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Abstract

Asymmetric multi-core processors (AMPs) with general-purpose
and specialized cores packaged on the same chip, are emerging as
a leading paradigm for high-end computing. A large body of exist-
ing research explores the use of standalone AMPs in computation-
ally challenging and data-intensive applications. AMPs are rapidly
deployed as high-performance accelerators on clusters. In these set-
tings, scheduling, communication and I/O are managed by general-
purpose processors (GPPs), while computation is off-loaded to
AMPs. Design space exploration for the configuration and software
stack of hybrid clusters of AMPs and GPPs is an open problem. In
this paper, we explore this design space in an implementation of the
popular MapReduce programming model. Our contributions are:
An exploration of various design alternatives for hybrid asymmetric
clusters of AMPs and GPPs; the adoption of a streaming approach
to supporting MapReduce computations on clusters with asymmet-
ric components; and adaptive schedulers that take into account indi-
vidual component capabilities in asymmetric clusters. Throughout
our design, we remove I/O bottlenecks, using double-buffering and
asynchronous I/O. We present an evaluation of the design choices
through experiments on a real cluster with MapReduce workloads
of varying degrees of computation intensity. We find that in a
cluster with resource-constrained and well-provisioned AMP ac-
celerators, a streaming approach achieves 50.5% and 73.1% bet-
ter performance compared to the non-streaming approach, respec-
tively, and scales almost linearly with increasing number of com-
pute nodes. We also show that our dynamic scheduling mechanisms
adapt effectively the parameters of the scheduling policies between
applications with different computation density.

1. Introduction

Asymmetric multi-core processors (AMPs) with a mix of general-
purpose and specialized cores have become a leading paradigm
for high-end computing. AMPs invest a significant portion of their
transistor budget in specialized cores to achieve significant accel-
eration of computational kernels operating on vector data. The rest
of the transistor budget accommodates a few conventional cores
that run the operating system, communication and I/O stacks, and
system services. The superiority of AMPs compared to homo-
geneous chip multi-processors (CMPs), in terms of performance,
scalability, and power-efficiency, has been demonstrated exten-
sively (7; 28; 30). Commercial AMPs such as the Cell Broad-
band Engine (Cell) are gaining traction among application devel-
opers (6; 9; 10; 14; 18; 29; 37; 31), and major processor vendors,
including Intel (38) and AMD (4), are announcing AMP product
lines.

The recent integration of AMPs in the first Petaflop-scale su-
percomputer (37) raised several interesting questions regarding
the design, implementation and management of large-scale dis-
tributed systems that leverage AMPs and general-purpose proces-
sors (GPPs). The commoditization and low cost of AMPs and other
multi-core computational accelerators such as GPUs (20), indicate
a trend toward deploying such processors at scale. Furthermore,
the vector processing capabilities of accelerators makes them natu-
ral candidates for massive data processing. Although these indica-
tors are promising, designing and programming large-scale parallel
systems with heterogeneous components —AMPs and GPPs— is
an open challenge. While hiding architectural asymmetry and sys-
tem scale from parallel programming model are desirable proper-
ties (22), they are challenging to implement in asymmetric systems,
where exploiting the customization and computational density of
AMPs is a first-order consideration. At the same time, provision-
ing GPPs and AMPs to achieve a balanced system is a non-trivial
exercise.

To address these challenges and explore the related de-
sign choices, we implemented the MapReduce (13) program-
ming environment for asymmetric clusters boasting AMPs and
GPPs. MapReduce implements a simple interface for machine-
independent and scale-agnostic parallel programming, and is typ-
ically deployed for large-scale distributed data processing on vir-
tualized data centers. MapReduce provides minimal abstractions,
hides architectural details, and supports transparent fault tolerance.
Earlier research explored MapReduce implementations as a library
on standalone AMPs and accelerators (12; 17). Our work explores
MapReduce as a distributed homogeneous parallel programming
framework which utilizes non-homogeneous multi-core processors
“under the hood”. Furthermore, while earlier research has extended
the MapReduce scheduler to account for heterogeneity of compute
nodes (39), such research addressed heterogeneity as an effect of
virtualization and contention between MapReduce jobs, rather than
as an effect of asymmetry in the computational density of individ-
ual hardware components on a single job. We find that hardware
asymmetry can lead to severe performance penalties by exposing
communication or I/O bottlenecks and address these problems in
our implementation.

We present the design and implementation of MapReduce for
asymmetric clusters, focusing on a setting with large-memory head
nodes using GPPs and small-memory AMPs deployed as computa-
tional accelerators. We assume that there is significant variance in
the capabilities of head nodes and accelerators, in terms of mem-
ory, computing power, and capabilities for running system services
such as I/O. These assumptions have been influenced by the LANL
RoadRunner (37) cluster setting, however, we believe that they are
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realistic and broadly applicable. We present an implementation of
MapReduce on clusters using x86 GPPs and Cell-based AMPs, al-
though our design and implementation choices are not bound to
specific GPP or AMP architectures. The key aspects that differ-
entiate our design from earlier MapReduce implementations is a
global data streaming approach and adaptive resource scheduling
via dynamic scheduler parameterization. Cumulatively, these two
techniques address heterogeneity in the capabilities and capacities
of asymmetric components, by overlapping I/O and communica-
tion latencies. Furthermore, these techniques allow us to implement
MapReduce efficiently on clusters with different levels of GPP and
memory resource provisioning per accelerator, which in turn rep-
resent different cost-performance trade-offs. Our scheduling ap-
proach differs from that of an earlier data transfer and task schedul-
ing framework for asymmetric clusters developed by IBM (11),
which delegates scheduler parameter optimization to the applica-
tion developer. Instead, our framework adapts transparently the pa-
rameters of data streaming and task scheduling to the application at
runtime, thereby relieving developers of some significant program-
ming effort.

Specifically, this paper makes the following contributions:

• A new design for realizing theMapReduce programming model
on asymmetric clusters of AMPs and GPPs;

• An exploration of alternative design choices for data streaming
and processing and their impact on overall system performance
of asymmetric cluster architectures;

• A runtime technique for regulating data distribution and stream-
ing in MapReduce, to bridge the asymmetry between GPPs and
AMPs;

• An emulation of asymmetric blade cluster settings, using x86
blades and Cell nodes, to study the behaviour of different levels
of provisioning of memory and GPP resources for accelerators;

• An evaluation of common MapReduce workloads in terms of
scalability, adaptation to various computation densities, and
resource conservation capability.

Our evaluation using representative MapReduce applications on
an asymmetric cluster shows that our framework can significantly
improve performance (as much as 82.3% in the Word Count bench-
mark) compared to a MapReduce implementation based on static
data distribution and scheduling schemes.

The rest of this paper is organized as follows. Section 2 details
the motivation and background of technologies that we leverage
and adapt in this work. Section 3 examines possible design alter-
natives and details the one we chose. It also highlights some of the
features and optimizations we included, and explains our emulation
of Cell-based blades using x86 blades and Cell nodes. Section 4
presents implementation details of realizing MapReduce program-
ming model on asymmetric clusters. Section 5 presents evaluation
of our approach. Section 6 discusses the implications of the ob-
served results. Finally, Section 7 concludes the paper.

2. Background & Motivation

In this section, we discuss relevant background and motivation for
our work.

2.1 Availability of Commodity Components

The use of commodity off-the-shelf components in large-scale clus-
ters is well established. Setups from academia (e.g., Condor (36)),
to commercial data centers (e.g., Google (8), Amazon’s EC2 (3)),
routinely employ such components to meet their high-performance
computing and data processing needs. AMPs and accelerators are
currently being commoditized, with products such as the Cell-
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Figure 1. Cell architecture.

based Sony PlayStation 3 (PS3) (1; 26) and NVIDIA GPU-based
graphics engines (15; 16) offering extremely low-cost alternatives
to high-end compute nodes and enabling the use of accelerators in
clusters en masse.

Unfortunately, computational accelerators require additional
programming effort and pose new challenges to resource manage-
ment. Programming accelerators typically implies working with
multiple ISAs and multiple compilation targets. Accelerators also
have much higher compute density and raw performance than con-
ventional processors, therefore decomposing applications into ac-
celerated and non-accelerated components is a task requiring pru-
dence and often, experimentation. Furthermore, the coupling of
accelerators with GPPs implies imbalance between the two com-
ponents, which needs to be countered during scheduling and data
distribution. Many accelerators are small-memory compute nodes,
with limited on-board storage and limited, if any, support for
general-purpose operating system.

2.2 Cell Broadband Engine

The Cell processor (35) is a leading AMP, popularized through the
Sony PS3 and later deployed in IBM blades and the first Petaflop-
class system (RoadRunner). We use the Cell as the accelerator
component in our MapReduce framework.

The Cell (19; 21) (Figure 1), is a heterogeneous chip multi-
processor with one general-purpose PowerPC SMT core (the Power
Processing Element – PPE), and eight vector-only cores (the Syn-
ergistic Processing Elements – SPEs). SPEs are specialized proces-
sors with software-managed private memories. They are designed
to accelerate data-parallel (vector) computations. The PPE typi-
cally operates as a front-end for scheduling tasks and distributing
data between SPEs, as well as for running the conventional oper-
ating system. It also provides support to SPEs for executing sys-
tem calls and services. The on-chip interconnection network of the
Cell is a circular ring, termed the Element Interconnect Bus (EIB),
which connects all nine cores with memory and an external I/O
channel to access other devices, such as the disk and network con-
troller. Each SPE has a 256 KB fast local store, which is a private,
software-managed memory. The application programmer is respon-
sible for moving data between main memory and local stores, using
DMAs, and for synchronizing data between local stores and main
memory, as needed. The application programmer can overlap data
transfer latency with computation, by issuing asynchronous DMA
requests both from the SPE and the PPE side. In current installa-
tions, the PPE runs Linux with Cell-specific extensions that enable
user-space libraries to load and execute code on the SPEs.

We use Sony PS3s as compute nodes in this work. A shortcom-
ing of using the PS3 in a realistic setting is that it has only 256 MB
of XDR RAM, out of which only about 200 MB is available to
user applications. In a cluster setting, this shortcoming may be ad-
dressed by adopting appropriate data streaming and staging tech-
niques. The Cell gives application programmer the ability to explic-
itly manage the flow of data between the main memory and each
individual SPE’s local store. Based on our earlier work (31), where
this facility was leveraged to improve I/O performance, we believe
that explicit data management can be exploited and extended by

26



the system manager to provide individual PS3s with necessary data
directly in their memories. We adopt this solution in this work.

2.3 MapReduce Programming Model

MapReduce is an emergent programming model for large-scale
data processing on clusters and multi-core processors (12; 13; 17;
32). The model comprises two basic primitives, a map operation
that processes key/value pairs to produce intermediate key/value re-
sults, and a reduce operation that collects the results in groups that
have the same key. MapReduce is ideal for massive data searching
and processing operations. It has shown excellent I/O character-
istics on traditional clusters, and has been successfully applied in
large-scale data search by Google (13). Current trends show that the
model is considered a high-productivity alternative to traditional
parallel programming models for a variety of applications, ranging
from enterprise computing (3; 5) to peta-scale scientific comput-
ing (2; 12; 32). MapReduce has also been chosen as a programming
front-end for Intel’s Pangea architecture and Exoskeleton software
environment (24; 38). Pangea is an AMP integrating Intel CoreDuo
cores with graphics accelerators.

MapReduce typically assumes homogeneous components
where any work item of map and reduce tasks can be scheduled
to any of the available components. Recent work (39) on Amazon’s
EC2 (3) addresses performance heterogeneity arising from virtual-
ization and contention between jobs for shared resources. Our work
addresses architecture heterogeneity instead, which is a limitation
when cluster components include specialized accelerators. In this
case, the user should consider individual component capabilities
to optimally schedule map and reduce tasks. Furthermore, publicly
available implementations of MapReduce, such as Hadoop (5), as-
sume that data is available in the local disks of components. Given
the limited I/O capabilities of accelerators, this assumption may
not hold, thus creating the problem of providing accelerators with
the necessary data in a distributed setting. We address this problem
with data streaming and dynamic scheduling schemes.

3. Design

In this section, we present the design for supporting MapReduce
on an asymmetric cluster of AMPs and GPPs. We discuss the
alternatives and parameters that we have considered in our design.

3.1 Architecture Overview

Similarly as in typical MapReduce environments, our setup con-
sists of a dedicated front-end machine that acts as a cluster man-
ager for a number of back-end resources. The manager is a general-
purpose server with multi-core x86 processors and a large amount
of memory. Our setup differs from a conventional homogeneous
MapReduce setup in that we employ Cell-based compute nodes as
back-end resources. We specifically consider two classes of com-
pute nodes: First, compute nodes with limited (small) memory
and I/O capabilities. A Sony PS3 is an example of such a node,
where the accelerators do not (and can not) execute the entire sys-
tem software stack because of limited local memory. Second, com-
pute nodes that are well-provisioned with large amounts of memory
and full operating system and I/O capabilities. A Cell-based blade
such as the IBM QS20 series (27) would represent such a well-
provisioned compute node. We emulate this setup by coupling a
dedicated large-memory x86 “driver” node with each PS3.

Note that our design does not require homogeneous compute
nodes in a cluster, however we expect this to be the common case.
In any case, the manager distributes and schedules the workload
to available compute nodes. For small-memory compute nodes,
the PPE core on the Cell uses MapReduce to map its assigned
workload to the SPEs. For well-provisioned compute nodes, the
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Figure 2. High-level system architecture.

dedicated driver first collects data and then streams the workload
to the attached PS3, which in turn uses MapReduce internally
to utilize the SPEs. In essence, our setup implements a multi-
level MapReduce: the front-end maps workloads to the accelerator-
based back-ends, while the back-end GPPs map the workload to
accelerators.

Figure 2 illustrates a high-level view of the system architec-
ture. The manager and all the compute nodes are connected via
a high-speed network, e.g., Gigabit Ethernet. Application data is
hosted on a distributed file system, such as the Network File Sys-
tem (NFS) (33) or Lustre (34). In our implementation, we used NFS
for baseline comparative investigation of our alternate approaches.
Designing and supporting advanced customized file systems for
AMPs is an orthogonal problem, and remains a focus of our future
work. Note that our design allows the compute node to be either a
small-memory node or a well-provisioned node. The manager is re-
sponsible for scheduling jobs, distributing data and allocating work
between compute nodes, as well as for providing other support ser-
vices at the front-end of the cluster. The actual data processing load
is carried by the Cell-based accelerators.

For small-memory nodes, we use PS3s as back-end accelerators.
For well-provisioned nodes, we envision using Cell-based blade
servers, e.g. IBM’s QS20, QS21, and QS22 (27). These Cell-based
servers each have two Cell processors operating at 3.2 GHz and
1 GB memory per processor. QS22 uses the recent version of Cell,
PowerXCell 8i, which adds support for up to 32 GB of slotted
DDR2 memory, and provides improved double-precision floating-
point performance on the SPEs as compared to its predecessors. For
this work, we emulate a well-provisioned Cell-based blade by using
a back-end node that is actually a dedicated general-purpose driver
connected to a PS3, as seen in Figure 2. This approach provides
large physical memory and I/O capabilities for the accelerator,
which is typical of Cell-based blades, but at a fraction of the cost.
The downside is that the bandwidth between the driver and the PS3
is significantly lower than the memory bandwidth on an actual Cell
blade. We discuss this emulation in more detail in the next Section.

The key aspect of our design is the adoption of a streaming ap-
proach to supporting MapReduce. Statically decomposing work-
loads among compute nodes in a single map operation, as is the
case in standard MapReduce setups, will oversubscribe the DRAM
of small-memory compute nodes for realistic workloads. A stream-
ing approach can be used instead, to split up data in work units
that fit in-core on the compute nodes. To avoid stalls due to I/O
operations and communication latency and sustain high computa-
tion performance across all system components, we employ various
optimization techniques, such as prefetching, double buffering and
asynchronous I/O.
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3.2 Design Alternatives

Efficient allocation of application data to compute nodes is a central
component in our design. This poses several alternatives. A straw
man approach is to simply divide the total input data into as many
chunks as the number of available processing nodes, and copy the
chunks to the local disks of the compute nodes. The application
on the compute nodes can then get the data from the local disk as
needed, and write the results back to the local disk. When the task
completes, the result-data can be read from the disk and returned to
the manager. This approach is easy to implement, and lightweight
for the manager node as it reduces the allocation task to a single
data distribution.

Static decomposition and distribution of data among local disks
can potentially be employed for well-provisioned compute nodes.
However, for nodes with small memory, there are several draw-
backs: (i) it requires creation of additional copies of the input data
from the manager’s storage to the local disk, and vice versa for
the result data, which can quickly become a bottleneck, especially
if the compute node disks are slower than those available to the
manager; (ii) it requires compute nodes to read required data from
disks, which have greater latency as compared to other alternatives,
such as main memory; (iii) it entails modifying the workload to ac-
count for explicit copying, which is undesirable as it burdens the
application programmer with system-level details, thus making the
application non-portable across different setups; (iv) it entails ex-
tra communication between the manager and the compute nodes,
which can slow the nodes and affect overall performance. Hence,
this is not a suitable choice for use with small-memory accelerators.

A second alternative is to still divide the input data as before,
but instead of copying a chunk to the compute node’s disk as in
the previous case, map the chunk directly into the virtual mem-
ory of the compute node. The goal here is to leverage the high-
speed disks available to the manager and avoid unnecessary data
copying. However, for small-memory nodes, this approach can cre-
ate chunks that are very large compared to the physical memory
available at the nodes, thus leading to memory thrashing and re-
duced performance. This is exacerbated by the fact that available
MapReduce runtime implementations (12) require additional mem-
ory reserved for the runtime system to store internal data structures.
Hence, static division of input data is not a viable approach for our
target environment.

The third alternative is to divide the input data into chunks, with
sizes based on the memory capacity of the compute nodes. Chunks
should still be mapped to virtual memory to avoid unnecessary
copying, whereas the chunk sizes should be set so that at any point
in time, a compute node can process one chunk while streaming in
the next chunk to be processed and streaming out the previously
computed chunk. This approach can improve performance on com-
pute nodes, at the cost of increasing the manager’s load, as well as
the load of the compute node cores that run the operating system
and I/O protocol stacks. Therefore, we seek a design point which
balances the manager’s load, I/O and system overhead on compute
nodes, and raw computational performance on compute nodes. We
adopt this approach in our design.

3.3 Emulating Cell-Based Blade Servers

Due to lack of availability of Cell-based blades, e.g.,IBM QS, in
our hardware setting to build a tightly-coupled blade cluster, we
emulate, somewhat crudely, blade servers through a tight coupling
of dedicated large-memory drivers and PS3’s. The “mimic” blades
use a PS3 node directly attached to a dedicated driver node over
a Gigabit Ethernet one-to-one connection (Figure 2). Clearly, the
Gigabit connection falls short of the actual bus bandwidth between
memory and Cell processors on real IBM QS blades. We compen-
sate for this discrepancy by tuning the sizes of work units streamed

from the driver to the PS3 and vice versa, so that the high latency
of the Ethernet interconnect is not exposed. Overall, the driver is
a server-class resource that provides large memory and fast I/O
capabilities to make up for the limitations of the PS3. The man-
ager distributes input data to the drivers in chunks that fit in driver
memories. These chunks are further split into smaller chunks and
streamed in and out of PS3 nodes.

In our MapReduce implementation, the driver manages its at-
tached PS3 similar to how the head node manages drivers. Once the
entire chunk provided by the head node is processed and merged by
the driver, the results are sent to the head node, which then proceeds
to perform a global merge of driver results. In all cases, the architec-
ture of the back-end compute nodes is transparent to the application

programmer, with the only observable difference of performance1.

3.4 Data Management Operations

In this section, we describe the runtime interactions between the
various software components at the manager and each of the com-
pute nodes, as depicted in Figure 3. The manager is a component
that we implemented from scratch for our hardware setting and sub-
sequently integrated with our MapReduce framework.

3.4.1 Manager Operation

The manager handles job scheduling, data hosting, and data distri-
bution among drivers or compute nodes. We use well-established
standard techniques for the first two tasks and focus on compute-
node management and data distribution in this discussion. Once an
application begins execution (Step 1 in Figure 3), the manager loads
a portion of the associated input data from the file system (NFS in
our current implementation) into its memory (Step 2). This is done
to ensure that sufficient data is readily available for compute nodes,
and to avoid any I/O bottleneck that can hinder performance. For
well-provisioned compute-nodes with drivers, this step is replaced
by direct prefetching on the drivers.

Next, client tasks are started on the available compute
nodes (Step 3). These tasks essentially self-schedule their work by
requesting input data from the manager, processing it, and return-
ing the results back to the manager in a continuous loop (Step 4).
For well-provisioned nodes, the result data is directly written to the
file system, and the manager is informed of task completion only.
Once the manager receives the results, it merges them (Step 6) to
produce the final result set for the application. When all the in-
memory loaded data has been processed by the clients, the man-
ager loads another portion of the input data into memory (Step 2),
and the whole process continues until the entire input has been con-
sumed. This model is similar to using a large number of small map
operations in standard MapReduce.

The design described so far may suffer from two I/O bottle-
necks: the manager can stall while reading data, or the compute
nodes can stall while data is being transferred to them either from
the manager or from the file system. At both levels, we employ dou-
ble buffering to avoid delays. An asynchronous prefetch thread is
used to pre-load data from the disk into a buffer, while the data in an
already-loaded buffer is being processed, and the previously com-
puted buffer is written back. Similarly, the driver, if used, and the
compute nodes also use double buffering to overlap data-transfer
with computation.

It is critical to handle all communication with the compute
nodes asynchronously, otherwise data distribution and collection
will become sequential and reduce the performance to effectively

1The compute node kernels that run on accelerators should still be modified
to exploit any custom characteristics of the accelerators, such as vector units
or hardware threads. We believe that this is a task that is orthogonal to
our work. Vendor-specific toolchains and libraries can assist the application
programmer in customization.
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that of a single compute node. Making the manager’s interactions
with the compute nodes asynchronous needs careful consideration.
If chunks from consecutive input data are distributed to multiple
compute nodes, MapReduce would require complex sorting and or-
dering operations to ensure proper merging of the results from in-
dividual compute nodes into a consolidated result set. Such sorting
would incur high overhead and increase memory pressure on the
manager node, thus reducing system performance significantly. We
address this issue by using a separate handler thread on the man-
ager for each of the available compute nodes. Each handler works
with a consecutive fixed portion of the data to avoid costly order-
ing operations. Each handler thread is responsible for receiving all
the results from its associated compute node, and for performing an
application-specific merge operation on the received data. Among
other advantages, this design also leverages multi-core or multi-
processor head nodes effectively.

3.4.2 Compute Node Operation

Application tasks are invoked on the compute nodes (Step 3), and
begin to execute a request, process, and reply (Steps 4a to 4d) loop.
We refer to the amount of application data processed in a single
iteration on a compute node as a work unit. With the exception

of an application-specific Offload function2 to perform computa-
tions on the incoming data, our framework on the compute nodes
provides all other functionality, including communication with the
manager (or driver) and preparing data buffers for input and output.
Each compute node has three main threads that operate on multiple
buffers for working on and transferring data to/from the manager
or disk. One thread (Reader) is responsible for requesting and re-
ceiving new data from the manager (Step 4a). The data is placed
in a receiving buffer. When data has been received, the receiving
buffer is handed over to an Offload thread (Step 4b), and the Reader
thread then requests more data until all available receiving buffers
have been utilized. The Offload thread invokes the Offload func-
tion (Step 5) on the accelerator cores with a pointer to the receiving
buffer, the data type of the work unit (specified by the User Ap-
plication on the manager node), and size of the work unit. Since
the input buffer passed to the Offload function is also its output

2The function that processes each work unit on the accelerator-type cores
of the compute node. The result from the Offload function is merged by the
GPP PowerPC core on the Cell to produce the output data that is returned
to the manager.

buffer, all these parameters are read-write parameters. This is to
give the Offload function abilities to resize the buffer, change the
data type, and change the data size depending on the application.
When the Offload function completes, the recent output buffer is
handed over to a Writer thread (Step 4c), which returns the results
back to the manager and releases the buffer for reuse by the Reader
thread (Step 4d). Note that the compute node supports variable size
work units, and can dynamically adjust the size of buffers at run-
time.

As pointed out earlier, the driver in our emulated Cell blade
server interacts with the accelerator node similarly as the manager
interacts with the compute nodes. The difference between the man-
ager and the driver node is that the manager may have to interact
and stream data to multiple compute nodes, while the driver only
manages a single accelerator node. The driver further splits the in-
put data received from the manager and passes it to the compute
node in optimal size chunks as discussed in the following section.

3.5 Dynamic Work Unit Scaling

Balancing compute node utilization with manager load and driver
load requires optimizing the work unit size used for data streaming
between the manager, resource-constrained and well-provisioned
compute nodes, and drivers nodes. An optimal work unit size for
an application on a particular cluster can be manually determined
through exhaustive searching. Application programmer can hard-
code different work unit sizes, execute the application, and measure
execution time for each size. This is a tedious process and does not
take into account the dynamic behavior of the asymmetric cluster.
Furthermore, application performance typically depends on more
than one tunable parameter, therefore the parameter search space
for the application programmer can grow rapidly beyond manage-
able proportions.

To remedy this, we provide the manager and the driver node
with the option to automatically determine the best work unit size
for a particular application. This is done by sending accelerator
nodes varying work unit sizes at the start of the application and
recording the completion time corresponding to each work unit. A
binary search technique is used to modify the work unit size to de-
termine one that gives the highest processing rate calculated using
(work unit size)/(execution time). If the processing rate is the
same for two work unit sizes, the larger one is preferred as it mini-
mizes load on the manager or drivers and avoids extra communica-
tions between manager, driver and compute nodes. The determined
work unit size is chosen as the existentially most efficient for use
with the particular application and employed for the rest of the ap-
plication run.

All available compute nodes participate in finding the optimal
work unit size. Optimal work unit size is determined by sending
work units of increasing size to multiple compute nodes simulta-
neously, although one size is sent to at least two compute nodes
to determine average performance for a particular work unit size.
Once optimal work unit size is determined, it can also be reported
to the application user to serve as a suitable starting point for opti-
mizing future runs.

3.6 Using Asymmetric MapReduce

From an application programmer’s point of view the asymmetric
MapReduce is used as follows. The application is divided into three
parts as shown in Figure 3. (i) The code to initialize and use the
framework. This corresponds to the time spent in a MapReduce
application but outside of the actual MapReduce work (initializa-
tion, intermediate data distribution and movement, and finaliza-
tion). This part is unique to our design and does not have a corre-
sponding operation in standard MapReduce programming model.
(ii) The code that runs on the compute nodes and performs actual
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work of the application. This is similar to a standard MapReduce
application running on a small portion of the input data that has
been assigned to the compute node. It includes both the map phase
to distribute the workload to the accelerator cores, and the reduce
phase to merge the data from them. (iii) The code to merge partial
results from each compute node into a complete result set. This is
called at the manager/driver nodes every time a chunk is processed
at the compute node and result is received by the manager/driver
nodes. It also constitutes the Global Merge phase that is identical
in operation to the reduce phase on each compute node. The only
difference is that the Global Merge on the manager works with all
data sets received from compute nodes or drivers, and produces the
final results. These functions are application-specific and should be
supplied by the application programmer.

4. Implementation

We have implemented our framework in lightweight libraries for
each of the target platforms, i.e., x86 on the manager and drivers,
and PowerPC on the compute nodes, with about 1250 lines of
C code. The libraries provide the application programmers with
necessary constructs for using the framework.

For well-provisioned accelerator nodes, we employed a large
number of buffers and direct I/O using the distributed file system
(NFS) to conceal any delays due to data transfers between accel-
erator nodes and storage devices. For small-memory accelerators
on the other hand, we aimed to maintain a constant memory foot-
print and keep the memory pressure in check with large input data.
Therefore, we decided to use only two buffers, one for the Reader
and Writer thread and one for the Offload thread. These buffers
give the compute node more memory to use for computation but
still allow overlapping of communication with computation. Note
that we also allow the application programmers to modify the num-
ber of buffers for sending/receiving data between manager, driver
and compute nodes, if required by the application.

Another decision is to determine how to transfer the data be-
tween manager, driver and compute nodes. For well-provisioned
nodes with drivers, the driver can provide a compute node with pa-
rameters such as input file location, starting offset, and size of the
chunk to process. The compute node can then use these parameters
and read the required data into its memory. However, for small-
memory nodes this results in a large number of very small requests
and can create contention at the NFS server, resulting in increased
I/O times for all compute nodes. We addressed this by implement-
ing a prefetching scheme at the manager node to read the input data
in its memory, which avoids the said bottleneck at NFS server. The
prefetched data is then distributed to compute nodes using any stan-
dard communication mechanism. We used MPI (25) in our imple-
mentation for communication and synchronization between man-
ager, driver and compute nodes, due to its proven performance and
our familiarity with it.

5. Evaluation

In this section, we present our evaluation of the MapReduce frame-
work outlined in Section 3 and 4. We describe our experimental
testbed, the benchmarks that we have used to test our framework,
and present the results.

5.1 Experimental Setup

Our base hardware testbed includes eight Sony PS3 compute nodes
connected via 1Gbps Ethernet to a manager node. The manager has
two quad-core Intel Xeon 3 GHz processors, 16 GB main memory,
650GB hard disk, and runs Linux Fedora Core 8. The manager also
runs an NFS server. The PS3 is a hypervisor-controlled platform,
with 256 MB of main memory (of which about 200MB is available

for applications), and a 60 GB hard disk. Of the 8 SPEs of the Cell,
only 6 SPEs are visible to the programmer (23; 31) on the PS3.
Each PS3 node has a swap space of 512 MB and runs Linux Fedora
Core 7. To emulate Cell-based blades, we connected each PS3
directly with a driver node, the configuration of which is identical
to that of the manager, with the exception that the driver has only
8 GB of main memory. Each driver is connected with the manager
via a 1 Gbps Ethernet switch.

For the experiments, we used four different resource configu-
rations. (1) Single configuration, which runs the benchmarks on a
stand alone PS3, with data provided from an NFS server to fac-
tor out any effects of the PS3’s slow local disk. Single provides a
measure of performance of one small-memory, high-performance
computational accelerator running the benchmarks. (2) Basic con-
figuration uses the manager and compute nodes as follows. The
manager equally divides the input at the beginning of the job and
assigns it to the compute nodes in one step. The manager then waits
for the data to be processed, before merging individual output to
produce the final results. Basic serves as the baseline for evaluat-
ing streaming and dynamic work unit scaling in our framework.
(3) Accelerator-Based or AcB configuration also uses the manager
and the compute nodes, but employs our framework for work unit
scaling, data streaming, and scheduling. (4) Blade configuration,
which uses our emulated Cell blades (driver-PS3 couples) and our
framework for work unit scaling, streaming, and scheduling.

5.2 Methodology

We conducted the experiments using the only publicly available
MapReduce implementation (12) for Cell processors, bearing in
mind that this implementation is still amenable to several Cell-
specific optimizations (12). The evaluation focuses on how our
design decisions affect performance when using MapReduce on an
asymmetric cluster with AMPs and GPPs.

For our evaluation, we used four common MapReduce applica-
tions, distributed with the Cell MapReduce runtime environment.
These applications are classified based on the MapReduce phase
where they spend most of the execution time. A brief description of
the applications that we have ported to our framework is provided
below. More details on these applications can be found in (12).

• Linear Regression: This application takes as input a large set
of 2-Dimensional points, and determines a linear best fit for the
given points. This is a map-dominated application.

• Word Count: This application counts the frequency of each
unique word in a given input file. The output is a list of unique
words found in the input along with their corresponding occur-
rence counts. This is a partition-dominated application.

• Histogram: This application takes as input a bitmap image, and
produces the frequency count of each RGB color composition
in the image. This is a partition-dominated application.

• K-Means: This application takes a set of points in an N-
dimensional space and groups them into a predefined number
of clusters with approximately equal number of points in each
cluster. This is a partition-dominated application.

For each benchmark, we measured the total execution time
under our setup configurations. We also measured the time and
number of iterations required to determine appropriate work unit
size using our dynamic work unit scaling mechanism, and compare
it with the manually determined value.

5.3 Results

In this section, we first examine how the applications behave un-
der our experimental configurations. Second, we evaluate dynamic
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Figure 4. Linear Regression execution time with increasing input size.

 0

 100

 200

 300

 400

 500

 600

 0  100  200  300  400  500

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Input Size (MB)

Single
Basic

AcB
Blade

 0
 20
 40
 60
 80

 100
 120
 140

 0  20  40  60  80  100

Figure 5. Word Count execution time with increasing input size.

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Input Size (MB)

Single
Basic

AcB
Blade

Figure 6. Histogram execution time with increasing input size.
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Figure 7. K-Means execution time with increasing input size.

work unit scaling. Third, we study the impact of our design on man-
ager load. Finally, we determine how the design scales as the num-
ber of compute nodes is increased.

5.3.1 Benchmark Performance

Linear Regression For this benchmark, we chose input sizes
ranging from 222 points (4 MB) to 229 points (512 MB). Figure 4
shows the results. Under Single, the input data quickly starts pro-
ducing more intermediate data than the available physical mem-
ory, resulting in increased swapping, and consequently increas-
ing the execution time. In Basic, a smaller fraction of the data is
sent to each of the compute nodes in each iteration, which alle-
viates the memory pressure from these nodes. Initially, AcB per-
forms slightly better than Basic, 18.9% on average for input sizes
less than 400 MB. This is attributed primarily to data streaming in
AcB and work unit size optimizations. However, as the input size
is increased beyond 400 MB, the peak virtual memory footprint
for Basic on the PS3s is observed to grow over 338 MB, much
greater than the 200 MB of available memory, leading to increased
swapping. Once Basic starts to swap, its execution time increases
noticeably. Our framework is able to dynamically adjust the work
unit size to avoid swapping on the compute nodes. AcB and Blade

achieve 24.3% and 60.3% average speedup over Basic, across all
input sizes of Linear Regression.

Blade performs 51.0% better than AcB, since each driver node
in Blade makes use of its large memory to store intermediate
results, and performs merge operations on the results produced by
the attached PS3 node. In contrast, under AcB, the manager has
to perform the merge operation on the results received from each

of the compute nodes while handling data distribution and other
manager operations.

Word Count During our experiments with Word Count, we ob-
served exponential growth in memory consumption relative to the
input data size, since each input word would emit additional inter-
mediate data out of the map function. Therefore, for any input size
greater than 44 MB, Single experienced excessive thrashing that
caused the PS3 node to run out of available swap space (512 MB)

and ultimately abort execution3. Similarly, Basicwas unable to han-
dle input data sizes greater than 176 MB, and took 631.9 seconds
for an input size of 164 MB.

Figure 5 shows the results. AcB and Blade are not only able
to process any input size, they outperform Basic by 20.2% and
54.4% on average, respectively, for the inputs where Basic com-
pletes without thrashing (input data size < 96 MB, emphasized in
the inset in the figure). Once again, Blade outperforms AcB (by
32.0%), as most of the scheduling and merging tasks are delegated
to the drivers.

Histogram Figure 6 shows the result for running Histogram un-
der the four test configurations. It can be observed that AcB and
Blade scale linearly with the input data size. Basic initially scales
linearly, but then looses performance as the increased input size
triggers swapping, e.g., for an input size of 160 MB, the peak vir-
tual memory size grows to 285 MB and it takes 285.3 seconds to
complete. On average across all input sizes that do not cause thrash-
ing, AcB and Blade perform 68.2% and 90.0% better than Basic,

3Execution was aborted by the operating system due to memory shortage
and not because of an application error.
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Application
Hand-Tuned

Our Framework

Size (MB)
Size # Time

(MB) Iterations (s)

Linear Regression 32 30 16 0.65

Word Count 3 2 8 1.82

Histogram 2 1 4 0.15

K-Means 0.37 0.12 16 1.09

Table 1. Performance of work unit size determination.

respectively . The maximum input size that Single and Basic can
handle without thrashing is 192 MB, for which the execution times
are 394.8 and 328.6 seconds, respectively. BetweenAcB and Blade,
Blade performs 21.6% better than AcB across all input points, since
Blade can make use of memory available at the driver node to store
the intermediate results and perform the merge operations.

K-Means The results for the K-Means benchmark are shown in
Figure 7. Note that K-Means uses a different number of iterations
for different input sizes. Therefore, considering total execution
times for different inputs does not provide a fair comparison of
the effect of increasing input size. We remedy this by reporting
the execution time per iteration in the figure. While the AcB and
Blade configurations scale linearly, Single and Basic use up all
the available virtual memory with relatively low input sizes. Both
Single and Basic abort for an input size greater than 8 MB and
32 MB, respectively. For 32 MB input size, Basic takes over 319
seconds/iteration compared to 5.5 seconds/iteration of AcB. The
only input size where Basic does not thrash is 1 MB, where it
outperforms AcB and Blade by about 17%, as this input size is
too small to amortize the management overhead of our approaches.
However, this is not of concern, as with any input size greater
than 1 MB, both AcB and Blade do significantly better than Basic.
Overall, Blade performs 9.0% better than AcB across all input sizes.

In summary, memory limitations and thrashing non-
withstanding, our framework outperforms static data distribution
due to better overlap of computation with communication and
I/O latency. Our framework also improves memory usage and
enables efficient handling of larger data sets compared to static
data distribution approaches.

5.3.2 Work Unit Size Determination

In this section, we first show how varying work unit sizes affect the
processing time on a node. For this purpose, we use a single PS3
node connected to the manager, and run Linear Regression bench-

mark with an input size of 512 MB 4. Figure 8 shows the result of
this experiment. As the work unit size is increased, the execution
time first decreases to a minimum, and eventually increases expo-
nentially. The valley point (shown by a dashed line) indicates the
size after which the compute node starts to page. Using a larger
size reduces performance since it produces more intermediate data
and requires larger buffers to implement double-buffering at com-
pute nodes, which have limited memory available for applications.
Using a size smaller than this point wastes resources: notice that
the curve is almost flat before the valley indicating no extra over-
head for processing more data. Also, using a smaller work unit size
increases the manager’s load, as the manager now has to handle
larger number of chunks for the same input size. Using the valley
point work unit size is optimal as it provides the best trade-off be-
tween compute node’s and manager’s performance, and results in
minimal execution time.

Next, we evaluate our framework’s ability to dynamically deter-
mine the optimal work unit size. In principle, the optimal unit size
depends on the relative computation to data transfer ratios of the
application and machine parameters, most notably, latencies and

4The results are similar for other applications and input sizes.

bandwidths of the chip, node and network interconnects. We fol-
low an experimental process to discover optimal work unit size. We
manually determined the maximum work unit size for each appli-
cation that can run on a single PS3 without paging to be the optimal
work unit size. We compared the manual work unit size to that de-
termined by AcB at runtime. For each application, Table 1 shows:
the work unit size determined both manually and automatically, the
number of iterations done by AcB to determine the best work unit,
and the time it takes for reaching this decision.

Our framework is able to dynamically determine an appropriate
work unit that is close to the one found manually, and the determi-
nation on average across our benchmarks takes under 0.93 seconds.
This is negligible, i.e., less than 0.5% of the total application execu-
tion times when input size is 2GB. Note that optimal work unit size
determination is independent of the given input size, and has a con-
stant cost for a given application. Thus, dynamic work unit scaling
in our framework is efficient as well as reasonably accurate.

5.3.3 Impact on the Manager

In this experiment, we determine the effect of varying work unit
sizes on manager performance. This is done as follows. First, we
start a long running job, using Linear Regression benchmark, on
the cluster. Next, we determine the time it takes to compile a large
project, Linux kernel 2.6, on the manager, while the MapReduce
task is running. We repeat the steps as the work unit size is de-
creased, potentially increasing the load on the manager. For each
work unit size, we repeat the experiment 10 times, using the AcB
configuration, and record the minimum, maximum, and average
time for the compilation as shown in Figure 9. The horizontal
dashed line in the figure shows the overall average compile time
across all work unit sizes. Given that the overall average remains
within the minimum and maximum times, we can infer that the
variation in the compile time curve is within the margin of error.
Thus, the relatively flat curve indicates that our framework has a
constant load on the manager and can support various workloads
without the manager becoming a bottleneck.

5.3.4 Scaling Characteristics

In the next experiment, we evaluate how performance of different
benchmark applications scales with the number of compute nodes,
using the AcB configuration. Figure 10 shows the speedup in per-
formance normalized to the execution time when AcB uses 1 com-
pute node. We use the same input size for all runs of any given
application. However, the input sizes for different applications are
chosen to be large enough so that each application benefits from us-
ing 8 nodes: 512 MB for Linear Regression and Histogram bench-
marks, 200 MB for Word Count benchmark, and 128 MB for K-
Means benchmark. The curve of K-Means is based on time per
iteration, as explained earlier in this section. Figure 10 shows that
our framework scales almost linearly as the number of compute
nodes is increased and this behavior is sustained in all benchmarks
with up to seven compute nodes. However, we observe some curv-
ing of scalability when the eighth compute node is added. Upon
further investigation, we found that network bandwidth utilization
with eight compute nodes was quite high, as much as 107 MB/s,
compared to the maximum observed value of 111 MB/s on our net-
work, which was measured using remote copy of a large file. This
introduces communication delays that are not entirely masked with
double buffering, and prevent our framework from achieving a lin-
ear speedup. Nevertheless, if the ratio of time spent in computation
compared to that in communication is high, as is the case in many
scientific applications, near perfect speedup can be obtained. We
tested this hypothesis by artificially increasing our compute time
for Linear Regression benchmark by a factor of 10, which resulted
in a speedup of 7.8 on 8 nodes cluster.
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5.3.5 Summary

Our evaluation shows that with standard MapReduce applications
on an asymmetric cluster with 8 PS3 compute nodes, our MapRe-
duce framework achieves 50.5% and 73.1% higher performance,
compared to a basic version of the framework which does not ex-
ploit streaming, for small-memory and well-provisioned compute
nodes, respectively. It utilizes limited memory available at compute
nodes efficiently by adapting effectively to the relative computation
to data transfer density of applications by converging to nearly opti-
mal work unit sizes. Moreover, it has minimal impact on manager’s
load, and scales well with increasing number of compute nodes (a
speedup of 6.9 on average on an 8 node cluster). Thus, our frame-
work provides a viable solution for efficiently supporting MapRe-
duce on asymmetric clusters.

6. Discussion

Our evaluation has shown that asymmetric multi-core processors
coupled with general-purpose and specialized cores, can be used ef-
fectively in tightly-coupled asymmetric distributed clusters to sup-
port highly scalable programming models, such as MapReduce, for
computationally challenging and data-intensive applications. Fur-
thermore, we observed a clear benefit of adopting a streaming ap-
proach to bridge the computational and I/O gaps between hetero-
geneous components, such as AMPs and GPPs, and feed in the
resource-constrained accelerators with the required data to over-
come some of their significant shortcomings, i.e. small memory
and limited I/O capabilities. Adopting the streaming approach also
exploits the inherent low-latency and fast memory interconnects,
which are strong attributes of AMPs. By careful tuning of the de-
sign parameters at runtime, such as optimal work unit size, syn-
chronization and communication parameters, resource-constrained
AMPs can serve as a cost-effective components for high perfor-
mance clusters. To this end, an obstacle is the saturation of network
bandwidth between the cluster manager and the small-memory
AMPs due to their dependency on the manager for OS services
such as I/O.

This can be remedied by using well-provisioned AMPs, which
significantly alleviate the memory, computation and I/O pressure
from the cluster manager as compared to small-memory AMPs.
GPPs on well-provisioned AMPs can perform major scheduling
and work distribution tasks, relieve the cluster manager, and thus
enable higher system scalability. Moreover, the GPPs make effi-
cient use of their large memories by prefetching the data required
by AMPs directly from the network and/or distributed storage with-
out incurring extra overhead at the manager. Finally, high-speed in-
ternal/external communication links between GPPs and AMPs can
be used to efficiently offload compute kernels of scientific applica-
tions and large data to attached AMPs.

7. Conclusion

We presented the design and implementation of a MapReduce
programming environment for asymmetric clusters of AMPs and
GPPs. Our framework relies on a streaming approach and dy-
namic scheduling and data distribution techniques to implement an
architecture-agnostic, yet scalable programming model for asym-
metric distributed clusters, featuring accelerators at their compute
nodes. We have been able to preserve the simple, portable, and
fault-tolerant programming interface of MapReduce, while exploit-
ing multiple interconnected computational accelerators for higher
performance. We presented dynamic schemes for memory manage-
ment and work allocation, so as to best adapt work and data distri-
bution to the relative computation density of the application and
to the variability of computational and storage capacities across
asymmetric components. Our dynamic schemes enable higher per-
formance and better utilization of the available memory resources,
which in turn helps economizing on capacity planning for large
cluster installations.

Our future work involves extensions of our framework in sev-
eral directions. We plan on exploring the performance of our design
in accelerator-based systems at large scales. We also intend to use
other types of accelerators, including GPUs, as well as experiment
with alternative design decisions with respect to the head and I/O
nodes, including experimentation with high-performance file sys-
tems for parallel I/O. We also plan on deploying our framework for
capacity planning and rightsizing of clusters given specific budgets.
We have evaluated our approach using dedicated resources for run-
ning standalone applications. In the future, we intend to evaluate
it in a virtualized setting, to explore performance robustness under
dynamic execution conditions and contention. Finally, one of our
main goals is to use our framework as a production-level program-
ming system for scientific data processing.
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