure
that the same client receives both names. If there are several clients then the
simple solution of transmitting d and e along predetermined channels may mean
that one client receives d and another e. A better solution is to �rst establish
a private channel with a client and then send d and e along that channel. The
private channel is simply a restricted name:

(�p)cp : pd : pe : S

A client interacting with C must be prepared to receive a name, and then along
that name receive d and e:

c(p) : p(x) : p(y) : Q

Now, even if we have a composition with several clients and a server, the only
possibility is that d and e end up with the same client. This feature is so common
that we introduce an abbreviation for it:

che1 � � � eni : P means (�p)cp : pe1 : � � � : pen : P
c(x1 � � �xn) : Q means c(p) : p(x1) : � � � : p(xn) : Q

where we choose p 62 fn(P;Q) and all xi are pairwise distinct. We will then have

che1 � � � eni : P j c(x1 � � �xn) : Q
�
�! � � �

�
�! P j Qfe1 : : : en = x1 : : : xng

The idea to establish private links in this way has many other uses. Suppose
for example that Q wishes to execute P by transmitting on its trigger e, and then
also wait until P has completed execution. One way to represent this is to send
to P a private name for signalling completion, as in

(�r)er : r : Q j e(x) : P
�
�! (�r)(r : Q j Pfr=xg)

Here Q must wait until someone signals on r before continuing. This someone
can only be P since no other is in the scope of r. This scheme is quite general,
for example P can delegate to another agent the task to restart Q, by sending r
to it as an object in an interaction.

The �-calculus has been used to succinctly describe many aspects of concur-
rent and functional programming, and also of high-level system description where
mobility plays an important role. We shall not attempt an overview of all appli-
cations here. In the rest of this paper we concentrate on some central aspects of
the theory of the calculus.

14


