
Ease of Use with Concurrent Collections (CnC)

Kathleen Knobe
Intel

Abstract

Parallel programming is hard. We present a new approach called Concurrent Collections (CnC). This paper briefly
explains why writing a parallel program is hard in the current environment and introduces our new approach based
on this perspective. In particular, a CnC program doesn’t explicitly express the parallelism. It expresses the con-
straints on parallelism. These constraints remain valid regardless of the target architecture.

1. Why is parallel programming hard?
Many parallel languages embed parallel language con-
structs within the text of the serial code. Examples in-
clude MPI, OpenMP, PThreads, Ct etc. This embedding
is the source of some unnecessary difficulties:

• Serial code requires a serial ordering. If there
is no semantically required ordering among some
blocks of code, an arbitrary ordering must be speci-
fied.1

• Serial code modifies and refers to variables
(locations), not values. Variables can be overwritten.
This overwriting over-constrains the possible orderings.

• Serial code tightly couples the question of if
we will execute code from when we will execute it.
Arriving at some point in the control flow indicates
both that, yes, we will execute this code and also that
we will execute it now. This is true for loop iterations,
recursive calls and invocations of other subroutines.
These also constitute arbitrary ordering.

Converting serial code to parallel code involves uncov-
ering alternate valid executions either by manually or
automatically. In the presence of arbitrary ordering, this
process requires a complex analysis (human or ma-
chine). Embedding parallel language constructs or
pragmas in the midst of this problem again requires
uncovering alternate valid executions. This is difficult
to get right in the first place and to modify later. In
addition, of course, the parallelism constructs might

• be for a constrained class or architectures (say,
shared memory)

• focus on a limited type of parallelism (say,
data parallelism)

So when the architecture changes, so must the code.
For these reasons, embedding parallelism in serial code

1 It not hard to find an ordering but it can be complicated for a
program or a compiler to undo the ordering.

can limit both the language’s effectiveness and its ease
of use. In addition, these constraints might assume arbi-
trary constraints such as barriers after each loop or sin-
gle-program-multiple-data (SPMD). Although this is
not the focus of this paper, notice that these assump-
tions can also inhibit performance.

2. The essence of parallel execution
What does a runtime system need to know in order to
execute a program in parallel? We are not yet asking
how to specify the parallelism, how to optimize for any
specific target, etc. We are just asking: What are the
inputs to this decision?

We need to identify the semantically required schedul-
ing constraints. These are:

• Data dependences (producer/consumer rela-
tions): One computation produces data consumed by
another. Data is explicitly produced by a producer com-
putation and explicitly consumed by (possibly multiple)
consumer computations.

• Control dependences (controller/controllee re-
lations): One computation determines if another will
execute. To eliminate the tight coupling of the if and
when control flow questions, control tags will be ex-
plicitly produced by a controller computation and will
control the execution of a controllee computation. This
puts the control and data dependences on the same level
as in intermediate forms such as program dependence
graphs [5].

The types of objects that need to be identified are:

• The computations, i.e., the high-level opera-
tions, in the application.

• The data structures that participate in data de-
pendences among these high-level operations.

• The control tags that participate in control de-
pendences among these high-level operations.

The relationships among these objects that need to be
identified are:

• producer/consumer relations
• controller/controllee relations

As we see below, these three types of objects and rela-
tions among them is exactly what Concurrent Collec-
tions provides.

3. What is Concurrent Collections?

CnC relies on a combination of ideas from tuple-space
[6], streaming [7] and dataflow [8] languages. CnC
programs are written in terms of high-level application-
specific operations. These operations are partially or-
dered according to their semantically required schedul-
ing constraints only. The data that flows among these
operations is by value, not by location. There is no
overwriting and no arbitrary serialization among the
high-level operations. The high-level operations them-
selves are implemented in a serial language.

This approach supports an important separation of con-
cerns. There are two roles involved in implementing a
parallel program. One is the domain expert, the devel-
oper whose interest and expertise is in the application
domain, e.g., finance, genomics, etc. The other is the
tuning expert, whose interest and expertise is in per-
formance, possibly performance on a particular plat-
form. These may be distinct individuals or the same
individual at different stages in application develop-
ment. The tuning expert may in fact be software (static
compiler analysis or dynamic runtime analysis). The
Concurrent Collections programming model separates
the expression of the semantics of the computation (by
the domain expert) from the expression of the actual
parallelism, scheduling and distribution for a specific
architecture (by the tuning expert). This separation sim-
plifies the work of the domain expert. Writing in this
language does not require any reasoning about parallel-
ism or any understanding of the target architecture. The
domain expert is concerned only with her area of exper-
tise (the semantics of the application). The tuning ex-
pert is given the maximum possible freedom to map the
computation onto his target architecture. In this docu-
ment we will focus on topics relevant to the domain
expert.

3.1. Language concepts via an example

We will use face detection as an example application to
describe the language. Detection is performed on a se-
quence of images. Each image is further subdivided

into square sub-images (called windows) of any size
and at any position within the image. Each window is
processed by a sequence of classifiers. If any classifier
in the sequence fails, the window does not contain a
face and the remainder of the classifiers need not proc-
ess that window. The goal of this approach is to rapidly
reject any window not containing a face. This example
is chosen because it relies heavily on control-
dependences which enable Concurrent Collections to
support more than pure streaming applications.

A program is specified by a graph with three types of
nodes (computation steps, data items and control tags)
and three types of edges (producer relations, consumer
relations and prescription relations). We will introduce
the language by showing the process one might go
through to create a version of the face detector in this
language. This discussion refers to Figure 3-1 which
shows a simplified graphical representation of our face
detection application.

Figure 3-1 Face detection: graphical form

3.1.1. Creating a CnC graph
1. What are the high-level operations in the application?

The computation is partitioned into high-level opera-
tions called step collections. Step collections are repre-
sented as ovals. In this application, the step collections
are the classifiers C1, …, Cn. We use the term step
collection to indicate that it is a collection composed of
distinct step instances which are the unit of scheduling,
distribution and execution.
2. What data is produced/consumed by these operations?

Similarly, the user data is partitioned into data struc-
tures called item collections. Item collections are repre-
sented by rectangles. Again we use the term collection
to indicate that it is a collection composed of distinct
item instances. In this application there is only one item
collection, image. Item instances are the units of stor-
age, communication and synchronization. The producer

and consumer relationships between step collections
and item collections are explicit. The consumer rela-
tionships are represented as directed edges into steps.
Producer relations are represented as directed edges out
from steps. The image items are consumed by the clas-
sifier steps. There are no items produced in this appli-
cation.2

The environment (the code that invokes the graph) may
produce and consume items and tags. These relation-
ships are represented by directed squiggly edges. In our
application, for example, the environment produces
Image items.

At this point we have a description that is typical of
how people communicate informally with one another
at a whiteboard. The next two phases are required to
make this informal description precise enough to exe-
cute.
3. What distinguishes instances of data and operations?

The computations represented by circles are not long-
lived computations that continually consume input and
produce output. This would constitute another arbitrary
ordering. Instead, scheduling and distribution is on step
instances. Synchronization and communication is on
item instances.

We need to distinguish among the instances of a step
collection and instances of an item collection. Each
dynamic instance of a step or an item is uniquely identi-
fied by an application-specific tag. A tag component
might indicate a node identifier in a graph, a row num-
ber in an array, an employee number, a year, etc. A
complete tag might be composed of several compo-
nents, for example, employee number and year or
maybe xAxis, yAxis, and zAzis.

In our example, the instances of the image collection
are distinguished by image#. The classifier step in-
stances are distinguished by image# and window# pair.
In this example, a classifier step inputs the whole image
even though it operates only on one window within the
image.
4. What are the actual instances of data and operations?

Knowing the tag components that allow us to distin-
guish among instances is not quite precise enough to
execute. Knowing that we distinguish instances of clas-
sifier1 by values of image# and window# doesn’t tell us
if classifier1 is to be executed for image#2873, win-
dow#56. We have already introduced item collections

2 The directed edges from steps to the triangles are discussed
below.

for data and step collections for computation. Now we
introduce tag collections for control to specify exactly
which instances will execute.

Tag collections, sets of tag instances, provide the con-
trol mechanism. Tag collections are shown in triangles.
The tag collections in this graph are T1, … , Tn . A
prescriptive relation may exist between a tag collection
T and a step collection S. The meaning of such a rela-
tionship is this: if a tag instance t, say image# 2873,
window# 56, is in collection T, then the step instance s
in S with tag value t, image# 2873, window# 56, will
execute. A prescriptive relation is shown as a dotted
edge between a tag collection and a step collection. A
step collection S prescribed by a tag collection T must
have tags of the same form as tags in T. Thus we know
the form of the tags for the classifiers.

Usually control flow indicates not only if code executes
but also when. In CnC, the control via tags only indi-
cates if code executes. When it executes is up to a sub-
sequent scheduler.

When we add a tag collection to our specification, we
have to add the corresponding producer relation. For
example, the environment produces T1 which indicates
all the windows for all the images. The point of step
collection C1 is to determine which of these windows
definitely do not contain a face and which might con-
tain a face. An instance of C1, say with tag image# i
and window# w, will either produce tag T2 with tag
image# i and window# w (indicating that it might be a
face) or it will produce nothing (indicating that it is
definitely not a face). So step collection C1 produces
tag collection T2. The tag instances in T2 determine
which instances of C2 will execute. Similarly other step
collections and tag collections have producer relation-
ships.
5. What are the relationships among instances?

To understand the constraints on parallelism we need
more specifics about the relations among instances. Tag
functions provide this information. In our example, the
producer tag function that maps the tag of a classifier
step, say (C1) to the tag of the tag collection <T2> is
the identity function, e.g., (C1: i, w) can only produce
<T2: i, w> not <T2: i+1, w> for example. Other appli-
cations, for example nearest neighbor computations,
have more interesting tag functions. What is important
is that tag functions require only domain knowledge,
not understanding of parallelism.

At this point the importance of tag collections and tag
instances should be clear. Tags make this language

more flexible and more general than a streaming lan-
guage. In addition, the tag mechanism separates the
question of if a step will execute from when a step will
execute. The domain-expert determines if a step will
execute. The tuning-expert determines when it will exe-
cute. This separation not only allows for more effective
tuning, it makes the job of the domain expert easier.

3.1.2. Textual representation

Concurrent Collections can be represented in a variety
of distinct forms. A textual form of the graph represents
each relationship in a separate statement using parens,
square brackets and angle brackets instead of ovals,
rectangles and triangles. For example,
(C1: image#, window#) • <T2: image#, window#>;

A translator converts this form to use a CnC class li-
brary. One can specify the graph directly in the CnC
class library. We are currently investigating a graphical
form that looks more like Figure 3-1.

3.1.3. Coding the high-level operators

In addition to specifying the graph, we need to code the
steps in a serial language. The step has access to the
values of its tag components. It uses get operations to
consume items and put operations to produce items
and tags. An example of step code showing the API for
the current implementation is shown below.

void c1(facedetector_graph_t& graph,

 const Tag_t& step_tag) {

 // Retrieve the image

 image_t x = graph.image.Get(step_tag);

 // Check the image

 if (isFace(x))

 // Add the tag for next classifier

 graph.T2.Put(step_tag);

 return;

 }

3.1.4. Semantics and Parallelism

The vision expert going through the process above
needs to know a lot about vision but nothing in the
process involves any reasoning about parallelism. The
resulting program makes the constraints on parallelism
explicit, but not the parallelism itself. The constraints
are either data dependences (steps produce items that
are consumed by other steps) or control dependences

(steps produce tags that prescribe other steps). This
simple example only contains control dependences.

The semantics ensure the constraints on the schedule by
maintaining attributes for each instance. As the pro-
gram executes, item and tag instances become avail-
able. A step is prescribed, when its prescribing tag is
available. A step may execute when it is prescribed and
its input items are available. Attributes are only added
so the process is monotonic. The execution frontier is
the set of instances that have some attribute but are not
yet dead/executed. The program is valid if, when it
terminates, all its prescribed steps have executed. Note
that this is a description of the semantics and not of any
particular implementation. Some of the implementa-
tions of CnC are actually quite different from this de-
scription.

Consider the possible schedules for our example. There
are no constraints among images and there are no con-
straints among windows in an image. The only con-
straint is that for a given window w of a given image i,
the classifiers are executed in order. This ordering con-
straint arises because of the control-dependences, for
example, we don’t know if classifier (C2: i, w) will
execute until (C1: i, w) completes.

3.1.5. Key aspects of the language

Concurrent Collections is a way of expressing a pro-
gram:
• In terms of higher-level operators and data structures

appropriate to the application.

This allows the programmer to continue to express the
high-level operators of the program in any familiar se-
rial programming language.
• In dynamic single assignment form.

The computation is expressed in terms of values, not
locations. Each high-level operation is functional. The
only side-effects are explicitly producing values. There
is no overwriting so there are no race conditions and
the results are deterministic regardless of schedule.
• In terms of ordering constraints based on the flow of data

and control.

The operations of the computation are partially ordered,
based only on the data flow among them. There is no
need for analysis to undo an overly-constrained order-
ing.
• CnC isolates the question of if code will execute from

when it will execute.

This provides ease and flexibility for scheduling.

• CnC acts as an interface.

Parallel constructs are not embedded with serial source.
The details of the application are on one side of this
interface. The mapping to a parallel platform is on the
other. Because these are isolated, it is easier to modify
one or the other independently.

This model delivers to the domain expert computation
that

• is based on how people actually communicate
with one another about their application,

• is deterministic and therefore gets identical re-
sults regardless of the schedule, distribution, configura-
tion or architecture

• requires no reasoning about parallelism and
• is neutral with respect to target platform.

and delivers to the tuning expert (person or program)

• maximal flexibility for tuning. This flexibility
comes about because only the constraints are explicit.
There is no overwriting or arbitrary serialization to con-
strain scheduling and distribution decisions.

4. Mapping CnC to a parallel target

Given the objects specified in your CnC specification,
there are a variety of ways to execute it in parallel.
First it supports task parallelism, pipeline parallelism
and data parallelism. The three things that need to be
determined are: grain, distribution across processors,
scheduling within processors. Unlike other languages
that are designed with a fairly specific execution style
in mind, CnC is designed to support many. The follow-
ing distinct systems have been implemented:

5. Applications

We have built a variety of runtime systems. The cur-
rent system (see [1] for download and documentation)
is built on Intel’s TBB [2]. The set of applications in
CnC is small but growing. It includes body tracking,
Black-Scholes, game of life, Dedup, Cholesky factori-
zation, Eigansolver, matrix inversion, conjugate gradi-
ent. Some are complete. Others are on the way. They
show speedup comparable to TBB itself. More impor-

tantly they show good scalability. When we incorpo-
rate tools for the tuning expert, we anticipate even bet-
ter performance.

Acknowledgements
Thanks are due to many who have contributed to this work.

Carl Offner and Alex Nelson for help with the initial model,
and the design and implementation of several runtime sys-
tems.
Shin Lee, Steve Rose, Nikolay Kurtov and Leo Treggiari, the
Intel® Concurrent Collections for C/C++ team.
Geoff Lowney, William Youngs, John Pieper, Frank Schlim-
bach, Steve Lang and Mark Hampton from Intel.
Vivek Sarkar, Zoran Budimlic from Rice.
Kishore Ramachandran, Hasnain Mandviwala, Aparna
Chandramowlishwaran, and Rich Vuduc from Georgia Tech.

References

1. Intel ® Concurrent Collections for C/C++.

http://software.intel.com/en-us/articles/intel-concurrent-
collections-for-cc

2. Intel Corporation. Threading building blocks.

http://www.threadingbuildingblocks.org/

3. Zoran Budimlic, Aparna Chandramowlishwaran, Kath-

leen Knobe, Geoff Lowney, Vivek Sarkar, and Leo
Treggiari. Multi-core implementations of the concurrent
collections programming model. In CPC ’09: 14th Inter-
national Workshop on Compilers for Parallel Com-
puters. Springer, January 2009.

4. Hasnain Mandviwala. Capsules: Expressing Composable

Computations in a Parallel Programming Model. PhD
thesis, Georgia Institute of Technology, 2008.

5. Ferrante, J., Ottenstein, K. J., and Warren, J. D. 1987.

The program dependence graph and its use in optimiza-
tion. ACM Trans. Program. Lang. Syst. 9, 3 (Jul. 1987),
319-349.

6. Carriero, N. and Gelernter, D. Linda in context,

Commun. ACM 32, 4 (Apr. 1989)

7. StreamIt: A Language for Streaming Applications.

William Thies, Michal Karczmarek, Saman
Amarasinghe. International Conference on Compiler
Construction.Grenoble, France. Apr, 2002.

8. Arvind, Gostelow, K. P. and Plouffe, W. The (prelimi-

nary) Id report. Technical Report 114, Department of In-
formation and Computer Science, University of Califor-
nia, Irvine, CA, 1978.

 Memory Grain Distribution Schedule
HP distributed static static static
HP distributed static static dynamic
Intel shared static dynamic dynamic
Rice shared static dynamic dynamic
GaTech shared dynamic dynamic dynamic

